Journal of Organometallic Chemistry, 393 (1990) 349-358 Elsevier Sequoia S.A., Lausanne JOM 20901

Interaction between $TiCl_4$ and o-, m- and p-diesters. The crystal structures of $[o-C_6H_4(COO-i-Bu)_2TiCl_4] \cdot CH_2Cl_2$ and $[p-C_6H_4(COOMe)_2TiCl_4]$

Piotr Sobota *, Jòzef Utko and Tadeusz Lis

Institute of Chemistry, University of Wrocław, 14, Joliot-Curie, 50-383 Wrocław (Poland) (Received March 15th, 1990)

Abstract

The crystal structures of $[o\text{-}C_6\text{H}_4(\text{COO-i-Bu})_2\text{TiCl}_4] \cdot \text{CH}_2\text{Cl}_2$, I, and $[(\mu\text{-Cl})_2\{\mu\text{-}p\text{-}C_6\text{H}_4(\text{COOMe})_2\}\text{Cl}_6\text{Ti}_2]_{\infty}$, II, which in the presence of activators are good catalysts for olefin polymerization, have been determined by X-ray diffraction methods and the data refined by full-matrix least-squares techniques to R = 0.049 and R = 0.028 for 1511 and 1549 independent non-zero reflections for I and II, respectively. Crystals of I are orthorhombic, space group $P2_12_12_1$ with 4 molecules in a unit cell of dimensions a = 14.408(6), b = 13.717(7), c = 12.486(5) Å. Crystals of II are monoclinic, space group $P2_1/n$, with four molecules in cell with a = 8.474(5), b = 13.130(7), c = 9.362(7) Å and $\beta = 109.12(5)^{\circ}$. The Ti atoms in I are octahedrally coordinated by four chlorine atoms and two carbonyl oxygen atoms of di-iso-butyl o-phthalate. The chelating ligand atoms and the titanium atom together form a seven-membered ring. Compound II in crystalline state is a linear polymer formed by the dimeric units $\text{Cl}_3\text{Ti}(\mu\text{-Cl})_2\text{TiCl}_3$ connected together by two carbonyl oxygen atoms of $p\text{-}C_6\text{H}_4(\text{COOMe})_2$.

Introduction

Polymerization studies have revealed that the interaction of aromatic esters with the Ziegler-Natta catalyst ensures high isotacticity. The enhancement of isospecific activity is strongly dependent on the nature of the esters although the initial activity of the catalyst with o-, m- or p-C₆H₄(COOMe)₂ is similar. However, after about 20-30 min, the activity of the catalyst with m- or p-C₆H₄(COOR)₂ declines steadily [1]. However, the activity of the catalyst with diethyl o-phthalate is constant and its productivity is about twice as high [2-8]. To elucidate the differing behaviors of o-, m- or p-C₆H₄(COOR)₂ and the aromatic or aliphatic monoesters during the catalytic propylene polymerization process, the reaction between di-iso-butyl o-phthalate (DIBP) and dimethyl p-phthalate (DMPP) with TiCl₄ in the present

paper was studied. Here we describe the crystal structure of $[o-C_6H_4(COO-i-Bu)_2TiCl_4] \cdot CH_2Cl_2$, I, and $[(\mu-Cl)_2\{\mu-p-C_6H_4(COOMe)_2\}Cl_6Ti_2]_{\infty}$, II.

Experimental

All reactions were carried out under N_2 in dried solvents with Schlenk-tube techniques. Anhydrous $TiCl_4$ was commercial material. The DIBP and DMPP were prepared by standard procedures by the reactions of o-phthalic acid with isobutanol and terephthalic acid with methanol, respectively, in the presence of p-toluene-sulfonic acid [9].

Tetrachloro(di-iso-butyl o-phthalate)titanium(IV) dichloromethane (I)

To 5 cm³ of TiCl₄ (8.63 g; 45 mmol) was added dropwise 23.9 cm³ (25.05 g; 90 mmol) of di-iso-butyl o-phthalate into 150 cm³ n-hexane and stirred under N_2 . After 1 h the yellow precipitate was filtered off and washed with n-hexane (3 × 15 cm³), (95% yield).

Crystals suitable for the structure determination were grown by slow diffusion of n-hexane into a solution of the $[o-C_6H_4(COO-i-Bu)_2TiCl_4]$ in dichloromethane.

