

Synthesis of Chiral 2-Substituted 1,4-Benzoxazin-3-ones via Iridium-Catalyzed Enantioselective Hydrogenation of Benzoxazinones

Yu Nie, Jing Li, Jun Yan, Qianjia Yuan,* and Wanbin Zhang*

tivity. Additionally, three bioactive molecules can be easily obtained from the reduced products.

1,4-Benzoxazinones are core scaffolds in a variety of natural products and bioactive molecules as well as useful building blocks in organic synthesis (Figure 1).¹ Many synthetic

proceeded very well on a gram scale with low catalyst loadings (0.1

mol %), providing the product with no erosion in enantioselec-

Figure 1. Examples of bioactive compounds bearing 1,4-benzoxazin-3-ones.

strategies have been reported for the construction of 1,4benzoxain-3-ones;² however, most of the methods provide racemic mixtures,^{2c-j} and the methods for the preparation of these chiral building blocks employ chiral starting materials and require multistep synthetic sequences.^{2a,b} Hence, developing enantioselective catalytic strategies for the construction of enantiomerically enriched 1,4-benzoxazin-3-ones is of great importance; however, only a few examples of the construction of chiral 1,4-benzoxazin-3-ones via enantioselective catalytic reactions have been reported.³ In 2015, Stoltz and coworkers synthesized 2,2-disubstituted 1,4-benzoxazin-3-ones via a palladium-catalyzed enantioselective allylic substitution reaction (Scheme 1a).^{3a} In 2018, the Maruoka research group reported a phase-transfer-catalyzed enantioselective synthesis of 2,2disubstituted 1,4-benzoxazin-3-ones (Scheme 1b).^{3b} Therefore, Scheme 1. Catalytic Enantioselective Synthesis of Chiral 2-Substituted 1,4-Benzoxazin-3-ones

excellent enantioselectivities (up to 99% ee)

important building blocks

the development of a concise method for the synthesis of such chiral compounds appears to be challenging but desirable.

Transition-metal-catalyzed enantioselective hydrogenation has gained much attention in academia, and great success has been achieved in industrial applications owing to its atom economy, excellent enantioselectivity, and simple operation for

Received: May 20, 2021 **Published:** July 2, 2021

the construction of enantioenriched compounds.⁴ Since the Pfaltz group's pioneering work,⁵ iridium-catalyzed enantioselective hydrogenation has attracted much attention due to its excellent performance in the enantioselective reduction of different types of C=C bonds with/without functional groups. Our group has developed axis-unfixed biphenylphosphineoxazoline ligands (BiphPHOX) that have shown excellent performance in several types of transition-metal-catalyzed enantioselective catalytic reactions,⁶ especially for iridiumcatalyzed enantioselective hydrogenations. 6a-f,h-1 Considering the importance of 1,4-benzoxazin-3-ones and to further explore our developed axis-unfixed biphenylphosphine-oxazoline ligands in the enantioselective hydrogenation reactions and the methods for the construction of chiral heterocycles,⁷ herein we report an Ir/BiphPHOX-catalyzed enantioselective hydrogenation of 2-alkylidene 1,4-benzoxazin-3-ones for the preparation of chiral 2-substituted 1,4-benzoxazin-3-ones (Scheme 1). Our developed BiphPHOX ligands showed excellent performance in the iridium-catalyzed enantioselective reduction of fourand five-membered ring substrates bearing exocyclic C=Cbonds but provided moderate enantiomeric ratios for the enantioselective reduction of six-membered rings bearing exocyclic C=C bonds.^{6b,d} The development of an efficient enantioselective Ir/BiphPHOX-catalyzed hydrogenation of sixmembered rings bearing exocyclic C=C bonds is desirable.

