Reactivity of acryloyl chloride towards the anion $[Cp_2(CO)_4Mo_2(\mu\text{-PPhH})]^-;$ synthesis of an unusual phosphaalkene

John E. Davies, Martin J. Mays,* Paul R. Raithby and Anthony D. Woods

Department of Chemistry, Lensfield Road, Cambridge, UK CB2 1EW. E-mail: mjm14@cus.cam.ac.uk

Received (in Basel, Switzerland) 25th September 1999, Accepted 1st November 1999

Deprotonation of the complex $[Cp_2(CO)_4Mo_2(\mu\text{-PPhH})(\mu\text{-H})]$ by Bu^tLi at -78 °C and subsequent addition of acryloyl chloride affords the metallophosphaalkene complex $[Cp_2(CO)_4Mo_2(\eta^1-\eta^2\text{-PhP=CHMe})]$ in high yield; the complex exhibits *cis/trans* isomerism, both isomers having been crystallographically characterised.

Metallophosphaalkenes have been shown to be important synthons in the preparation of phosphorus-functionalised heterocycles owing to the highly polar P=C moiety present in such complexes.^{1,2} A high yield route to the previously unknown dinuclear Group 6 metallophosphaalkenes is now described.

We have previously demonstrated that the anion obtained from deprotonation of [Cp₂(CO)₄Mo₂(μ-Ph₂)(μ-H)] with Bu^tLi at -78 °C reacts with ECl₃ to give [Cp₂(CO)₄Mo₂(μ - η ²-PE)] (E = P, As, Sb)³ and with organometallic halides to give $[Cp_2(CO)_4Mo_2\{\mu\text{-P}(R)ML_n\}(\mu\text{-H})]$ $[ML_n=W(CO)_3Cp,$ Fe(CO)_2Cp, Mn(CO)_5].^{4,5} We now report that reaction of $[Cp_2(C\hat{O})_4Mo_2(\mu\text{-PPhH})(\mu\text{-H})] \ \ \textbf{1} \ \ \text{with} \ \ Bu^tLi \ \ \text{and} \ \ \text{acryloyl}$ chloride leads to the unusual metallophosphaalkene trans- $[Cp_2(CO)_4Mo_2(\eta^1-\eta^2-PhP=CHMe)]$ 2 in high (70–80%) yield rather than to the formation of a complex containing an acylsubstituted bridging phosphido group as would have been predicted on the basis of earlier work.⁴ Previously only mononuclear Group 6 metal complexes containing phosphaalkenes have been characterised; these involve coordination of the ligand via the phosphorus atom only.6 To the authors' knowledge there exists only one other group of complexes containing a phosphaalkene bonding in an $\eta^1 - \eta^2$ fashion to a bimetallic fragment. These were formed in low yield by the $[Cp_2(CO)_2(\mu\text{-}CO)Fe_2(\mu\text{-}CSMe)]^+$ reaction $HP(SiMe_3)_2.7$

A possible reaction pathway for the formation of *trans*-[Cp₂(CO)₄Mo₂(η^1 - η^2 -PhP=CHMe)] **2** is shown in Scheme 1. It is proposed that electrophilic attack of the acryloyl chloride on deprotonated **1** to give intermediate **A** is followed by deinser-

Scheme 1 Possible reaction pathway for formation of 2 and 4.

tion of CO to give **B** and reductive elimination to give **C**. A 1,3 hydrogen shift within the bridging ligand then leads to **2**. This reaction sequence is supported by the isolation and structural characterisation of $[Cp_2(CO)_4(\eta^1-\eta^2-Ph_2PCH=CH_2)]$ **4**, an analogue of intermediate **C**. Complex **4** is obtained by treatment of deprotonated $[Cp_2(CO)_4Mo_2(\mu-PPh_2)(\mu-H)]$ with acryloyl chloride. Presumably the final [1,3] sigmatropic shift which converts intermediate **C** into the metallophosphaalkene **2** is precluded in **4** by the absence in $[Cp_2(CO)_4Mo_2(\mu-PPh_2)]^-$ of a hydrogen atom on the bridging phosphido group. The vinyl phosphine moiety present in **4** acts as an $\eta^1-\eta^2$ 4-electron ligand; such a mode of coordination has only previously been reported in Fe₃ and Ru₅ clusters as the result of alkyne insertion into a P–M bond.^{8,9}

