250 Communications Synthesis

Reactions of Polarized Ketoketene S,N-Acetals with Thionyl Chloride: a Novel General Route to 1-Aroyl-(or -Acyl)-2-aryl-(or -ethoxycarbonyl)-4-alkylthiothiazoles by Direct Heterocyclization¹

A. RAHMAN, H. ILA*, H. JUNJAPPA*

Department of Chemistry, North-Eastern Hill University, Shillong 793 003, Meghalaya, India

Extensive studies have been reported concerning the synthesis of 2-mercaptothiazoles and their S-alkyl or S-aryl derivatives². The isomeric 5-mercaptothiazoles and their S-alkyl or aryl analogues have also been studied to some extent². However, the chemistry of 4-mercaptothiazoles and their S-alkyl or S-aryl derivatives has received limited attention², i.e. the syntheses of 5-nitro-4-butylthio-2-acetylaminothiazole³ and 4-phenylthiothiazole⁴, which are obtained by nucleophilic displacement from the corresponding 4-halothiazoles by the appropriate anions. Although 2-, 4-, and 5-halothiazoles are known to undergo facile displacement reactions with appropriate nucleophiles⁴, the 4-halothiazoles can only be obtained by partial dehalogenation of 2,4- or 4,5-dihalothiazoles⁵. Attempts to prepare 4-halothiazoles by direct halogenation are reported to yield either 5-halo- or 4,5-dihalothiazoles^{6,7}.

We now report a facile general route to the title thiazoles using ketoketene S, N-acetals^{8,9} 1 as starting materials.

Scheme A

When 1a-m were reacted with thionyl chloride in pyridine at 0-5°C for 3 h the corresponding 2-phenyl-4-methylthio-5-benzoylthiazoles 2a-m were obtained. The structures of 2a-m were confirmed by analytical and spectral data (Table).

Scheme B

The S, N-acetal 1n derived from acetone gave the corresponding 2n only in 21% yield, while 10 prepared as shown (Scheme B) gave the corresponding 2-ethoxycarbonylthiazole (20) in 30% yield. The yield of 2n and 20 could not be improved further under various conditions. Compounds 1p and 1q failed to give the corresponding 2p ($R^3 = H$) and 2q ($R^3 = CH_3$), respectively. Only polymeric material was obtained in both cases.

The mechanism of the formation of 2 from 1 appears to be similar to that proposed ¹⁰ for the reaction of 6-N-substituted 1,3-dimethyluracils with thionyl chloride to give thiazolo[4,5-d]pyrimidines. The sulfene intermediate 6, after proton abstraction undergoes cyclization via its anion 7 to form the corresponding thiazoline S-oxide 8. Further reaction of 8 with thionyl chloride affords 2 via the Pummerer intermediate 9 (Scheme C).

Scheme C

Interestingly in one of the experiments, when 2a was stirred with sodium hydride in dimethylformamide at room temperature the corresponding 5-unsubstituted-2-phenyl-4-methyl-thiothiazole (10a) was obtained in 70% yield. Similarly the thiazoles 10e, h, k were prepared from the respective 2e, 2h, and 2k in 70-72% overall yields.

The method therefore provides hitherto inaccessible 2,5-disubstituted 4-alkylthiothiazoles as well as the corresponding 5-unsubstituted analogues starting from the same ketoketene S,N-acetals.

Freshly distilled thionyl chloride (E. Merck) was used in all reactions. All new S, N-acetals 1a-n, p, q were prepared according to the previously reported procedures 11, 12.

N-(α -Ethoxycarbonylmethyl)- β -benzoylthioacetamide (4):

A solution of methyl β -benzoyldithioacetate (3; 4.2 g, 0.02 mol) and free ethyl glycinate [0.02 mol, generated from ethyl glycinate hydrochloride (2.80 g, 0.02 mol) and sodium ethoxide (0.02 mol)] in ethanol (50 ml) is refluxed for 8–10 h. After completion of the reaction (monitored by T.L.C.), the ethanol is removed under reduced pressure and the crude thioamide 4 is purified by passage through a silica gel column using benzene/hexane (1/4) as eluent; yield: 2.8 g (52%); pale needles; m.p. 95–96 °C.