Optimization of the iridium-catalyzed enantioselective hydrogenation reaction was carried out using N-benzyl-substituted compound 1a as the model substrate for six-membered rings bearing an exocyclic C=C bond (Table 1). On the basis of our previous reports,⁶ the ligands L1-L3 were tested under the enantioselective hydrogenation conditions. To our delight, the reaction proceeded very well and delivered the corresponding product 2a with excellent enantioselectivities (entries 1-3). It should be noted that the substituent on the oxazoline ring of the ligand had no effect on the enantioselectivity of the reduced product. The PHOX ligands L4 and L5 were also tested in this reaction, and poor conversions and enantioselectivities were obtained (entries 4 and 5). Next, the solvent (DCE, toluene, and 1,4-dioxane) for the reaction was investigated, and the reduced products were all obtained with 96% ee (entries 6-8). The hydrogen pressure and reaction time were also examined (entries 9-11), both of which had an effect on the conversions of the reaction. When the hydrogen pressure was decreased to 30 bar, the reaction proceeded very well and gave the reduced product 2a with 97% ee (entry 9). Finally, the protecting group on the nitrogen in the substrate was evaluated, and substrates bearing N-phenyl and N-methyl groups delivered their corresponding reduced products 2b and 2c with full conversions with 89 and 78% ee, respectively; however, the N-free substrate delivered a trace amount of product 2d. On the basis of the above information, benzyl was selected as the nitrogen protecting group, and the optimized reaction conditions are shown in Table 1 (entry 9).

With the optimized reaction conditions in hand (Table 1, entry 9), the substrate scope was examined (Scheme 2). In general, the optimized reaction conditions showed excellent functional group compatibility. First, the substrates with different substituted R^2 groups were examined. When R^2 was a phenyl ring bearing different functional groups (electron-donating or electron-withdrawing) at the para or meta positions, all of the reduced products (2a and 2e-2o) were obtained in excellent yields with excellent enantioselectivities; with a phenyl ring bearing a substituent at the ortho position, the reduced

^{*a*}Reaction conditions: substrate 1 (0.2 mmol), substrate/catalyst (S/C) = 100, solvent (2 mL), H₂ (60 bar). ^{*b*}Axial chirality of the catalyst was S when ligands L1–L3 were used. ^{*c*}Determined by ¹H NMR spectroscopy. ^{*d*}Determined by HPLC with a chiral column. ^{*e*}H₂ (30 bar). ^{*f*}H₂ (20 bar). ^{*g*}I2 h.

products (2p and 2q) were obtained in quantitative yields with 83 and 82% ee, respectively. The reduced products (2r-2t) with two substituents on the phenyl ring were also obtained with excellent enantioselectivities. The reduced product 2s was obtained in 92% yield with 97% ee under modified reaction conditions, the two oxygen atoms of the dimethoxy group may coordinate to the catalyst, thus reducing its activity.⁶¹ When R² was another aromatic ring, the reaction proceeded well and delivered the corresponding reduced products (2u-2w) with good to excellent enantioselectivities. Heteroaromatic rings are also well tolerated in the reaction, such as 2-furanyl, 2-thienyl, and 3-thienyl groups, delivering the corresponding reduced products (2x-2z) in excellent yields. When R^2 was an alkyl substituent, the reaction also proceeded very well and afforded the corresponding reduced products (2aa-2ac) with good to excellent enantioselectivities. The cyclopropanyl group was also tolerated in the reaction, giving the product 2ac in 98% yield with 97% ee. Next, substrates with different R¹ groups on the 1,4-benzoxazinone ring were examined. Substrates bearing an electron-donating or electron-withdrawing group at various positions of the 1,4-benzoxazinone ring delivered the reduced products (2ad-2an) in excellent results. For a substrate bearing a bromo atom on the 1,4-benzoxazinone ring with an R^2 cyclopropanyl group, the product 2ao was obtained in 98% yield with 97% ee. The absolute configuration of the product 2v was determined to be (S) by X-ray single-crystal diffraction, and the same sense of stereochemistry was assumed for the remainder of the products. In addition, we designed and carried

pubs.acs.org/OrgLett

Scheme 2. Scope of the Substrate^a

^aReaction conditions: substrate 1 (0.2 mmol), (aS)-Ir/iPr-BiphPHOX (1 mol %), o-xylene (2 mL) under H₂ (30 bar) at r.t. for 24 h. Isolated yield. ee values were determined by HPLC with a chiral column. ^bDCE as the solvent. ^cH₂ (60 bar) and 48 h.

out some control experiments, and the results showed that structurally related compounds (2ap-2as and 3) do not achieve the same levels of efficiency under the optimized reaction conditions (Scheme 3).