Thermolysis of the *trans* isomer **2** leads to the formation of cis-[Cp₂(CO)₄Mo₂(η^1 - η^2 -PhP=CHMe)] **3**, in which the methyl group of the phosphaalkene now lies cis to the PPh group and points towards a cyclopentadienyl ring.† Presumably thermolysis of **2** overcomes the barrier to rotation of the P=CHMe moiety to yield **3** as the thermodynamically favoured product.

The structures of **2** and **3** have been determined by X-ray diffraction analysis, confirming the *trans* and *cis* assignments (Fig. 1). The two molecules exhibit several significant differences.‡

Thus complex **3** shows a significantly shorter Mo–Mo bond length of 3.220(1) Å as compared to 3.240(1) Å in **2** and the P–Mo separations are both significantly shorter in the former

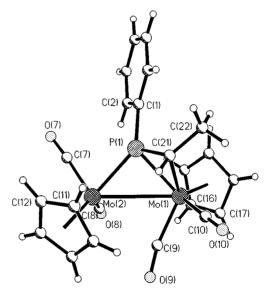


Fig. 1 Molecular structure of 2 and 3. Selected bond lengths (Å) and angles (°): 2: Mo(1)–Mo(2) 3.240(1), Mo(1)–P(1) 2.435(2), Mo(1)–C(21) 2.382(7), Mo(2)–P(1) 2.346(2), P(1)–C(21) 1.754(7); C(1)–P(1)–C(21) 107.3(4), P(1)–C(21)–C(22) 121.2(6), P(1)–C(21)–Mo(1) 70.3(2), P(1)–C(21)–Mo(2) 121.0(3), P(1)–Mo(1)–Mo(2) 46.19(5), C(21)–Mo(1)–Mo(2) 77.46(5), Mo(1)–C(9)–O(9) 166.6(6). 3: Mo(1)–Mo(2) 3.220(1), Mo(1)–C(21) 2.392(3), Mo(1)–P(1) 2.418(1), Mo(2)–P(1) 2.334(1), P(1)–C(21) 1.749(3); C(1)–P(1)–C(21) 114.6(2), P(1)–C(21)–C(22) 127.4(3), P(1)–C(21)–Mo(1) 69.5(1), P(1)–Mo(1)–Mo(2) 46.27(2), C(21)–Mo(1)–Mo(2) 74.96(8), Mo(1)–C(9)–O(9) 167.2(3).

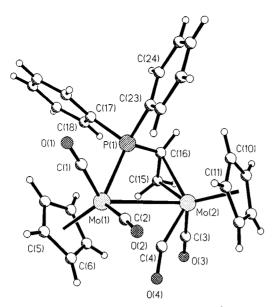


Fig. 2 Molecular structure of 4. Selected bond lengths (Å) and angles (°): Mo(1)-Mo(2) 3.288(1), Mo(1)-P(1) 2.408(1), Mo(2)-C(16) 2.295(3), Mo(2)-C(15) 2.339(3), C(16)-C(15) 1.409(4); C(23)-P(1)-C(16) 101.9(2), P(1)-C(16)-Mo(2) 97.3(2), C(15)-C(16)-Mo(2) 74.0(2), Mo(1)-Mo(2)-C(16) 74.6(2).

complex (see Figs. 1 and 2). The P(1)–C(21)–C(22) bond angle increases from 121.2(6) to 127.4(3) on conversion of **2** to **3**.