prepared
-14
Ę,
e,
10a, e, h,
and
2a-0
es
oz
niazol
othiazol
hiothiazol
/Ithiothiazol
4-Alkylthiothiazol

2. CHA	Product No. R	fuct R'	R ²	R³	Yield [%] ^a	m.p.	Molecular formula	I.R. v [cm ⁻¹]	'H-N.M.R. (CDCl ₃) δ [ppm]	M.S. m/e (M ⁺)
+H/CO-C ₆ H ₁ C ₆ H ₂ 61 160° C ₆ H ₂ H ₂ NOS ₂ 1621 (CO)° 223 (s.3 H, CCH); 2.93 (s.3 H, CCH); 5.90 (s.3 H, CCH); 1.30 e, 3 H, CCH); 1.30 e, 3 H, CCH); 5.90 (s.2 H, CCH) +H/CO-C ₆ H ₁ C ₆ H ₂ C ₆ H ₂ (M ₂) 160° C ₆ H ₂ NOS ₂ 1621 (CO)° 255 (s.3 H, CCH); 2.90 (s.3 H, CCH); 5.90 (s.2 H, CCH); 1.30 (s.3 H, CCH);	2a	ļ.	CH3	C ₆ H ₅	09	95-96°	C ₁₇ H ₁₃ NOS ₂	1618 (CO) ^d	2.70 (s, 3 H, SCH ₃); 7.3-7.7 (m, 6 H _{atom}); 7.7-8.05 (m, 4 H _{atom})	311
+ H ₂ CO—C ₆ H ₄ CH ₃ C ₆ H ₄ C ₁ C ₂ H ₃ C ₁ C ₂ H ₃ C ₁ C ₂ H ₃ (14) (14) (14) (14) (14) (14) (14) (14)	2 b		CH_3	C_6H_5	58	116117°	(311.4) C ₁₈ H ₁₅ NOS ₂	1621 (CO)°	2.32 (s, 3 H, CH ₃); 2.75 (s, 3 H, SCH ₃); 7.05-8.0 (m, 9 H _{arran})	325
4Cl-C ₀ H ₁ CH ₁	20		CH_3	C ₆ H ₅	19	160°	(325.4) $C_{18}H_{15}NO_2S_2$	1620 (CO)°	2.75 (s, 3 H, SCH ₃); 3.90 (s, 3 H, OCH ₃); 6.90 (d, 2 H _{arrom}); 7.3-	341
C ₆ H ₅ CH, C	2d		CH_3	C_6H_5	09	143°	(341.4) $C_{17}H_{12}CINOS_2$	1621 (CO) ^d	7.65 (m, 3 H _{arom}); 7.7-8.1 (m, 4 H _{arom}) 2.68 (s, 3 H, SCH ₃); 7.1-7.7 (m, 5 H _{arom}); 7.7-8.0 (m, 4 H _{arom})	347, 345
+H ₃ CO—C ₆ H ₁ CH ₃ 4CI—C ₆ H ₄ 60 150° Cl ₃ H ₃ CNO ₅ 1615 (CO)° 260 (s.3 H, SCH ₃): 379 (s.3 H, OCH ₃): 683-683 (m.2 H ₃ mm) 4CI—C ₆ H ₄ CH ₃ 4CI—C ₆ H ₄ 61 157.80 Ch ₄ H ₂ CHO ₅ 1610 (CO)° 266 (s.3 H, SCH ₃): 379 (s.3 H, OCH ₃): 683-683 (m.2 H ₃ mm) 4CI—C ₆ H ₄ CH ₃ 4CI—C ₆ H ₄ 87 170-171° C ₇ H ₁ SOO ₅ 1610 (CO)° 265 (s.3 H, SCH ₃): 379 (s.3 H, OCH ₃): 681 (d.2 H ₃ mm) 72-75 (m.4 H ₃ mm) 4CI—C ₆ H ₄ CH ₃ CH ₄ Ch ₄ H ₂ COC ₆ 139-140° C ₇ H ₂ H ₂ COO ₅ 1610 (CO)° 265 (s.3 H, SCH ₃): 379 (s.3 H, OCH ₃): 681 (d.2 H ₃ mm) 72-75 (m.4 H ₃ mm) 72-75 (m.2 H ₃ mm)	2e		CH_3	4-Cl—C ₆ H ₄	57	127-128°	(345.8) C ₁₇ H ₁₂ CINOS ₂	1626 (CO)*	2.68 (s, 3 H, SCH ₃); 7.2-7.55 (m, 5 H _{arom}); 7.65-8.0 (m, 4 H _{arom})	347, 345