Scheme 4. Reaction Efficiency and Transformations of the Products

To demonstrate the efficiency and applications of this iridium-catalyzed enantioselective hydrogenation reaction, a gram-scale reaction was carried out with low catalyst loadings (0.1 mol %), giving the reduced product **2ag** in 98% yield with 97% ee (Scheme 4). Further transformations of the reduced products were also conducted. Product 2a can be reduced with 9-BBN, providing 1,4-benzoxazine 3 in 88% yield with 97% ee (Scheme 4a). The reduced products 2a, 2ag, and 2al in the

presence of trifluoromethanesulfonic acid delivered the corresponding *N*-free products **4**, **6**, and **8** in good yields. Compound **4** was transformed to product **5** via a simple substitution reaction, which is a CNS depressant and a dopamine receptor antagonist (Scheme 4b).⁸ Product **6** can be transformed to the ATP-sensitive potassium (KATP) channel modulator 7 according to a reported method (Scheme 4c).⁹ Compound **8** is a key intermediate for the preparation of bromodomain and extraterminal (BET) bromodomain inhibitor **9** (Scheme 4d).¹¹

In summary, an efficient iridium-catalyzed enantioselective hydrogenation of 2-alkylidene 1,4-benzoxazin-3-ones using our developed axis-unfixed biphenylphosphine-oxazoline ligand has been developed, delivering chiral 2-substituted 1,4-benzoxazin-3-ones in excellent yields (up to 99%) and with excellent enantioselectivities (up to 99% ee). The reaction showed excellent functional group compatibility, and proceeded very well with low catalyst loadings (0.1 mol %) on a gram scale. Additionally, three bioactive molecules can be obtained from the reduced products.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.1c01701.

Experimental procedures and spectral data for all new compounds (PDF)

Accession Codes

CCDC 2069776 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

- Qianjia Yuan Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; Email: yuangianjia@sjtu.edu.cn
- Wanbin Zhang Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China; orcid.org/ 0000-0002-4788-4195; Email: wanbin@sjtu.edu.cn

Authors

- Yu Nie Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Jing Li Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Jun Yan Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative

Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.1c01701

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (nos. 22001164, 22071150, 21991112, 21831005, 91856106, 21620102003), the National Key R&D Program of China (no. 2018YFE0126800), the Shanghai Municipal Education Commission (no. 201701070002E00030), the Shanghai Pujiang Program (20PJ1406400), and the startup funding from Shanghai Jiao Tong University. We also thank the Instrumental Analysis Center of Shanghai Jiao Tong University.

