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The thermal decomposition of manganese and cobalt-terephthalate Metal-Organic Framework 

precursors was utilized as a synthetic route for fabrication of Co3O4, Mn3O4 and Mn2O3 

nanoparticles. The prepared metal oxide nanoparticles of Co3O4, Mn3O4 and Mn2O3 possess 

average size diameter of 40, 60 and 80 nm respectively. The findings demonstrate that spinel 

structure nanoparticles of Co3O4 and Mn3O4 exhibit efficient catalytic activity toward 

heterogeneous olefin epoxidation in the presence of tert-butyl hydroperoxide. In addition, Co3O4 

and Mn3O4 nanoparticles illustrated excellent catalytic stability and reusability for nine and four 

cycles, respectively, towards olefin oxidation.  

Keywords: metal-oxide nanoparticles, epoxidation reaction, heterogeneous catalyst, recyclable 

catalyst. 

 

Nanoscale materials, including nanoparticles (NPs), nanowires, nanorods, nanotubes and 

nanoribbons, represent highly customizable and robust multifunctional platforms in many fields. 

Nanoscale  materials  behaviors  strongly  depend  on  the  shape  and  size of the particles [1]. 

Among wide variety of transition metal oxides, NPs, Co3O4 and Mn3O4 are important oxides 

with spinel structure comprising M
2+

 and M
3+

 ions. Chemical and thermodynamical stability of 
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cobalt and manganese oxides make them promising materials that have received widespread 

attention due to their appealing multi-functional properties of technological interest [2]. 

A wide range of synthetic techniques has been applied to grow cobalt and manganese oxide 

nanosystems with controlled properties, for instance, hydrothermal route using hydrogen 

peroxide [3], microwave-assisted synthesis via urea hydrolysis [4], hydrothermal process [5], 

solvothermal method [6], CTAB-assisted solvothermal method [7], microwave-assisted 

solvothermal method [8], micelle-assisted hydrothermal method [9] and microemulsion-based 

method [10]. Among these synthetic routes,  Metal-Organic Frameworks (MOFs) are favorable 

for the formation of uniformly separated micrometric or nanometric particles [2, 11].  

Manganese and cobalt oxides are useful, versatile and environmentally friendly catalysts which 

were extensively used for the oxidation of a variety of molecules, especially water oxidation, 

toluene oxidation, CO oxidation, carbon monoxide oxidation, the epoxidation of olefins and 

oxidative cyclization [12]. Herein, we developed a novel MOF route to prepare Mn2O3, Mn3O4 

and Co3O4 NPs, which involves the processes of converting metal oxide subunits in MOF into 

primary metal oxide NPs. The prepared metal oxide NPs were employed as heterogeneous 

catalysts in olefins epoxidation.  

The precursors of Manganese and cobalt-terephthalate MOFs, [Mn3(BDC)3(DMF)4]n and 

[Co3(BDC)3(DMF)2(H2O)2]n, were prepared previously [13, 14] and used for the production of 

manganese and cobalt oxide NPs. The MOFs structures consist of M-O-C (M=Mn and Co) units 

wherein the terephthalate links were coordinated with the metal centers to form a 2D-polymeric 

chain. The organic linker in framework was removed at high temperature, through calcination 

and M-O6 octahedral subunits convert to metal oxide NPs. The complete decomposition of 

MOFs occurred at the temperature above 320 
◦
C for [Co3(BDC)3(DMF)2(H2O)2]n and 520 

◦
C for 

[Mn3(BDC)3(DMF)4]n based on TG curves (Fig. 1S). So, calcination temperature for synthesized 

NPs was selected according to MOFs decomposition temperature. The Mn3O4 NPs were 

obtained as a fine brown powder using [Mn3(BDC)3(DMF)4]n via a solid-state thermal 

decomposition route at 500 
◦
C after 4h and Mn2O3 NPs as black powder at 600 

◦
C after 6h. The 

MOF of [Co3(BDC)3(DMF)2(H2O)2]n was used as a precursor to produce Co3O4 NPs at 400 and 

500 
◦
C for 4 h in air at a heating rate of 3 

◦
Cmin

−1
. 
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Comparing the FT-IR spectra of the two MOFs with samples after heating confirms that the 

templates have been completely destructed (Fig. 2S). Calcination of [Co3(BDC)3(DMF)2(H2O)2]n 

MOF at 400 or 500 
o
C indicates only two characteristic strong absorption bands at about 663.47 

and 572.82 cm
−1

 which are assigned to the Co-O stretching providing clear evidence for the 

presence of the crystalline spinel-type Co3O4 structure [15]. After calcination of 