4CD—C ₆ H ₄ CH ₃ 4CD—C ₆ H ₄ 61 157° (1.5)	2f		СН3	4-Cl—C ₆ H ₄	09	150°	(345.8) C ₁₈ H ₁₄ CINO ₂ S ₂	1615 (CO) ^e	2.60 (s, 3 H, SCH ₃); 3.79 (s, 3 H, OCH ₃); 6.65-6.85 (m, 2 H _{arom});	
C ₆ H ₃ CH ₃ 4 H ₃ CO—C ₆ H ₄ 58 170-171 GNB 1615 (CO) ⁴ 2.65 (s. 3 H. SCH ₃): 3.80 (s. 3 H. OCH ₃): 5.80 (s. 3 H. H. H-S): 5.	2g		CH3	4-Cl—C ₆ H ₄	19	157°	(3/5.8) $C_{17}H_{11}Cl_2NOS_2$	1610 (CO)°	7.15-7.35 (m, 2 H _{arom}); 7.6-7.9 (m, 4 H _{arom}) 2.68 (s, 3 H, SCH ₃); 7.3-7.5 (m, 4 H _{arom}); 7.6-7.9 (m, 4 H _{arom})	380
4H,CO—C ₆ H ₄ CH ₃ (341.3) (610 (CO) ⁴ (142 (M. 3H.SCH); 3.80 (s. 3 H. OCH); 3.80 (s. 3 H.	2h		СН3	4-H ₃ CO—C ₆ H ₄	58	170-171°	(380.2) $C_{18}H_{15}NO_2S_2$	1615 (CO) ^d	2.65 (s, 3H, SCH ₃); 3.80 (s, 3H, OCH ₃); 6.81 (d, 2H _{arcm}); 7.2-	341
4CI — CeH, CH, 4 + μ, CO — CeH, 60 199° (37.3) 1656 (CO)° 568 (3.44 + Rams); 73.26 (4.3 4 + Rochs); 6.7-6.9 (m. 2 Hamm); 73.27 (m. 3 Ham	73	4-H ₃ CO—C ₆ H ₄	CH ₃	4-H₃CO—C₀H₄	62	139-140°	(341.3) C ₁₉ H ₁₇ NO ₃ S ₂	1610 (CO) ^d	7.45 (m, 3 H _{arom}); 7.6-7.9 (m, 4 H _{arom}) 2.62 (s, 3 H, SCH ₃); 3.80 (s, 3 H, OCH ₃); 3.82 (s, 3 H, OCH ₃);	
C ₆ H ₅ C ₅ H ₅ C ₆	2 j	4-Cl—C ₆ H ₄	CH ₃	4-H ₃ CO—C ₆ H ₄	09	.661	(3/1.3) C ₁₈ H ₁₄ CINO ₂ S ₂	1626 (CO)*	6.83 (dd, 4 H _{arom}); 7.82 (dd, 4 H _{arom}) 2.65 (s, 3 H, SCH ₃); 3.75 (s, 3 H, OCH ₃); 6.7-6.9 (m, 2 H _{arom});	
C6H ₃ C6 ₂ H ₃ CH ₂ C ₆ H ₄ C6 ₁ H ₅ C6H ₅ C6 128° C ₃ H ₄ NOS ₂ 1616 (CO)° (A ₁ A ₁ A ₁ CO) (A ₁ A ₁ A ₁ CO) (A ₂ A ₁ A ₁ CO) (A ₁ A ₂ A ₁ A ₁ CO) (A ₂ A ₁ A ₁ CO) (A ₂ A ₁ A ₁ CO) (A ₁ A ₁ A ₁ CO) (A ₂ A ₂ A ₁ A ₁ CO) (A ₂ A ₁ A ₁ A ₁ CO) (A ₂ A ₁ A ₁ A ₁ CO) (A ₂ A ₁ A ₁ A ₁ CO) (A ₂ A ₁ A ₁ A ₁ CO) (A ₂ A ₁ A ₁ A ₁ CO) (A ₂ A ₁ A ₁ A ₁ CO) (A ₂ A ₁ A ₁ A ₁ A ₁ CO) (A ₂ A ₁ A ₁ A ₁ A ₁	2k	C,H,	C,H _€	C,H,	63	30-32°	(375.8) C ₁₈ H ₁₅ NOS ₂	1612 (CO)°	7.0-7.4 (m, 2H _{arom}); 7.6-8.0 (m, 4H _{arom}) 1.15 (t, 3H, CH ₃); 2.99 (q, 2H, CH ₃ S); 6.85-7.2 (m, 6H _{arom});	