The IR spectrum of I shows the characteristic $\nu(C=0)$ bands at 1648 cm⁻¹ (vs) and 1615 cm⁻¹ (s) of a coordinated carbonyl group and $\nu(Ti-Cl)$ at 365 cm⁻¹ (vs) and 400 cm⁻¹ (s). The ¹H NMR and X-ray data reveal that the crystal is composed of $[o-C_6H_4(COO-i-Bu)_2TiCl_4]$ and uncoordinated CH_2Cl_2 molecules in a 1:1 ratio.

catena- $\{di-\mu-chloro-\mu-(dimethyl\ p-phthalate)hexachloro\}$ titanium(IV)] (II)

To 0.58 g of p-C₆H₄(COOMe)₂ (3 mmol) in 100 cm³ 1,2-dichloroethane was added dropwise 1.14 g (6 mmol) of TiCl₄ with stirring under N₂. The post-reaction mixture was heated under reflux up to complete dissolution of the precipitate. Then the solution was placed in a Dewar vessel for slow cooling. After 24 h the crystalline compound was filtered off and washed with n-hexane (3 × 5 cm³). Yield 1.6 g; 93%.

The IR spectrum of II shows the stretching ν (C=O) at 1600 cm⁻¹ (vs,br).

X-Ray crystal structure determination

Crystal data. $C_{16}H_{22}Cl_4O_4Ti \cdot CH_2Cl_2$, I, M = 553.0, a = 14.408(6), b = 13.717(7), c = 12.486(5) Å, U = 2468(2) Å³, $D_m = 1.49$ g cm⁻³ Z = 4, $D_c = 1.488(2)$ g cm⁻³, F(000) = 1128, space group $P2_12_12_1$, Mo- K_α radiation, $\lambda = 0.71069$ Å, $\mu = 10.24$ cm⁻¹, T = 304(1) K. $C_{10}H_{10}Cl_8O_4Ti_2$, II, M = 573.6, a = 8.474(5), b = 13.130(7), c = 9.362(7) Å, $\beta = 109.12(5)^\circ$, U = 984.2(12) Å³, $D_m = 1.919$ g cm⁻³ Z = 2, $D_c = 1.935(3)$ g cm⁻³, F(000) = 564, space group $P2_1/c$, Mo- K_α radiation, $\mu = 19.28$ cm⁻¹, T = 303 K.

The space groups for both crystals were uniquely determined from systematic absences in Weissenberg photographs. Suitable portions of dimensions $0.5 \times 0.5 \times 0.6$ mm for I, and $0.5 \times 0.5 \times 0.5$ mm for II were cut from large crystals and sealed in capillaries. The intensity data for both crystals were recorded on a Syntex $P2_1$ automated diffractometer with graphite-monochromatized Mo- K_{α} radiation. The intensities of two standard reflections, monitored after every 50 scans, showed ± 5 and $\pm 4\%$ variation for I and II, respectively. 2895 reflections up to $2\theta = 50^{\circ}$ for I and 1874 up to $2\theta = 52^{\circ}$ for II were measured by $2\theta/\theta$ scan technique from which

Table 1 Final atomic parameters with esd's in parentheses for [o-C₆H₄(COO-i-Bu)₂TiCl₄]·CH₂Cl₂