[Mn3(BDC)3(DMF)4]n  MOF at 500 
o
C for 4h, three absorption peaks were observed at 400 to 

650 cm
-1

. The vibration frequency at 639 cm
-1

 is characteristic of Mn–O stretching modes in 

tetrahedral sites whereas vibration frequency at 533 cm
-1

 corresponds to the distortion vibration 

of Mn–O in an octahedral environment. The third vibration band, located at a weaker 

wavenumber, 421 cm 
-1

, can be attributed to the vibration of manganese species (Mn
3+

) in an 

octahedral site [16]. In calcinated [Mn3(BDC)3(DMF)4]n  MOF at 600 
o
C for 6h, absorption peaks 

around 450-700 cm
-1 

correspond to Mn–O bending vibrations [17]. Moreover, the broad band 

about 3400 cm
-1

 and the narrow one about 1650 cm
-1

 correspond to the O-H vibrating mode of 

the adsorbed water in samples. The fingerprints of IR absorption at 400 to 700 cm
-1

 for prepared 

samples confirmed metal-oxides formation by thermal decomposition MOFs templates.  

The  crystalline  phase  purity  of  the  NPs  was  confirmed  by  powder XRD  analysis. The 

XRD patterns of manganese oxide NPs indicated that calcinated sample at temperature of 500 
◦
C 

has different crystallinity phase in comparison with calcinated sample at 600 
◦
C (Fig. 1 (a) and 

(b)). The diffraction peaks of sample which was calcinated at 500 
◦
C can be indexed to pure 

tetragonal phase of Hausmannite Mn3O4 with the lattice parameters of a = 5.76, b= 5.76 and c= 

9.44 Å, Z = 4 and S.G= I41/amd which are in JCPDS card file No. 24-0734 (Fig. 3S). The 

diffraction peaks of sample which was calcinated at 600 
◦
C can be indexed to pure Cubic phase 

of Bixbyite Mn2O3 with the lattice parameters of a = 9.41 Å, Z = 16 and S.G= Ia3 which are in 

JCPDS card file No. 10-0069 (Fig. 4S). The SEM images of prepared samples demonstrate that 

NPs have spherical shapes (Fig. 2). The average size of the particles calculated by the Scherer 

formula was 60 nm for Mn3O4 (main (211) diffraction peak) and 80 nm for Mn2O3 (main (222) 

diffraction peak) which are in agreement with TEM images (Fig. 3, c-f). As it is clearly 

noticeable in TEM images of Mn2O3, these NPs are agglomerated which can be achieved by the 

MOF route as Xu et al. revealed [18]. 
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The XRD patterns of cobalt oxide NPs indicated that calcinated sample at 500 
◦
C shows similar 

crystallinity with calcinated samples at 400 
◦
C. The sharp peaks and higher signal to noise ratio 

indicate that the as-prepared Co3O4 NPs are highly crystalline which can be further confirmed by 

the SEM images (Fig. 2). All the diffraction peaks of samples can be indexed to pure cubic 

spinel phase of Co3O4 with the lattice parameters of a = 8.0837Å, Z = 8 and S.G= Fd3m with 

octahedrally coordinated Co
3+

 and tetrahedrally coordinated Co
2+

 which are in JCPDS card file 

No. 42-1467 (Fig. 5S). No impurity characteristic peaks related to CoO and Co2O3 phases were 

detected. The SEM images of prepared samples show that Co3O4 NPs have uniform fine 

spherical shapes. The particles size of the prepared sample were found to be about 40 nm which 

was calculated through the major (222) diffraction peak using the Debye Scherrer approximation 

which are in agreement with TEM images (Fig. 3, a, b).  

The catalytic potential of NPs was examined in the olefins oxidation in the presence of tert-

buthylhydroperoxide (TBHP). In order to choose a suitable solvent, the oxidation of cyclooctene 

(as a model substrate) was carried out in dichloromethane, chloroform, acetonitrile, acetone, 

methanol and a mixture of CH3OH/CH2Cl2 (1:1). The results demonstrated that CH3CN was a 

more efficient solvent and Mn2O3 NPs are not as efficient as Co3O4 and Mn3O4 NPs (Table 1S). It 

seems that the oxidation state of Mn could play a key role in determining the catalytic behavior 

of the manganese oxide species. This can well account for the superiority of Mn(II)  in 

comparison with other manganese oxidation states [19]. Aromatic and aliphatic alkenes react 

with TBHP to produce the corresponding epoxides and/or oxides (Table 1) in the presence of 

spinel type nanocatalysts. The catalytic oxidation reaction shows that nanocatalysts are superior 

for oxidation of cyclic (entry 1, 2) and aromatic olefins (entries 3-5) with good yield and 

moderate selectivity but are not efficient for oxidation of linear olefins (entry 6, 7). 