The P=C bond lengths of 1.754(7) and 1.749(3) Å for **2** and **3**, respectively, are significantly shorter than the 1.812(9) Å recorded by Weber *et al.* for their related complex [Cp₂-(CO)₂Fe₂{ η^1 - η^2 -(Cp(CO)₂Fe)P=CHSMe}].⁷ However, they do fall within the range recorded by Williams *et al.* for their series of cluster-stabilised phosphaalkenes.¹⁰ Both **2** and **3** contain a semi-bridging carbonyl group linking to the second molybdenum atom.

The molecular structure of **4** shows a Mo–Mo bond length of 3.288(1) Å, which is slightly longer than that present in **2** and **3** (Fig. 2). The C(15)–C(16) bond length of 1.409(4) Å is typical of that in other complexes containing a $\eta^1-\eta^2$ vinyl phosphine. 11,12

The ¹H NMR spectra of **2** and **3** highlight the different environments of the vinylic proton. In **2** the proton resonates as a doublet of quartets at δ 4.14, whereas the analogous resonance in **3** occurs as a broad peak at δ 1.48; this latter value is in good agreement with that recorded by Weber *et al.* for their compound.⁷

Bimetallic Group 6 metal complexes coordinated to phosphaalkenes have not been reported previously, and an $\eta^1 - \eta^2$ bonding mode for a phosphaalkenes is extremely rare. Additionally, the described method represents the first high yield route to metallophosphaalkenes that contain no other heteroatom substituents.

We thank the EPSRC for a quota award to A. D. W. and ICI for a CASE award to A. D. W. EPSRC support for the purchase of the Nonius Kappa CCD diffractometer is also gratefully acknowledged.

Notes and references

† Selected spectroscopic data: [IR (v_{CO}/cm^{-1}) measured in hexane; 1H NMR and ^{31}P { 1H } NMR spectra were recorded in CDCl₃ solution relative to TMS and 85% $H_3PO_4(aq)$ respectively, with upfield shifts negative; J in Hz].

For **2**: $v_{\rm CO}$ 1955m, 1927.6vs, 1822s, 1851m; NMR: $^1{\rm H}$ δ 7.8–7.3 (m, 5H, Ph), 5.24 (s, 5H, Cp), 4.82 (s, 5H, Cp), 4.14 (dq, $^2J_{\rm PH}$ 14.1, $^3J_{\rm HH}$ 7.1, 1H, P=CH), 1.42 (dd, $^3J_{\rm PH}$ 17.82, $^3J_{\rm HH}$ 7.1, 3H, P=CCH₃); $^3{\rm IP}\{^1{\rm H}\}$, δ 158.32; $^1{\rm ^3C}$, δ 242.31 (d, $^2J_{\rm PC}$ 22.96, Mo–CO), 235.32 (d, $^2J_{\rm PC}$ 7.55, Mo–CO), 230.02 (s, Mo–CO), 141.03–128.27 (m, PPh), 92.90 (s, Cp), 91.39 (s, Cp), 42.29 (d, $^1J_{\rm PC}$ 12.4, P=C), 18.62 (d, $^2J_{\rm PC}$ 7.23, P=CCH₃) FAB MS: m/z 572 (M+), 544 (M+ – CO); C $_{\rm 22}H_{\rm 19}{\rm MoO}_{\rm 4}{\rm P}$ requires C, 46.34; H, 3.36; P 5.43. Found: C, 46.21; H, 3.38; P 5.42%.

For 3: $v_{\rm CO}$ 1951m, 1921vs, 1880s, 1847m; NMR: ¹H, δ 7.69–7.45 (m, 5H, Ph), 5.04 (s, 5H, Cp), 5.03 (s, 5H, Cp), 1.80 (dd, ³ $J_{\rm PH}$ 13.03, ³ $J_{\rm HH}$ 7.04, 3H, P=CCH₃), 1.48 (dq, ² $J_{\rm PH}$ 20.84, ³ $J_{\rm HH}$ 7.04, 1H, P=CH); ³¹P{¹H}, δ 164.81; ¹³C, δ 229.71 (Mo–CO), 134.88–128.54 (m, phenyl region), 93.17 (s, Cp), 91.39 (s, Cp), 49.14 (d, ¹ $J_{\rm PC}$ 22.82, P=C), 24.05 (d, ² $J_{\rm PC}$ 12.68, P=CCH₃); FAB MS: m/z 572 (M⁺), 544 (M⁺ — CO). C₂₂H₁₉MoO₄P requires C, 46.34; H, 3.36; P, 5.43. Found: C, 46.10; H, 3.29; P, 5.42%.