Atom	×	χ.	N	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	· U ₁₂
Ę	0.84735(12)	0.71460(12)	0.03357(14)	0.0660(11)	0.0609(11)	0.0596(10)	0.0049(11)	-0.0019(11)	0.0004(10)
CI(1)	0.85306(20)	0.70661(20)	0.21603(19)	0.0849(19)	0.0783(17)	0.0601(15)	0.0015(15)	0.0052(15)	-0.0061(18)
C)(2)	0.84929(22)	0.69712(20)	-0.15001(20)	0.1043(22)	0.0816(19)	0.0563(15)	0.0059(15)	0.0003(17)	-0.0098(20)
CI(3)	0.70312(18)	0.77518(21)	0.03534(26)	0.0731(17)	0.0980(21)	0.0976(20)	0.0131(21)	0.0024(18)	0.0174(16)
CI(4)	0.93107(19)	0.85173(18)	0.02409(24)	0.0937(20)	0.0673(15)	0.0802(17)	0.0065(17)	0.0003(19)	-0.0138(15)
CI(5)	0.11749(26)	0.95662(23)	0.23067(31)	0.1220(30)	0.0844(21)	0.1361(31)	0.0001(23)	0.0152(25)	-0.0113(21)
CI(6)	0.09862(36)	0.78999(29)	0.36459(30)	0.2225(47)	0.1292(31)	0.1027(25)	0.0118(27)	-0.0060(31)	-0.0256(33)
<u>(1</u>	0.9719(5)	0.6339(5)	0.0448(6)	0.0569(40)	0.0704(44)	0.0706(45)	0.0002(45)	-0.0048(40)	0.0021(36)
00	0.7949(5)	0.5723(5)	0.0360(6)	0.0701(42)	0.0599(42)	0.0624(40)	-0.0036(42)	0.0013(40)	-0.0086(37)
<u>ල</u>	1.0710(5)	0.5133(5)	0.0703(6)	0.0687(47)	0.0721(45)	0.0709(48)	-0.0078(40)	-0.0141(40)	0.0104(41)
<u>\$</u>	0.7357(5)	0.4297(5)	-0.0157(6)	0.0710(45)	0.0716(46)	0.0780(49)	-0.0103(43)	0.0043(44)	-0.0059(41)
Q(11)	1.0033(7)	0.5543(8)	0.0186(9)	0.0515(66)	0.0663(71)	0.0739(79)	0.0157(75)	0.0172(64)	-0.0009(60)
C(12)	0.9715(8)	0.4946(7)	-0.0744(8)	0.0775(81)	0.0568(63)	0.0523(67)	-0.0064(56)	-0.0027(63)	-0.0008(60)
C(13)	1.0386(8)	0.4624(9)	-0.1420(9)	0.0701(78)	0.0843(81)	0.0628(73)	-0.0017(70)	-0.0015(67)	0.0132(67)
C(14)	1.0163(10)	0.4051(9)	-0.2300(10)	0.098(11)	0.0837(83)	0.0706(85)	-0.0103(75)	0.0055(78)	0.0152(76)
C(15)	0.9252(10)	0.3773(8)	-0.2476(10)	0.107(11)	0.0709(77)	0.0718(78)	-0.0075(70)	-0.0122(85)	0.0118(79)
C(16)	0.8561(8)	0.4051(8)	-0.1767(9)	0.0668(75)	0.0717(73)	0.0741(74)	-0.0091(65)	-0.0056(70)	- 0.0059(67)
C(17)	0.8766(8)	0.4681(8)	-0.0925(8)	0.0791(85)	0.0595(63)	0.0467(59)	0.0005(56)	-0.0054(58)	0.0035(59)
C(18)	0.8008(8)	0.4962(9)	-0.0174(9)	0.0658(68)	0.0798(74)	0.0600(71)	0.0166(73)	-0.0165(67)	-0.0102(71)
<u>G</u>	1.1069(8)	0.5633(8)	0.1660(8)	0.0802(73)	0.0790(75)	0.0530(62)	-0.0083(64)	-0.0171(63)	0.0012(68)
(2)	1.1660(8)	0.4913(9)	0.2255(9)	0.0622(69)	0.0838(72)	0.0808(76)	0.0119(68)	-0.0043(70)	-0.0025(63)
(3)	1.2468(8)	0.4539(11)	0.1562(11)	0.0686(81)	0.126(11)	0.098(10)	-0.0106(97)	-0.0067(80)	0.0069(93)
5	1.1971(9)	0.5367(10)	0.3285(9)	0.0825(87)	0.113(11)	0.0785(85)	-0.0098(84)	-0.0146(77)	0.0013(90)
C(S)	0.6536(7)	0.4466(8)	0.0522(9)	0.0763(70)	0.0849(77)	(92)62900	-0.0054(63)	0.0189(68)	-0.0096(68)
9	0.5851(7)	0.3655(8)	0.0200(10)	0.0794(73)	0.0774(74)	0.0843(73)	0.0044(71)	0.0108(71)	-0.0236(63)
6	0.6267(10)	0.2665(8)	0.0307(12)	0.1162(99)	0.0658(72)	0.111(11)	0.0009(86)	0.0018(99)	- 0.0160(72)
8	0.4958(9)	0.3778(9)	0.0887(10)	0.0764(86)	0.104(11)	0.0920(92)	-0.0087(80)	0.0153(75)	0.0015(75)
6)	0.0978(12)	0.8284(8)	0.2360(10)	0.150(13)	0.0611(71)	0.0879(82)	-0.0027(69)	-0.0015(95)	-0.0122(81)