REFERENCES

(1) For selected papers, see: (a) Otsuka, H.; Hirai, Y.; Nagao, T.; Yamasaki, K. Anti-Inflammatory Activity of Benzoxazinoids from Roots of Coix lachryma-jobi var. Ma-yuen. J. Nat. Prod. 1988, 51, 74. (b) Rybczynski, P. J.; Zeck, R. E.; Dudash, J.; Combs, D. W.; Burris, T. P.; Yang, M.; Osborne, M. C.; Chen, X.; Demarest, K. T. Benzoxazinones as PPARy Agonists. 2. SAR of the Amide Substituent and In Vivo Results in a Type 2 Diabetes Model. J. Med. Chem. 2004, 47, 196. (c) Smid, P.; Coolen, H. K. A. C.; Keizer, H. G.; van Hes, R.; de Moes, J.-P.; den Hartog, A. P.; Stork, B.; Plekkenpol, R. H.; Niemann, L. C.; Stroomer, C. N. J.; Tulp, M. T. M.; van Stuivenberg, H. H.; McCreary, A. C.; Hesselink, M. B.; Herremans, A. H. J.; Kruse, C. G. Synthesis, Structure-Activity Relationships, and Biological Properities of 1-Heteroaryl-4-[\omega-(1H-indol-3-yl)alkyl]piperazines, Novel Potential Antipsychotics Combining Potent Dopamine D2 Receptor Antagonism with Potent Serotonin Reuptake Inhibition. J. Med. Chem. 2005, 48, 6855. (d) La, D. S.; Belzile, J.; Bready, J. V.; Coxon, A.; DeMelfi, T.; Doerr, N.; Estrada, J.; Flynn, J. C.; Flynn, S. R.; Graceffa, R. F.; Harriman, S. P.; Larrow, J. F.; Long, A. M.; Martin, M. W.; Morrison, M. J.; Patel, V. F.; Roveto, P. M.; Wang, L.; Weiss, M. M.; Whittington, D. A.; Teffera, Y.; Zhao, Z.; Polverino, A. J.; Harmange, J.-C. Novel 2,3-Dihydro-1,4-Benzoxazines as Potent and Orally Bioavailable Inhibitors of Tumor-Driven Angiogenesis. J. Med. Chem. 2008, 51, 1695. (e) Ilaš, J.; Jakopin, Ž.; Borštnar, T.; Stegnar, M.; Kikelj, D. 3,4-Dihydro-2H-1,4-benzoxazine Derivatives Combining Thrombin Inhibitory and Glycoprotein IIb/IIIa Receptor Antagonistic Activity as a Novel Class of Antithrombotic Compounds with Dual Function. J. Med. Chem. 2008, 51, 5617. (f) Macías, F. A.; Marín, D.; Oliveros-Bastidas, A.; Molinillo, J. M. G. Rediscovering the Bioactivity and Ecological Role of 1,4-Benzoxazinones. Nat. Prod. Rep. 2009, 26, 478. (g) Nakahira, H.; Ikuma, Y.; Fukuda, N.; Yoshida, K.; Kimura, H.; Suetsugu, S.; Fusano, A.; Sawamura, K.; Ikeda, J.; Nakai, Y. Preparation of Bicyclic Heterocyclic (Fused Benzamide) Derivatives as Renin Inhibitors. WO078481, 2009. (h) Cameron, K.; Krauss, A.; Lefker, B.; Nair, S.; Prasanna, G.; Rui, E. EP2/4 Agonists. WO116270, 2010. (i) Xue, X.; Zhang, Y.; Wang, C.; Zhang, M.; Xiang, Q.; Wang, J.; Wang, A.; Li, C.; Zhang, C.; Zou, L.; Wang, R.; Wu, S.; Lu, Y.; Chen, H.; Ding, K.; Li, G.; Xu, Y. Benzoxazinone-Containing 3,5-Dimethylisoxazole Derivatives as BET Bromodomain Inhibitors for Treatment of Castration-Resistant Prostate Cancer. Eur. J. Med. Chem. 2018, 152, 542.

(2) For selected papers, see: (a) Breznik, M.; Mrcina, A.; Kikelj, D. Enantioselective Synthesis of (R)- and (S)-2-Methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-2-carboxamides. *Tetrahedron: Asymmetry* **1998**, 9, 1115. (b) Breznik, M.; Hrast, V.; Mrcina, A.; Kikelj, D. Stereoselective Synthesis of (R)- and (S)-2-Methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-2-carboxylic Acids, -Carboxylates and -Carbox-