For 4: $v_{\rm CO}$ 1938m, 1888vs, 1868s; NMR: $^1{\rm H}$, δ 7.79–7.17 (m, 10H, Ph), 4.75 (s, Cp), 4.72 (s, Cp), 3.32 (ddd, $^2{J_{\rm PH}}$ 29.2, $^3{J_{\rm HH}}$ 9.1, $^3{J_{\rm HH}}$ 2.3, 1H, Ph $_2{\rm PCH}$ =CH $_2$), 1.96 (ddd, $^3{J_{\rm PH}}$ 21.8, $^3{J_{\rm HH}}$ 12.4, $^3{J_{\rm HH}}$ 2.3, 1H, cis-Ph $_2{\rm PCH}$ =CHH), 1.61 (ddd, $^3{J_{\rm HH}}$ 12.4, $^3{J_{\rm HH}}$ 9.1, $^3{J_{\rm PH}}$ 2.1, 1H, trans-CH=CHH); $^3{\rm IP}\{^1{\rm H}\}$, δ 35.93; $^{13}{\rm C}$, δ 238 (CO), 228 (CO), 137.37–128.10 (m, phenyl groups), 91.71 (s, Cp), 91.16 (s, Cp), 50.84 (d, $^2{J_{\rm PC}}$ 14.10, Ph $_2{\rm PC}$ =C); FAB MS: m/z 650 (M+). $C_{28}H_{23}{\rm Mo}_2{\rm O}_4{\rm P}$ requires C, 52.03; H, 3.59; P 4.79. Found: C, 52.29; H, 3.66; P, 4.68%.

‡ Crystal data: Data in common: graphite monochromated Mo-K α radiation; $\lambda=0.71069$; data collected at 180(2) K using an Oxford Cryostream cooling apparatus. Solution by direct methods (SIR 9)¹³ and subsequent Fourier syntheses, anisotropic full-matrix least-squares refinement on F^2 (SHELXL 93),¹⁴ hydrogen atoms included using a riding model.

2: trans-C₂₂H₁₉Mo₂O₄P, M=570.22, red plate, $0.20\times0.15\times0.10$ mm, monoclinic, space group $P2_1/n$, a=8.278(3), b=14.908(6), c=16.694(6) Å, $\beta=92.97(3)^\circ$, U=2057.4(13) Å³, Z=4, $D_c=1.841$ Mg m⁻³, μ (Mo-K α) = 1.323 mm⁻¹, F(000)=1128, 5467 reflections measured using ω -2 θ method on a Rigaku AFC7R diffractometer, 3631 unique ($R_{\rm int}=0.059$) used in all calculations. Data collection range 2.69 < $\theta<25.03$. $R_1=0.0538$, $wR_2=0.1540$ for 2960 observed reflections [$I>2\sigma(I)$] and 262 parameters.

3: cis- $C_{22}H_{19}Mo_2O_4P$, M=570.22, red plate, $0.15\times0.12\times0.12$ mm, orthorhombic, space group $P2_12_12_1$, a=9.615(3), b=14.568(4), c=15.191(3) Å, U=2127.8(1) Å 3 , Z=4, $D_c=1.780$ Mg m $^{-3}$, μ (Mo-K α) = 1.279 mm $^{-1}$, F(000)=1128. 8608 reflections measured on a Nonius Kappa CCD diffractometer, 4896 unique ($R_{\rm int}=0.0031$). Data collection range 1.94 $<\theta<27.48$. $R_1=0.025$, $wR_2=0.0735$ for 4648 observed reflections [$I>2\sigma(I)$] and 263 parameters.