Table 1 (continued)

Atom	×	ų	ы	$U_{ m iso}$	Atom	×	y	N	Uiso
H(13)	1.110	0.482	i i	0.132(48)	H(15)	0.908	0.334	-0.317	0.097(37)
H(14)	1.070	0.382		0.133(48)	H(16)	0.786	0.378	-0.187	0.063(27)
H(1)	1.148	0.626		0.104(37)	H(5)	0.671	0.441	0.136	0.051(24)
H(11)	1.050	0.587		0.076(31)	H(51)	0.624	0.518	0.037	0.067(27)
H(2)	1.126	0.427		0.097(7)	H(6)	0.568	0.372	-0.064	0.118(8)
H(3)	1.287(6)	0.405(5)	0.206(6)	0.122(46)	H(7)	0.652(5)	0.252(5)	0.111(3)	0.046(22)
H(31)	1.289(6)	0.517(4)		0.161(61)	H(71)	0.677(5)	0.231(16)	-0.030(5)	0.36(14)
H(32)	1.228(6)	0.417(5)		0.113(44)	H(72)	0.554(11)	0.233(11)	0.024(9)	0.67(13)
H(4)	1.137(3)	0.554(4)		0.061(27)	H(8)	0.478(6)	0.454(2)	0.081(6)	0.101(41)
H(41)	1.242(3)	0.488(4)		0.100(38)	H(81)	0.520(5)	0.364(5)	0.169(3)	0.072(31)
H(42)	1.234(4)	0.603(3)		0.072(32)	H(82)	0.434(5)	0.334(6)	0.075(7)	0.68(13)
H(9)	0.152	0.791		0.29(12)	H(91)	0.031	0.812	0.200 0.238(89)	0.238(89)

Table 2 Final atomic parameters with esd's in parentheses for [p-C₆H₄(COOMe)₂TiCl₄]

Atom	×	y	Z	U_{11}/U_{iso}	u_{22}	U33	<i>U</i> ₂₃	U_{13}	U ₁₂
E	0.37902(6)	0.04866(4)	0.12828(6)	0.0220(3)	0.0321(3)	0.0287(3)	-0.0020(2)	0.0048(2)	0.0013(2)
C <u>(</u> (1)	0.62607(9)	0.09299(6)	0.05128(9)	0.0288(4)	0.0309(4)	0.0391(4)	-0.0061(3)	0.0097(3)	-0.0074(3)
CI(2)	0.22396(10)	0.14302(7)	-0.06360(9)	0.0378(4)	0.0461(5)	0.0399(4)	0.0056(4)	0.0064(3)	0.0142(4)
C(3)	0.17266(10)	-0.02713(8)	0.18147(11)	0.0313(4)	0.0728(6)	0.0528(5)	0.0059(5)	0.0164(4)	-0.0078(4)
C (4)	0.42734(12)	0.17572(7)	0.29389(10)	0.0473(5)	0.0524(5)	0.0498(5)	-0.0233(4)	0.0068(4)	0.0030(4)
(<u>1</u>)	0.55252(25)	-0.03814(16)	0.28691(24)	0.0282(11)	0.0360(12)	0.0336(11)	0.0035(10)	0.0023(9)	-0.0011(9)
O(2)	0.66919(26)	-0.18499(16)	0.38322(24)	0.0311(12)	0.0315(12)	0.0424(13)	0.0063(10)	0.0050(10)	-0.0053(9)
3	0.67728(37)	-0.08840(23)	0.35969(31)	0.0295(16)	0.0322(16)	0.0229(14)	0.0013(12)	0.0063(12)	-0.0019(12)
(Z)	0.84402(36)	-0.04260(23)	0.43080(31)	0.0281(15)	0.0321(16)	0.0217(13)	0.0021(12)	0.0042(11)	-0.0027(12)
(E)	0.85928(37)	0.06231(25)	0.44936(35)	0.0268(16)	0.0325(17)	0.0363(17)	0.0016(13)	0.0017(13)	0.0036(12)
⊕	0.98477(39)	-0.10508(23)	0.48128(34)	0.0317(16)	0.0285(16)	0.0320(16)	0.0018(13)	0.0028(13)	-0.0004(12)
SS	0.50755(43)	-0.23617(27)	0.32100(42)	0.0375(19)	0.0401(19)	0.0514(21)	0.0009(17)	0.0049(16)	-0.0151(15)
H(51)	0.417(3)	-0.212(3)	0.372(3)	0.085(16)					
H(52)	0.454(4)	-0.230(3)	0.200(1)	0.075(14)					
H(53)	0.540(5)	-0.315(2)	0.351(4)	0.118(20)					
H(3)	0.748(3)	0.108(3)	0.427(4)	0.051(11)					
H(4)	0.969(4)	-0.187(2)	0.469(4)	0.036(9)					