amides. Tetrahedron: Asymmetry 1999, 10, 153. (c) Banik, B. K.; Samajdar, S.; Banik, I. A Facile Synthesis of Oxazines by Indium-Induced Reduction-Rearrangement of the Nitro β -Lactams. Tetrahedron Lett. 2003, 44, 1699. (d) Ilaš, J.; Anderluh, P. Š.; Dolenc, M. S.; Kikelj, D. Recent Advances in the Synthesis of 2H-1,4-Benzoxazin-3-(4H)-ones and 3,4-Dihydro-2H-1,4-benzoxazines. Tetrahedron 2005, 61, 7325. (e) Ilaš, J.; Tomašić, T.; Kikelj, D. Novel Potent and Selective Thrombin Inhibitors Based on a Central 1,4-Benzoxazin-3(4H)-one Scaffold. J. Med. Chem. 2008, 51, 2863. (f) Duerfeldt, A. S.; Brandt, G. E. L.; Blagg, B. S. J. Design, Synthesis, and Biological Evaluatoin of Conformationally Constrained cis-Amide Hsp90 Inhibitors. Org. Lett. 2009, 11, 2353. (g) Ylijoki, K. E. O.; Kündig, E. P. The Preparation of 2H-1,4-Benzoxazin-3-(4H)-ones via Palladium-catalyzed Intramolecular C-O Bond Formation. Chem. Commun. 2011, 47, 10608. (h) Ramesh, C.; Raju, B. R.; Kavala, V.; Kuo, C.-W.; Yao, C.-F. A Simple and Facile Route for the Synthesis of 2H-1,4-Benzoxazin-3-(4H)-ones via Reductive Cyclization of 2-(2-Nitrophenoxy)acetonitrile Adducts in the Presence of Fe/acetic acid. Tetrahedron 2011, 67, 1187. (i) Martinand-Lurin, E.; El Kaïm, L.; Grimaud, L. Benzoxazinone Synthesis via Passerini-Smiles Couplings. Tetrahedron Lett. 2014, 55, 5144. (j) Bodero, O.; Spivey, A. C. An Expedient Synthesis of 2-Aryl-1,4-benzoxazin-3-ones via Tandem Anionic Cyclisation/Alkylation Reactions of N-Boc-O-benzyl-2-aminophenols. Synlett 2017, 28, 471.

(3) (a) Numajiri, Y.; Jiménez-Osés, G.; Wang, B.; Houk, K. N.; Stoltz,
B. M. Enantioselective Synthesis of Dialkylated N-Heterocycles by
Palladium-Catalyzed Allylic Alkylation. Org. Lett. 2015, 17, 1082.
(b) Pawliczek, M.; Shimazaki, Y.; Kimura, H.; Oberg, K. M.; Zakpur, S.;
Hashimoto, T.; Maruoka, K. Phase-Transfer-Catalysed Asymmetric
Synthesis of 2,2-Disubstituted 1,4-Benzoxazin-3-ones. Chem. Commun.
2018, 54, 7078.

(4) For selected reviews, see: (a) Tang, W.; Zhang, X. New Chiral Phosphorus Ligands for Enantioselective Hydrogenation. Chem. Rev. 2003, 103, 3029. (b) Minnaard, A. J.; Feringa, B. L.; Lefort, L.; de Vries, J. G. Asymmetric Hydrogenation Using Monodentate Phosphoramidite Ligands. Acc. Chem. Res. 2007, 40, 1267. (c) Shultz, C. S.; Krska, S. W. Unlocking the Potential of Asymmetric Hydrogenation at Merck. Acc. Chem. Res. 2007, 40, 1320. (d) Shimizu, H.; Nagasaki, I.; Matsumura, K.; Sayo, N.; Saito, T. Developments in Asymmetric Hydrogenation from an Industrial Perspective. Acc. Chem. Res. 2007, 40, 1385. (e) Gridnev, I. D.; Imamoto, T. Mechanism of Enantioselection in Rh-Catalyzed Asymmetric Hydrogenation. The Origin of Utmost Catalytic Performance. Chem. Commun. 2009, 45, 7447. (f) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Transition Metal-Catalyzed Enantioselective Hydrogenation of Enamines and Imines. Chem. Rev. 2011, 111, 1713. (g) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Asymmetric Hydrogenation of Heteroarenes and Arenes. Chem. Rev. 2012, 112, 2557. (h) Verendel, J. J.; Pàmies, O.; Diéguez, M.; Andersson, P. G. Asymmetric Hydrogenation of Olefins Using Chiral Crabtree-Type Catalysts: Scope and Limitations. Chem. Rev. 2014, 114, 2130. (i) Wang, Y.; Zhang, Z.; Zhang, W. Asymmetric Hydrogenation of Cyclic Dehydroamino Acids and Their Derivatives. Youji Huaxue 2015, 35, 528. (j) Zhao, D.; Candish, L.; Paul, D.; Glorius, F. N-Heterocyclic Carbenes in Asymmetric Hydrogenation. ACS Catal. 2016, 6, 5978. (k) Zhang, Z.; Butt, N. A.; Zhang, W. Asymmetric Hydrogenation of Nonaromatic Cyclic Substrates. Chem. Rev. 2016, 116, 14769. (l) Wang, Z.; Zhang, Z.; Liu, Y.; Zhang, W. Development of the Asymmetric Hydrogenation of Enol Esters. Youji Huaxue 2016, 36, 447. (m) Yuan, Q.; Zhang, W. Applications of Phosphoramidite Ligands in Ir-Catalyzed Asymmetric Hydrogenation Reactions. Youji Huaxue 2016, 36, 274. (n) Wang, Q.; Zhao, S.; Jin, L.; Chen, X. Synthesis of Fmoc-Protected (S)-3,5-Dibromophenylalanine in the Presence of a Phase Transfer Catalyst or a Chiral Catalyst. Youji Huaxue 2016, 36, 2242. (o) Yu, Y.-N.; Xu, M.-H. Chiral Phosphorus-Olefin Ligands for Asymmetric Catalysis. Huaxue Xuebao 2017, 75, 655. (p) Gu, X.; Li, X.; Xie, J.; Zhou, Q. Recent Progress in Homogeneous Catalytic Hydrogenation of Esters. Huaxue Xuebao 2019, 77, 598.