t +H ₃ CO—C ₆ H ₄ C ₆ H ₅ G ₆ S 166-107° (23H ₁₉ NO ₂ S ₂ 1610 (CO)° 3.75 (s. 3H. OCH ₃): 249 (s. 2H. CH ₂ S); 6.80 (d. 2H _{arcan}): 7.0- CH ₃ C ₆ H ₅ C ₆ H ₅ C ₆ H ₇ C ₆ H ₁ NO ₂ S ₂ 1610 (CO)° 3.75 (s. 3H. OCH ₃): 2.24 (m. 4H _{arcan}) 7.2-7.5 (m. 4H _{arcan}) 7.3-7.5 (m. 3H _{arcan}) 7.3-7.5 (m. 2H _{ar}	12	C,Hs	C ₆ H ₅ CH ₂	C,H <u>∗</u>	09	128°	(325.3) $C_{23}H_{17}NOS_2$	1615 (CO)*	7.3-7.7 (m, 4H _{arom}) 4.40 (s, 2H, CH ₂); 7.0-7.5 (m, 11H _{arom}): 7.5-7.95 (m, 4H _{arom})	387
CH ₃ CH ₄ CH ₅ Ch ₄ C ₆ H ₅ C ₆ H	2m		$C_6H_3CH_2$	C_6H_5	9	106-107°	(38/.4) C ₂₄ H ₁₉ NO ₂ S ₂	1610 (CO)°	3.75 (s, 3H, OCH ₃); 2.49 (s, 2H, CH ₂ S); 6.80 (d, 2H _{arem}); 7.0-	
CoH ₅ CH ₃ COO _{C2} H ₅ 30 oil C _{L1} H ₁₃ NO ₅ S ₂ 1724 (ester 1.30 (t, 3H, OCH ₂ CH ₃); 2.01 (s, 3H, SCH ₃); 4.04 (q, 2H, 1307.3) (CO); 1660 (o. CH ₂ CH ₃); 7.2-7.5 (m, 3H _{arcml}); 7.5-7.7 (m, 2H _{arcml}) (T.5-7.7 (m, 2H _{arcml}); 7.5-7.7 (m, 2H _{arcml}); 7.5-7.8 (m,	2 n	CH ₃	СН₃	C ₆ H ₅	20	137-138°	(417.4) C ₁₂ H ₁₁ NOS ₂	1670 (CO)°	7.5 (m, 8 H _{arom}); 7.6-8.0 (m, 4 H _{arom}) 2.50 (s, 3 H, CH ₃); 2.71 (s, 3 H, SCH ₃); 7.2-7.5 (m, 3 H _{arom}); 7.8-	
- CH ₃ C ₆ H ₅ 70 oil C ₁₀ H ₅ NS ₂ 1620 (s), 1500 (m), 2.55 (s, 3 H, SCH ₃); 6.68 (s, 1 H, H-5); 7.1-7.5 (m, 3 H _{arom}); 7.65- CH ₃ 4-Cl—C ₆ H ₄ 72 53-54° C ₁₀ H ₈ ClNS ₂ 1625 (s), 1505 (m), 2.38 (s, 3 H, SCH ₃); 6.61 (s, 1 H, H-5); 7.1-7.5 (m, 3 H _{arom}); 7.65- CH ₃ 4-H ₃ CO—C ₆ H ₄ 75 57-58° C ₁₁ H ₁₁ NOS ₂ 1615 (s), 1255 (m), 2.42 (s, 3 H, SCH ₃); 6.61 (s, 1 H, H-5); 7.0-7.8 (dd, 4 H _{arom}) CH ₃ 4-H ₃ CO—C ₆ H ₄ 75 57-58° C ₁₁ H ₁₁ NOS ₂ 1615 (s), 1255 (m), 2.42 (s, 3 H, SCH ₃); 6.59 (s, 1 H, H-5); 6.70 C ₂ H ₅ C ₆ H ₅ 72 semi- C ₁₁ H ₁₁ NS ₂ 1615 (s), 1500 (m), 6.90 (t, 3 H, SCH ₅ CH ₃); 2.62 (q, 2 H, SCH ₂ CH ₃); 6.45 (s, 1 H, H-5); 6.7-7.2 (m, 3 H _{arom}); 7.3-7.8 (m, 2 H _{arom}) 1265 (s) [†] 1400 (s), 5; 6.7-7.2 (m, 3 H _{arom}); 7.3-7.8 (m, 2 H _{arom})	20	C,Hs	СН3	COOC₂H₅	30	oil	(249.3) C ₁₄ H ₁₃ NO ₃ S ₂ (307.3)	1724 (ester CO); 1660 (CO) ^f	8.1 (m, 2 H _{arrom}) 1.30 (t, 3 H, OCH ₂ CH ₃); 2.01 (s, 3 H, SCH ₃); 4.04 (q, 2 H, OCH ₂ CH ₃); 7.2-7.5 (m, 3 H _{arrom}); 7.5-7.7 (m, 2 H _{arrom})	