Fig. 1. The molecular structure and numbering scheme of $[o\text{-}C_6H_4(\text{COO-i-Bu})_2\text{TiCl}_4]$ molecule in tetrachloro(di-iso-butyl o-phthalate)titanium(IV) dichloromethane crystal, I.

1511 for I and 1549 for II with $I > 3\sigma(I)$ were used for structure determination. Neutral atom scattering factors from ref. 10; real and imaginary components of anomalous dispersion were included for all non-H atoms. Both structures were solved by direct methods and refined by full-matrix least-squares methods [11]. The H atoms were located from difference maps and refined with constraint that d(C-H) = 1.08 Å. In the case of I the non-methyl H-atoms were included in geometrically calculated positions. The function minimized was $\sum w(|F_0| - |F_c|)^2$, where $w = 1/\sigma^2(F_0)$. The absorption corrections were applied (DIFABS [12]). The minimum and maximum absorption corrections were 0.897 and 1.630 and 0.946 and 1.069 for I and II, respectively. The final R and R_w were (0.0274 and 0.0283) and (0.0482 and 0.0440) for I and II, respectively. (The refinement of the inverted structure for I gave R = 0.0498 and $R_w = 0.0458$). For the last cycle of the refinement the maximal value of the Δ/σ ratio was 0.4 for I and 0.08 for II and the final difference maps showed a general background within -0.33 and 0.26 and -0.26 and 0.031 e \mathring{A}^{-3} for I and II, respectively. The final atom parameters for I are listed in Table 1 and for II in Table 2.

Results and discussion

The structure of tetrachloro(di-iso-butyl o-phthalate)titanium(IV) molecule is depicted in Fig. 1. Selected bond lengths are listed in Table 3. Four Cl atoms and two O atoms of the ligands carbonyl group form the distorted octahedron around titanium atom. The molecules of di-iso-butyl o-phthalate are coordinated to titanium atoms via the carbonyl oxygen atoms. The chelate ligand and titanium atom form a seven-membered ring. The general structure of the complex molecule is similar to

that of $[o-C_6H_4(COOEt)_2OMoCl_3]$ [13] but somewhat different from that of $[o-C_6H_4(COOEt)_2TiCl_4]$ [14], which has $m(C_5)$ point symmetry. This is demonstrated by the fact, that the Cl(2) atom is in 3.290(12), 3.247(11), 3.422(11) and 3.632(11) Å distances from C(18), C(17), C(12), C(11) and corresponding Cl atom in $[o-C_6H_4(COOEt)_2TiCl_4]$ [14], is in 3.295(5) and 3.217(5) Å distances from the similar four carbon atoms. In the titanium complex with iso-butyl o-phthalate the angles of torsion Ti-O(1)-C(11)-C(12), Ti-O(2)-C(18)-C(17) [27.0(16)° and 21.8(15)°] are

Table 3
Principal interatomic distances (Å), bond angles (°), and torsion angles (°) for tetrachloro(di-iso-butyl o-phthalate)titanium(IV) molecule