(5) (a) Schnider, P.; Koch, G.; Prétôt, R.; Wang, G.; Bohnen, F. M.; Krüger, C.; Pfaltz, A. Enantioselective Hydrogenation of Imines with Chiral (Phosphanodihydrooxazole)iridium Catalysts. *Chem. - Eur. J.* **1997**, *3*, 887. (b) Lightfoot, A.; Schnider, P.; Pfaltz, A. Enantioselective Hydrogenation of Olefins with Iridium-Phosphanodihydrooxazole Catalysts. *Angew. Chem., Int. Ed.* **1998**, *37*, 2897.

(6) (a) Tian, F.; Yao, D.; Zhang, Y. J.; Zhang, W. Phosphine-oxazoline Ligands with an Axial-unfixed Biphenyl Backbone: the Effects of the Substituent at Oxazoline Ring and P Phenyl Ring on Pd-Catalyzed Asymmetric Allylic Alkylation. Tetrahedron 2009, 65, 9609. (b) Tian, F.; Yao, D.; Liu, Y.; Xie, F.; Zhang, W. Iridium-Catalyzed Highly Enantioselective Hydrogenation of Exocyclic $\alpha_{,\beta}$ -Unsaturated Carbonvl Compounds. Adv. Synth. Catal. 2010, 352, 1841. (c) Liu, Y.; Yao, D.; Li, K.; Tian, F.; Xie, F.; Zhang, W. Iridium-Catalyzed Asymmetric Hydrogenation of 3-Substituted Unsaturated Oxindoles to Prepare C3mono Substituted Oxindoles. Tetrahedron 2011, 67, 8445. (d) Liu, Y.; Zhang, W. Ir-Catalyzed Asymmetric Hydrogenation of α -Alkylidene Succinimides. Angew. Chem., Int. Ed. 2013, 52, 2203. (e) Liu, Y.; Gridney, I. D.; Zhang, W. Mechanism of Asymmetric Hydrogenation of Functionalized Olefins with Ir/iPr-BiphPHOX Catalyst: NMR and DFT Study. Angew. Chem., Int. Ed. 2014, 53, 1901. (f) Xia, J.; Yang, G.; Zhuge, R.; Liu, Y.; Zhang, W. Iridium-Catalyzed Asymmetric Hydrogenation of Unfunctionalized Exocyclic C=C Bonds. Chem. Eur. J. 2016, 22, 18354. (g) Quan, M.; Tang, L.; Shen, J.; Yang, G.; Zhang, W. Ni(II)-Catalyzed Asymmetric Addition of Arylboronic Acids to Cyclic Imines. Chem. Commun. 2017, 53, 609. (h) Xia, J.; Nie, Y.; Yang, G.; Liu, Y.; Zhang, W. Iridium-Catalyzed Asymmetric Hydrogenation of 2H-Chromenes: A Highly Enantioselective Approach to Isoflavan Derivatives. Org. Lett. 2017, 19, 4884. (i) Meng, K.; Xia, J.; Wang, Y.; Zhang, X.; Yang, G.; Zhang, W. Ir/ BiphPHOX-Catalyzed Asymmetric Hydrogenation of 3-Substituted 2,5-Dihydropyrroles and 2,5-Dihydrothiophene 1,1-Dioxides. Org. Chem. Front. 2017, 4, 1601. (j) Xia, J.; Nie, Y.; Yang, G.; Liu, Y.; Gridnev, I. D.; Zhang, W. Ir-Catalyzed Asymmetric Hydrogenation of α -Alkylidene β -Lactams and Cyclobutanones. *Chin. J. Chem.* **2018**, *36*, 612. (k) Wang, Y.; Xia, J.; Yang, G.; Zhang, W. Iridium-Catalyzed Asymmetric Hydrogenation of 2-Substituted 1,4-Benzodioxines. Tetrahedron 2018, 74, 477. (l) Yan, J.; Nie, Y.; Gao, F.; Yuan, Q.; Xie, F.; Zhang, W. Ir-Catalyzed Asymmetric Hydrogenation of 3-Arylindenones for the Synthesis of Chiral 3-Arylindanones. Tetrahedron 2021, 84, 132003.