The study on the catalytic activity of parent MOFs ([Mn3(BDC)3(DMF)4]n and 

[Co3(BDC)3(DMF)2(H2O)2]n) and obtained Mn3O4 and Co3O4 NPs reveal that the extended 

structure and steric effects of MOFs make them weak catalysts compared to NPs. The results of 

olefin oxidations confirm that NPs are superior in conversion and catalytic reaction time [13, 14]. 

Since cyclohexene is a substrate that is particularly prone to allylic oxidation, its oxidation was 

studied in the presence of Co3O4 and Mn3O4 NPs to pursue the catalytic mechanism. The 

catalytic oxidation of cyclohexene, provided 2-cyclohexene-1-ol (80% for Co3O4 and 88% for 
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Mn3O4 NPs) in 95% and 90% conversion, respectively (Table 2, entry 2). Also, oxidation of 

styrene in the presence of Co3O4 and Mn3O4 nanocatalysts, involves C=C bond breaking, 

yielding styrene oxide (65 and 61%) with benzaldehyde (35 and 39%) (Table 1, entry 3). These 

oxidation products firmly imply a dominant radical pathway for this oxidation reaction, as was 

expected on the basis of other Mn(II) or Co(II) heterogeneous catalysts [13, 14, 19, 20]. To probe 

into the in situ formation of radical species in the oxidation reaction, ionol (2,6-di-tertbutyl-p-

cresol) was utilized as a radical scavenger in the oxidation of styrene and cyclohexene. Oxidation 

was thoroughly inhibited in the presence of ionol which confirmed the formation of a radical 

intermediate in the reaction pathway. Probably, the Mn(II) and Co(II) catalyze homolytic O–O 

bond cleavage in t-BuOOH and alkoxy (t-BuO
.
) radicals which are produced start the oxidation 

reaction. In the end, the olefin is oxidized to corresponding oxide/epoxide products. 

The recyclability of the Mn3O4 and Co3O4 NPs catalysts was investigated in oxidation reaction of 

cyclooctene in the presence of TBHP in CH3CN at 75 
o
C for 7 h. After the first catalytic reaction, 

the solid catalyst was easily isolated by centrifuge and recovered by being washed with solvent 

and dried at 70 
o
C and used for the next run under the same reaction condition as the first run. 

The Co3O4 NPs could well be recycled for nine cycles with no significant loss in activity and 

selectivity. During reusability studies, ninth run provided 88% conversion and 90% selectivity in 

favor of cyclooctene epoxide. The Mn3O4 NPs could be recycled four cycles with no significant 

loss in activity and selectivity (Table 2). Therefore, Co3O4 NPs are more efficient from 

reusability point of view. 

The XRD patterns and IR spectroscopy showed that the catalysts have nearly identical peaks 

before and after catalytic reaction (Fig. 3, d, e and Fig. 2S, f, g), indicating that the basic lattice 

structures of these NPs were well maintained after catalysis. The amount of solved Co and Mn 

was found to be less than 1%  by ICP analysis. This suggests that there is almost no Co and Mn 

in the liquid phase from these catalysts and the nature of catalytic reactions is heterogeneous. 

Co3O4, Mn3O4 and Mn2O3 NPs have been prepared by solid-state thermal decomposition from 

manganese and cobalt-terephthalate Metal Organic Frameworks by heating at 400, 500 and 600 

o
C. This synthetic route is a simple method for the preparation of uniform and high pure Co3O4, 

Mn3O4 and Mn2O3 NPs with average size of 40, 60 and 80 nm respectively. The results of 

catalytic study exhibited that prepared NPs are active and selective heterogeneous catalysts for 
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olefins oxidation with the TBHP oxidizing agent in acetonitrile solvent. Co3O4 and Mn3O4 NPs 

can simultaneously provide high activity and selectivity to epoxide, easy separation of catalyst 

and appropriate performance in the recycling reaction. It was found that Co3O4 presented 

superior performance to Mn3O4 and Mn2O3 in oxidation reaction in the case of reusability.  
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Fig. 1. XRD pattern of prepared Mn3O4 (a), Mn2O3 (b), Co3O4 (c) fresh nanoparticles and Mn3O4 

after fourth run (d) and Co3O4 after ninth run (e) in catalytic cyclooctene oxidation. 
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Fig. 2. SEM images of Co3O4 (a, b), Mn3O4 (c, d) and Mn2O3 (e-h) prepared nanoparticles. 