•			
Ti-Cl(1)	2.282(3)	Ti-Cl(2)	2.305(3)
Ti-Cl(3)	2.238(3)	Ti-Cl(4)	2.238(3)
Ti-O(1)	2.113(7)	Ti-O(2)	2.093(7)
O(1)-C(11)	1.226(12)	O(2)-C(18)	1.242(13)
O(3)-C(11)	1.298(12)	O(4)-C(18)	1.308(13)
O(3)-C(1)	1.472(12)	O(4)-C(5)	1.474(12)
C(11)-C(12)	1.493(15)	C(18)-C(17)	1.489(15)
C(12)-C(17)	1,433(16)	C(14)-C(15)	1.384(19)
C(12)-C(13)	1.356(15)	C(16)-C(17)	1.393(14)
C(13)-C(14)	1.388(16)	C(15)-C(16)	1.386(17)
C(1)-C(2)	1.501(15)	C(5)-C(6)	1.540(14)
C(2)-C(3)	1.539(16)	C(6)-C(7)	1.491(15)
C(2)-C(4)	1.497(16)	C(6)-C(8)	1.555(16)
Cl(1)-Ti-Cl(2)	170.8(2)	Cl(1)-Ti-Cl(3)	92.4(2)
Cl(1)-Ti-Cl(4)	94.2(2)	Cl(2)-Ti-Cl(3)	93.4(2)
Cl(2)-Ti-Cl(4)	91.6(2)	Cl(3)-Ti-Cl(4)	100.9(2)
O(1)-Ti-Cl(1)	83.0(3)	O(1)-Ti-Cl(2)	90.1(3)
O(1)-Ti-Cl(3)	169.2(3)	O(1)-Ti-Cl(4)	89.2(3)
O(2)-Ti-Cl(1)	87.4(3)	O(2)-Ti-Cl(2)	85.5(3)
O(2)-Ti-Cl(3)	90.6(3)	O(2)-Ti-Cl(4)	168.3(3)
O(1)-Ti-O(2)	79.5(3)		
Ti-O(1)-C(11)	139.6(7)	Ti-O(2)-C(18)	138.7(7)
C(11)-O(3)-C(1)	117.8(8)	C(18)-O(4)-C(5)	118.4(8)
O(1)-C(11)-O(3)	122.0(10)	O(2)-C(18)-O(4)	121.8(10)
O(1)-C(11)-C(12)	125.7(10)	O(2)-C(18)-C(17)	127.3(10)
O(3)-C(11)-C(12)	112.3(9)	O(4)-C(18)-C(17)	110.9(9)
C(11)-C(12)-C(17)	123.6(10)	C(18)-C(17)-C(12)	122.4(10)
C(11)-C(12)-C(13)	116.4(10)	C(18)-C(17)-C(16)	118.7(10)
C(13)-C(12)-C(17)	120.0(10)	C(12)-C(17)-C(16)	118.6(10)
C(12)-C(13)-C(14)	120.8(11)	C(17)-C(16)-C(15)	120.0(10)
C(13)-C(14)-C(15)	120.1(12)	C(16)-C(15)-C(14)	120.3(11)
O(3)-C(1)-C(2)	107.1(8)	O(4)-C(5)-C(6)	104.5(8)
C(1)-C(2)-C(3)	111.7(9)	C(5)-C(6)-C(7)	112.2(10)
C(1)-C(2)-C(4)	108.7(9)	C(5)-C(6)-C(8)	107.9(9)
C(3)-C(2)-C(4)	113.2(10)	C(7)-C(6)-C(8)	112.4(10)
C(4)-C(2)-C(1)-O(3)	-175.2(11)	C(7)-C(6)-C(5)-O(4)	55.4(11)
C(3)-C(2)-C(1)-O(3)	59.1(12)	C(8)-C(6)-C(5)-O(4)	179.8(10)
C(2)-C(1)-O(3)-C(11)	166.0(12)	C(6)-C(5)-O(4)-C(18)	170.2(10)
C(1)-O(3)-C(11)-O(1)	3.0(14)	C(5)-O(4)-C(18)-O(2)	-0.2(13)
O(3)-C(11)-O(1)-Ti	- 154.2(15)	O(4)-C(18)-O(2)-Ti	-156.0(13)
Ti-O(1)-C(11)-C(12)	27.0(16)	Ti-O(2)-C(18)-C(17)	21.8(15)

Fig. 2. View of the polymeric structure and numbering scheme of [p-C₆H₄(COOMe)₂·TiCl₄] adduct in crystal II.

different but the bond angles Ti-O(1)-C(11) [139.6(7)°] and Ti-O(2)-C(18) [138.7(7)°], and the bond lengths Ti-O(1) and Ti-O(2) [2.113(7) and 2.093(7) Å] are similar. The benzene ring is planar and Cl(1) chlorine atom is the remotest atom from the ring. The Ti-Cl(1) and Ti-Cl(2) distances of 2.282(3) and 2.305(3) Å are longer than the Ti-Cl(3) and Ti-Cl(4) distances of 2.238(3) Å, (Table 3).