4: C₂₈H₂₃Mo₂O₄P, M = 646.31, red plate, $0.10 \times 0.05 \times 0.03$ mm, triclinic, space group $P\overline{1}$, a = 8.304(1), b = 9.978(1), c = 16.024(1) Å, $\alpha = 94.19(1)$, $\beta = 102.92(1)$, $\gamma = 106.26(1)^\circ$, U = 1229.2(2) Å³, Z = 4, $D_c = 1.746$ Mg m⁻³, μ (Mo-Kα) = 1.119 mm⁻¹, F(000) = 644, 8421 reflections measured on a Nonius Kappa CCD diffractometer, 5589 unique ($R_{\rm int} = 0.037$). Data collection range $1.32 < \theta < 27.46$. $R_1 = 0.0398$, $wR_2 = 0.0732$ for 5582 observed reflections [$I > 2\sigma(I)$] and 316 parameters.

CCDC 182/1469. See http://www.rsc.org/suppdata/cc/1999/2455/ for crystallographic files in .cif format.

- 1 R. Appel, in *Multiple Bonds and Low Coordination in Phosphorus Chemistry*, M. Regitz and O. J. Scherer, Thieme, Stuttgart, 1990 and references therein; J. F. Nixon, *Chem. Rev.*, 1988, **88**, 1327.
- 2 L. Weber, O. Kaminski, H.-G. Stammler, B. Neumann and V. D. Romanenko, Z. Naturforsch., Teil B, 1993, 48, 1784.
- 3 J. E. Davies, L. C. Kerr, M. J. Mays, P. R. Raithby, P. K. Tompkin and A. D. Woods, *Angew. Chem., Int. Ed. Engl.*, 1998, **37**, 1428.
- 4 J. E. Davies, M. J. Mays, E. J. Pook, P. R. Raithby and P. K. Tompkin, J. Chem. Soc., Dalton Trans., 1997, 3283.
- 5 P. K. Tompkin, PhD Dissertation, University of Cambridge, 1997.
- 6 D. Gudat, E. Niecke, W. Malisch, U. Hofmockel, S. Quashie, A. H. Cowley, A. M. Arif, B. Krebs and M. Dartmann, J. Chem. Soc., Chem. Commun., 1985, 1687; S. Holand, C. Charrier, F. Mathey, J. Fischer and A. Mitschler, J. Am. Chem. Soc., 1984, 106, 826; D. Gudat, E. Niecke, B. Krebs and M. Dartmann, Chimia, 1985, 39, 277; L. Weber, Angew. Chem. Chem., Int. Ed. Engl., 1996, 35, 271.
- 7 L. Weber, I. Schumann, H.-G. Stammler and B. Neumann, Organometallics, 1995, 14, 1626.
- 8 K. Knoll, G. Huttner, L. Zsolani and O. Orami, *Angew. Chem., Int. Ed. Engl.*, 1986, 25, 1119.
- C. J. Adams, M. I. Bruce, B. W. Skelton and A. H. White, *J. Organomet. Chem.*, 1996, **506**, 191.
- 10 G. D. Williams, G. L. Geoffrey, R. R. Whittle and A. L. Rheingold, J. Am. Chem. Soc., 1985, 107, 729.
- 11 J. Lunniss, S. A. MacLaughlin, N. J. Taylor, A. J. Carty and E. Sappa, Organometallics, 1985, 4, 2066.
- 12 D. Buchholz, G. Huttner and L. Zsolani, J. Organomet. Chem., 1990, 381, 97.
- 13 A. Altomare, G. Cascarano, C. Giacavazzo, A. Guagliardi, M. C. Byrla, G. Polidori and M. Camalli, J. Appl. Crystallogr., 1994, 27, 435.
- 14 G. M. Sheldrick, SHELXL 93, University of Göttingen, 1993.

Communication 9/07915G