 

   

   
 

Fig. 3.TEM images of Co3O4 (a, b), Mn3O4 (c, d) and Mn2O3 (e, f) nanoparticles. 
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Table 1. Oxidation of olefins catalyzed by metal-oxide nanoparticles
a
. 

Entry  Substrate Catalyst  Conversion
b
 

(%) 

Selectivity
c
 

(%) 

1 cyclooctene Co3O4 98 95 

  Mn3O4 

[Mn3(BDC)3(DMF)4]n 

[Co3(BDC)3(DMF)2(H2O)2]n 

95 

66
d 

67
e 

95 

86 

100 

     

2 cyclohexene Co3O4 95 15 (80)
f 

  Mn3O4 90 10 (88)
f
 

     

3 styrene Co3O4 92 65 

  Mn3O4 85 61 

     

4 trans-

stylbene 

Co3O4 80 100 

  Mn3O4 75 100 

     

5 Indene Co3O4 65 100 

  Mn3O4 60 100 

     

6 1-heptene Co3O4 17 100 

  Mn3O4 12 100 

     

7 1-decene Co3O4 15 100 

  Mn3O4 10 100 
a
Reaction condition: The reactions were run in CH3CN(2 mL) at 75 

o
C for 7 h by amount of 0.01 mmol 

catalyst, 1 mmol chlorobenzene, 1 mmol substrate and 1mmol TBHP. The molar ratio for catalyst: 

substrate: TBHP is 1: 100: 100. 
b
Conversion determined by GC based of chlorobenzene  as  internal  standard. 

c
Selectivity (%) to epoxide. 

d
Reaction in 1,2-dichloroethane for 9 h [13]. 

e
Reaction in 1,2-dichloroethane for 7 h [14]. 

f
Selectivity (%) to cyclohexene-1-ol as a main product. 
 
 
 
 

Table 2. Reusability investigation of nanoparticles catalyst in oxidation of cyclooctene by TBHP
a
. 

Entry  Catalyst (NPs) Time (h) Conversion
b
 (%) Selectivity

c
 (%) 

Run 1 Mn3O4 7 95 95 

 Co3O4 7 98 95 

Run 2 Mn3O4 7 100 93 

 Co3O4 7 100 95 

Run 3 Mn3O4 7 95 94 

 Co3O4 7 100 95 
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Run 4 Mn3O4 7 85 92 

 Co3O4 6 98 93 

Run 5 Co3O4 6 92 94 

Run 6 Co3O4 6 100 95 

Run 7 Co3O4 7 99 94 

Run 8 Co3O4 6 92 92 

Run 9 Co3O4 6 88 90 
a
Reaction condition: same as Table 1.The molar ratio for catalyst: cyclooctene: TBHP is 1: 100: 100. 
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Graphical abstract: Synopsis 

 

Manganese and Cobalt-terephthalate Metal-Organic Frameworks as a Precursor for 

Synthesis of Mn2O3, Mn3O4 and Co3O4 Nanoparticles: Active Catalysts for Olefin 

Heterogeneous Oxidation 

 

Fatemeh Ashouri, Maryam Zare, Mojtaba Bagherzadeh,  

 

Spinel structured Mn3O4 and Co3O4 and Mn2O3 nanoparticles were prepared by thermal 

decomposition of manganese and cobalt-terephthalate Metal-Organic Framework (MOF) 

precursor at 400, 500 and 600 
o
C. Scanning electron microscopy, transmission electron 

microscopy, Fourier transform infrared and X-ray diffraction spectrometry were used to 

characterize the phase and the morphology of the metal oxide nanoparticles. Characterization of 

prepared nanoparticles were indicate that these nanoparticles have average size diameter 60, 40 

and 80 nm for Mn3O4, Co3O4 and Mn2O3 respectively. Catalytic efficacy of Mn3O4 and Co3O4 

nanoparticles were evaluated in the epoxidation of a variety of alkenes using tert-butyl 

hydroperoxide as an oxidant. In addition, metal oxide nanoparticles exhibited excellent catalytic 

stability in several runs, demonstrating that these heterogeneous and recyclable catalysts are 

promising for olefin epoxidation.  
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Highlights 

► Co3O4, Mn3O4 and Mn2O3 nanoparticles (NPs) were prepared by hydrothermal decomposition 

of [Co3(BDC)3(DMF)2(H2O)2]n and [Mn3(BDC)3(DMF)4]n MOFs. 

►These NPs exhibit excellent catalytic activity and stability in olefins oxidation. 

► High activity and selectivity to epoxide, easy separation and appropriate performance in the 

recycling reaction, make these NPs valuable. 

 

 

 