CH ₃ 4-Cl—C ₆ H ₄ 72 53-54° C ₁₀ H ₈ CINS ₂ 1505 (m), 2.38 (s, 3 H, SCH ₃); 6.61 (s, 1 H, H-5); 7.0-7.8 (dd, 4 H _{arcm}) 2.42 (s, 3 H, SCH ₃); 6.61 (s, 1 H, H-5); 7.0-7.8 (dd, 4 H _{arcm}) 2.42 (s, 3 H, SCH ₃); 6.62 (s, 1 H, H-5); 6.70 (-1.41) NOS ₂ 1615 (s), 1255 (m), 2.42 (s, 3 H, SCH ₃); 3.65 (s, 3 H, OCH ₃); 6.59 (s, 1 H, H-5); 6.70 (d. 2 H _{arcm}) 2.42 (s, 3 H, SCH ₃); 3.65 (s, 3 H, OCH ₃); 6.59 (s, 1 H, H-5); 6.70 (m), 0.90 (t, 3 H, SCH ₂ CH ₃); 2.62 (q, 2 H, SCH ₂ CH ₃); 6.45 (s, 1 H, H-5); 6.70 (m), 0.90 (t, 3 H, SCH ₂ CH ₃); 2.62 (q, 2 H, SCH ₂ CH ₃); 6.45 (s, 1 H, H-5); 6.70 (m), 0.90 (t, 3 H, SCH ₂ CH ₃); 7.3-7.8 (m, 2 H _{arcm}) 1265 (s) [†] 1400 (s), 5); 6.7-7.2 (m, 3 H _{arcm}); 7.3-7.8 (m, 2 H _{arcm})	10a	ł	СН3	C ₆ H ₅	70	oil	C ₁₀ H ₉ NS ₂	1620 (s), 1500 (m),	2.55 (s, 3 H, SCH ₃); 6.68 (s, 1 H, H-5); 7.1–7.5 (m, 3 H _{arom}); 7.65–	207
CH ₃ 4-H ₃ CO—C ₆ H ₄ 75 57-58° C ₁₁ H ₁₁ NOS ₂ 1615 (s), 1225 (m), 2.42 (s, 3 H, SCH ₃); 3.65 (s, 3 H, OCH ₃); 6.59 (s, 1 H, H-5); 6.70 (237.2) 1470 (s), 1260 (s)° (d, 2 H _{arom}); 7.75 (d, 2 H _{arom}) (221.3) 1615 (s), 1500 (m), 0.90 (t, 3 H, SCH ₂ CH ₃); 2.62 (q, 2 H, SCH ₂ CH ₃); 6.45 (s, 1 H, H-5); 6.70 (s), 1400 (s), 5); 6.7-7.2 (m, 3 H _{arom}); 7.3-7.8 (m, 2 H _{arom}) 1265 (s) [†]	10e	-	CH3	4-Cl—C ₆ H ₄	72	53-54°	(207.2) C ₁₀ H ₈ CINS ₂ (241.3)	1625 (s), 1230 1625 (s), 1505 (m),	o.1 (III, 2 Harom) 2.38 (s, 3 H, SCH ₃); 6.61 (s, 1 H, H-5); 7.0-7.8 (dd, 4 H _{arom})	243, 241
C ₂ H ₅ C ₆ H ₅ 72 semi- C ₁₁ H ₁₁ NS ₂ 1615 (s), 1200 (s), 0.90 (t, 3 H, SCH ₂ CH ₃); 2.62 (q, 2 H, SCH ₂ CH ₃); 6.45 (s, 1 H, H-solid (221.3) 1462 (s), 1400 (s), 5); 6.7-7.2 (m, 3 H _{atrom}); 7.3-7.8 (m, 2 H _{atrom}) 1265 (s) [†]	10h	and the same of th	СН3	4-H ₃ CO—C ₆ H ₄	75	57-58°	(241.7) $C_{11}H_{11}NOS_2$	1470 (s), 1203 (s) 1615 (s), 1525 (m),	2.42 (s, 3 H, SCH ₃); 3.65 (s, 3 H, OCH ₃); 6.59 (s, 1 H, H-5); 6.70	
	10k	1	C_2H_5	C_6H_5	72	semi- solid	(25).2) C ₁₁ H ₁₁ NS ₂ (221.3)	1470 (s), 1200 (s) 1615 (s), 1500 (m), 1462 (s), 1400 (s), 1265 (s) [†]	(U, Z. Harom); 7.73 (U, Z. Harom) 0.90 (I, 3 H, SCH ₂ CH ₃); 2.62 (q, 2 H, SCH ₂ CH ₃); 6.45 (s, 1 H, H- 5); 6.7-7.2 (m, 3 H _{arom}); 7.3-7.8 (m, 2 H _{arom})	