The spatial structure of complexes with the o-diester suggest that the addition of AlEt, as co-catalyst to [o-C₆H₄(COO-i-Bu)₂TiCl₄] or [o-C₆H₄(COOEt)₂TiCl₄]

Table 4

Principal interatomic distances (Å), bond angles (°) and torsion angles for crystalline [p- $C_6H_4(COOMe)_2TiCl_4$] a

$T_i \cdots T_i^i$	3.851(4)	Ti-Cl(1)	2,496(3)
Ti-Cl(1 ⁱ)	2.498(3)	Ti-Cl(2)	2.223(3)
Ti-Cl(3)	2.206(3)	Ti-Cl(4)	2.222(3)
Ti-O(1)	2.058(3)	O(1)-C(1)	1.243(4)
O(2)-C(1)	1.293(4)	O(2)-C(5)	1.464(4)
C(1)-C(2)	1.478(4)	C(2)-C(3)	1.389(4)
C(2)-C(4)	1.396(5)	$C(3)-C(4^{ii})$	1.386(5)
$Cl(1)$ - Ti - $Cl(1^i)$	79.1(1)	Cl(1)-Ti-Cl(2)	88.1(1)
Cl(1)-Ti-Cl(3)	166.5(1)	Cl(1)-Ti-Cl(4)	92.6(1)
Cl(1 ⁱ)-Ti-Cl(2)	89.8(1)	Cl(1i)-Ti-Cl(3)	88.6(1)
$Cl(1^i)$ - Ti - $Cl(4)$	170.8(1)	Cl(2)-Ti-Cl(3)	97.5(1)
Cl(2)-Ti-Cl(4)	94.0(1)	Cl(3)-Ti-Cl(4)	99.2(1)
O(1)-Ti-Cl(1)	82.5(1)	$O(1)$ -Ti- $Cl(1^i)$	85.6(1)
O(1)-Ti-Cl(2)	170.1(1)	O(1)-Ti-Cl(3)	91.1(1)
O(1)-Ti-Cl(4)	89.3(1)	Ti-Cl(1)-Ti ⁱ	100.9(1)
Ti-O(1)-C(1)	165.4(3)	O(1)-C(1)-O(2)	122.1(3)
O(1)-C(1)-C(2)	123.1(3)	C(2)-C(1)-O(2)	114.7(3)
C(1)-O(2)-C(5)	118.5(3)	C(1)-C(2)-C(3)	119.7(3)
C(1)-C(2)-C(4)	119.9(3)	C(3)-C(2)-C(4)	120.4(3)
$C(2)-C(3)-C(4^{ii})$	119.7(3)	$C(2)-C(4)-C(3^{ii})$	119.9(3)
C(5)-O(2)-C(1)-O(1)	0.3(7)	Ti-O(1)-C(1)-O(2)	-114.0(13)

^a Symmetry codes: (i) 1-x, -y, -z; (ii) 2-x, -y, 1-z.

should be followed by replacement of the most distant Cl(1) by ethyl group. However, the reduction of Ti^{4+} to Ti^{3+} in $[o-C_6H_4(COOEt)_2TiCl_4]$ should also result in abstraction of Cl(1), as indicated by the structure of Ti^{3+} compound $[(\mu-Cl)_2Cl_4\{o-C_6H_4(COOEt)_2\}_2Ti_2]$, which was obtained by the reduction of $[o-C_6H_4(COOEt)_2TiCl_4]$ with aluminium in CH_2Cl_2 [15].