(7) (a) Yuan, Q.; Liu, D.; Zhang, W. Iridium-Catalyzed Asymmetric Hydrogenation of β_{γ} -Unsaturated γ -Lactams: Scope and Mechanistic Studies. Org. Lett. 2017, 19, 1144. (b) Kou, X.; Shao, Q.; Ye, C.; Yang, G.; Zhang, W. Asymmetric Aza-Wacker-Type Cyclization of N-Ts Hydrazine-Tethered Tetrasubstituted Olefins: Synthesis of Pyrazolines Bearing One Quaternary or Two Vicinal Stereocenters. J. Am. Chem. Soc. 2018, 140, 7587. (c) Wu, L.; Yang, G.; Zhang, W. Ni-Catalyzed Enantioconvergent Coupling of Epoxides with Alkenylboronic Acids: Construction of Oxindoles Bearing Quaternary Carbons. CCS Chemistry 2020, 2, 623. (d) Liu, H.; Sun, Z.; Xu, K.; Zheng, Y.; Liu, D.; Zhang, W. Pd-Catalyzed Asymmetric Allylic Substitution Cascade of But-2-ene-1,4-diyl Dimethyl Dicarbonate for the Synthesis of Chiral 2,3-Dihydrofurans. Org. Lett. 2020, 22, 4680. (e) Wang, M.; Zhou, M.; Zhang, L.; Zhang, Z.; Zhang, W. A Step-Economic and One-pot Access to Chiral C^{α}-Tetrasubstituted α -Amino Acid Derivatives via a Bicyclic Imidazole-Catalyzed Direct Enantioselective C-Acylation. Chem. Sci. 2020, 11, 4801.

(8) Turk, C. F.; Krapcho, J.; Michel, I. M.; Weinryb, I. Synthesis and Central Nervous System Activity of 2-Arylidene-4-Aminoalkyl-2*H*-1,4-benzoxazin-3(4H)-ones and Related Compounds. *J. Med. Chem.* **1977**, 20, 729.

(9) Piemontese, L.; Laghezza, A.; Fracchiolla, G.; Carbonara, G.; Tortorella, P.; Loiodice, F. An Efficient Synthesis of the Optically Active Isomers of 2*H*-1,4-Benzoxazine Derivatives, Novel KATP Channel Modulators. *Tetrahedron: Asymmetry* **2013**, *24*, 791.