a Yield of pure, isolated product.
 b All products were recrystallized from benzene/hexane.
 c Satisfactory microanalyses obtained: C ± 0.40, H ± 0.39, N ± 0.37; exceptions: 2g, 2k, 2m, 2o, 10a, 10e, 10k with H ± 0.48, N ± 0.54.
 d In Nujol.
 e In KBr.
 f Neat.

3-Methylthio-3-(α-ethoxycarbonylmethyl)-amino-1-phenyl-2-propen-1-one (10):

A suspension of thioamide 4 (1.0 g, 0.004 mol) and potassium carbonate (0.6 g, 0.004 mol) in acetone (30 ml) is refluxed for 3 h. The stirred solution is cooled, methyl iodide (0.8 g, 0.005 mol) is added, and the mixture is further stirred at room temperature for 3 h. It is poured onto crushed ice (100 ml), acidified with 20% acetic acid, extracted with chloroform (150 ml), dried with sodium sulfate, and the solvent evaporated to give a yellow viscous liquid; yield: 0.8 g (75%), T.L.C.: one spot.

C₁₄H₁₇NO₃S calc. C 60.22 H 6.11 N 5.20 (279.4) found 60.55 6.42 5.50

I.R. (KBr): v = 3400 (NH); 1730 (ester CO); 1620 cm⁻¹ (Ar—CO).

¹H-N.M.R. (CDCl₃): δ = 1.30 (t, 3 H, CH₃CH₂—); 2.34 (s, 3 H, SCH₃); 3.82-4.30 (d and q, 4 H, OCH₂CH₃ and NH—CH₂—); 7.2 (m, 3 H_{arom}); 7.8 (m, 2 H_{arom}); 11.0 ppm (br. s, 1 H, NH, exchangeable with D₂O).