Compound II in crystalline state is polymeric. This structure is depicted in Fig. 2. The dimeric unit $Cl_3Ti(\mu-Cl)_2TiCl_3$ occupies the center of symmetry at $(\frac{1}{2},0,0)$ and the $p-C_6H_4(COOMe)_2$ ligand occupies the center of symmetry at $(1,0,\frac{1}{2})$. The $Cl_3Ti(\mu-Cl)_2TiCl_3$ units are connected by carbonyl oxygens of $p-C_6H_4(COOMe)_2$ to form a polymer in the [101] direction. The Ti-Cl and Ti-O bond lengths and Cl-Ti-Cl and Cl-Ti-O bond angles (see Table 4) are consistent with other Ti⁴⁺ chloro-complexes containing organic esters [14,16,17].

A comparison of the structure of the polymeric $[(\mu-\text{Cl})_2(\mu-p-\text{C}_6H_4(\text{COOMe})_2\text{Cl}_6\text{Ti}_2]$ and the dimeric $[\{\mu-m-\text{C}_6H_4(\text{COOEt})_2\}_2\text{Cl}_8\text{Ti}_2]$ [17] with the monomeric $[o-\text{C}_6H_4(\text{COO}-i-\text{Bu})_2\text{TiCl}_4]$ and $[o-\text{C}_6H_4(\text{COOEt})_2\text{TiCl}_4]$ compounds permitted a partial elucidation of the fall in the catalytic activity of the catalysts containing m- and $p-\text{C}_6H_4(\text{COOR})_2$. In all these compounds the terminal chlorine atoms are chemically similar. We conclude from this that after addition of co-catalyst the replacement of the chlorine atoms by ethyl group should proceed in a similar fashion. For that reason at the initial catalytic activities of the compounds discussed are similar. After some time, however, the compounds in which the titanium atoms form either a linear polymer or the dimer with p- and m- $\text{C}_6H_4(\text{COOR})_2$, respectively, decompose to form new compounds of lower catalytic activity.

Supplementary material available: The tables of observed and calculated structure factors for crystals I and II are available from the authors.

Acknowledgment

This work was supported financially by the Polish Academy of Sciences. Projects CPBR 3.20 and CPBP 01.12.

References

- 1 P. Sobota and J. Utko, unpublished results
- 2 N. Kashiwa and J. Yoshitake, Macromol. Chem., 185 (1984) 1133.
- 3 P. Pino and R. Mulhaupt, Angew. Chem. Int. Ed. Engl., 19 (1980) 857.
- 4 P.C. Barbe, G. Cechin and L. Noristi, Adv. Polym. Sci., 81 (1987) 10.
- 5 K. Soga, T. Sano, K. Yamamoto and T. Shino, Chem. Lett., (1982) 425.
- 6 J. Boor, Jr., in Ziegler-Natta Catalysts and Polymerization, Academic Press, New York, 1979, p. 213.
- 7 K. Soga and T. Shino in R.P. Quirk (Ed.), Transition Metal Catalyzed Polymerization Ziegler-Natta and Metathesis Polymerization, Cambridge University Press, New York, 1988, p. 266.
- 8 A. Guyot, C. Bobichon, R. Spitz, L. Duranel and J.L. Lacombe in W. Kaminski and H. Sinn (Eds.), Transition metals and Organometallics as Catalysts for Olefin Polymerization, Springer-Verlag, Berlin-Heidelberg, 1988 p. 132.
- 9 A.I. Vogel in 'Vogels's Textbook of Practical Chemistry', Longman Group Limited, Harlow, 1978.
- 10 International Tables for X-Ray Crystallography, Vol. 4, Kynoch Press, Birmingham, 1974.
- 11 G.M. Sheldrick shell 76, Program for crystal structure solution, 1976, University of Cambridge, England.
- 12 N. Walker and D. Stuart, Acta Crystallogr., A39 (1983) 158.
- 13 P. Sobota, J. Utko and T. Lis, unpublished results.

- 14 J. Utko, P. Sobota and T. Lis, J. Organomet. Chem., 334 (1987) 341.
- 15 P. Sobota, J. Ejfler, J. Utko and T. Lis, unpublished results.
- 16 I.W. Bassi, M. Calcaterra and R. Intrito, J. Organomet. Chem., 127 (1977) 305.
- 17 J. Utko, P. Sobota and T. Lis, J. Organomet. Chem., 373 (1989) 63.