2-Aryl-(or -Ethoxycarbonyl)-4-alkylthio-5-aroyl-(or -acyl)-thiazoles (2a-n) and (20); General Procedure:

To a stirred ice-cooled solution of S.N-acetal 1 (0.01 mol) in dry pyridine (8 ml), an excess of freshly distilled thionyl chloride (40 ml) is added slowly during 0.5 h and the mixture is further stirred for 2.5 h. The mixture is poured onto crushed ice (150 ml), slowly neutralized with solid sodium hydrogen carbonate, and the mixture is allowed to warm up to room temperature. It is then extracted with chloroform $(3 \times 100 \text{ ml})$, the extract is washed with water $(3 \times 150 \text{ ml})$, dried with sodium sulfate, and evaporated to give an orange yellow viscous residue, which is purified by column chromatography over neutral alumina. Elution with benzene/hexane (1/4) gives the pure thiazole as a bright yellow solid (2a-n) or as a viscous liquid (20) (Table).

2-Aryl-4-alkylthio-5-unsubstituted-thiazoles (10); General Procedure:

To a stirred suspension of sodium hydride (0.3 g, 0.006 mol, 50% suspension) in dry dimethylformamide (20 ml), the respective thiazole 2a, 2e, 2h, or 2k (0.004 mol) in dry dimethylformamide (5 ml) is added slowly and the mixture is further stirred at $65-70^{\circ}$ C for 5 h. It is then poured into ice-cold water (100 ml), neutralized with 20% acetic acid, and extracted with chloroform (2×100 ml). The chloroform layer, after drying and evaporation, yields the thiazoles as viscous liquids (10a) and (10k) or low melting solids (10e) and (10h), which are pure enough for spectroscopy. They are further purified for microanalysis by passing them through a small neutral alumina column using benzene/hexane (1/4) as eluent (Table).

We thank the C. S. I. R. New Delhi for a Junior Research Fellowship (to A. R.) and special financial assistance under Career Award (to H. I.).

Received: August 23, 1983

Part XXXI of the series; Part XXX: S. S. Bhattacharjee, H. Ila, H. Juniappa, Synthesis 1984, 249.

² C. Roussel, M. Chanon, R. Barone, in *Thiazole and its Derivatives*, Part II, Chapter VII, J. V. Metzger, Ed., John Wiley & Sons, London, New York, 1979; (a) p. 369; (b) p. 416-418; (c) p. 493-496.

³ E. B. Towne, J. B. Dickey, M. S. Bloom, U. S. Patent 2839 523 (1959); C. A. 53, 1752 (1959).

⁴ M. Bosco, L. Forlani, P. Riccio, P. E. Todesco, *J. Chem. Soc.* [B] **1971**, 1373 and references therein.

⁵ L. Forlani, P. E. Todesco, in *Thiazole and its Derivatives*, Part I, Chapter V, J. V. Metzger, Ed., John Wiley & Sons, London, New York, 1979, p. 565-571.

⁶ E.-J. Vincent, J. V. Metzger, J. Choutean, G. Mille, in *Thiazole and its Derivatives*, Part I, J. V. Metzger, Ed., John Wiley & Sons, London, New York, 1979, p. 99-109.

When position 5 is substituted by an activating group, as in 2-methyl-5-ethoxythiazole, the bromination takes place at position 4: R. P. Kurkjy, E. V. Brown, J. Am. Chem. Soc. 74, 6260 (1952).

V. Aggarwal, A. Kumar, H. Ila, H. Junjappa, Synthesis 1981, 157.

⁹ V. Aggarwal, J. Ila, H. Junjappa, Synthesis 1982, 65.

¹⁰ I. M. Goldman, J. Org. Chem. 34, 3285 (1969).

S. M. S. Chauhan, H. Junjappa, Tetrahedron 32, 1779 (1976).

R. Gompper, W. Töpfl, Chem. Ber. 95, 2871 (1962); German Patent (DBP) 1170955 (1961); C. A. 61, 5617 (1964).