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A b s t r a c t :  New thymine thietane nucleosidcs 7 ,and 20 wen: synthcsiz~rd via Pummcrcr 
rearrangement of the corresponding sulfoxides 5 and I 8 in the presence of thymine, TMSOTf, Et N, 
and Znl 2 as a key step. Copyright © 1996 Elsevier Science Ltd 

Oxetanocin A, which was isolated from Bt~:illus megaterium NK84-0218, bears ,an oxetanose instead of 

a furanose in the sugar moiety of the nucleoside. 2 Due to this unique structure and its biological activity, 

including anti-HIV activity, various analogues of oxetanocin A, at both the sugar and base moieties, have 

been synthesized to improve its chemotherapeutic index. 3 A guanine congenor of oxetanocin A and its 

carbocyclic analogue have also been shown to have potent antiviral activities against HSV and HBV. 3d Their 

5'-triphosphates were found to be incorporated into DNA molecules and to terminate elongation. 4 Although 

the sugar moiety of oxetanocin analogues is unique, it is surprising that such nucleosides 

were recognized as substrates of kinases. Therefore, nucleosides that have been NH~ 1 
further modified at the sugar moiety may be selectively recognil~ed by less ( / N ' ~  iI 

substrate-specific viral kinases without affecting cellular enzymes. In our efforts to HO--.~ c~ ~, 

find new antiviral nucleosides, we designed thietane analogues of oxetanocins in 

which the ring oxygen in the sugar moiety is replaced by a sulfur atom. However, 

the synthesis of thietane nucleosides by the classical condensation of HO j 

corresponding 2-O-acyl thietane derivatives with nucleobases hzts not been oxe t anoc in  A 

successful. 5 Therefore, a new nqethod should bc developed Io synthesize such 

nucleosides, ht this paper, we report the first synthesis of thictane nucleosides via 

the Pummerer reaction as a key step. 6 

We first examined the Puntmcrer reaction of the readily accessible sulfoxidc 5. The commercially 

available diol 1 was converted into thietane 3 as shown in Scheme I. The protecting group in 3 w~ts 

converted into a benzoyl group to give 4, which was oxidized by NalO~ in McOH to give sulfoxide 5 in a 

good overall yield. When 5 was subjected to the Pummerer reaction with thymine (I. 2 cquiv) in the presence 

of TMSOTf, Et~N, and Znl 2 in toluene, the desired racemic 6 was obtained in 31% yield. However, the use 
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of 2 equiv of thymine and CH2CI 2 as a solvent under the sane  conditions gave 6 in 70% yield. 7 Deprotection 

of 6 with NaOMe in MeOH furnished 7 in 81% yield. 8 Thus, the Pummerer rearrangement of 5 worked well 

to give thymine thietane nucleoside 6 in good yield. This is the first example of the synthesis of a thietane 

nucleoside. 
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"(a) 2,2-dimethoxypropane, TsOH, acetone, rt, 2h, 100%; (b) Na2S.9H20, DMF, 100 "C, 6h, 97%; (c) 
TsOH, aq. MeOH, rt, 12h; (d) BzCI, EtsN, MeCN, rt, 3h, 80% from 3; (e) NalO 4, aq. MeOH, rt, 48h, 
72%; (f) thymine, TMSOTf, EtsN, Znl 2, CH2CI2, rt, 30h, 70%; (g) NaOMe, MeOH, rt, lh, 81%. 
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'~(a) ref. 9; (b) 3,4-DtlP, PPTS, CIt~CI 2, rl, 19h; (c) !! 2, 10% Pd-C. EtOAc, rt, 3011; (d)TrCI, pyridine, rt, 
35h, (e) LiAI[t~, THF, rt, 2Oh; (0 MsCI, pyridine, rt, 12h: (g) Na:S, aq. EtOI1, reflux, 24h; (h) TsOtt, 
MeOH, rt, 20h; (i) BzCI, pyridine, rt, 12h: (j) m-CPBA, CHiCle, 0 '-C-rt, 1811; (k) thymine, TMSOTf, Et~N, 
Znl 2, toluene, 0 °C-rt, 30h; (I) NaOMe, MeOH, rt, I h. 
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We applied this method to the synthesis of 20, which is more closely related to the oxetanocins than 7. 

Sulfoxide 18 was obtained from L-ascorbic acid (8) (Scheme 2). A hydroxyl group in 9 tJ was protected with 

a THP group to give 10, which was then debenzylidenaled to give diol I i in 77% yield from 9. Treatment 

of I ! with trityl chloride in pyridine gave 12, which was reduced with LiAIH4 and then mesylated to give 14 

in 79% yield from 11. When 14 was treated with Na2S'9H20 in DMF at 100 '~C, 10 the desired thietane 

product 15 was not obtained. However, the use of EtOH ax a solvent gave 15 in 62% yield. It is well known 

that significant stereoselectivity is generally attained via the neighboring group participation in a glycosidation 

reaction when the 2-hydroxyl is protected with an acyl group. II Thus, 15 was converted into Bz ester 17 

(59% yield from 15). The key intermediate 1812 was prepared in 91% yield by oxidation of 17 with m- 

CPBA in CHzCI 2 at 0 "C. 

Next, we examined ' e Pummerer reaction of 18 with thymine as a nucleophile under similar conditions 

to those described for the synthesis of 6. The reaction using thymine (2 equiv) ,and TMSOTf (6 equiv) in the 

presence of Znl 2 and Et~N in toluene gave the desired 19 in 30% yield along with a large amount of 21. The 

yield of 19 was decreased when CH2CI 2 was used as a solvent. This low yield of 19 is probably due to 

abstraction of the acidic 3-proton in intermediate A to produce 2 I.  After debenzoylation of 19 with NaOMe 

in MeOH, the desired (2'R,3'R,4'R)-1-(3-hydroxy-4-hydroxylmethylthiacyclobutan-2-yl)thymine (20) w,-ts 

obtained as crystals in 70% yield. 13, 14 The anomeric configuration of 20 w,'t,~ unambiguously confirmed by 

X-ray crystallographic analysis, which is shown in Figure 1.15 Since careful TLC and NMR analyses did not 

show the presence of an ot-nucleoside, the desired 13-nucleoside would be prodnced through the p~u'ticipation 

of the 3-OBz group via intermediate B in Scheme 3. If this is the case, such neighboring group participation 

is the first such example in the thietane system. 

Scheme 3 
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Fig. 1. ORTEP drawing of 20. 

In summary, we have synthesiTcd for the first time a lhietane-containing thymine nucleoside via 1he 

Pnmmerer reaction. We are now applying this method to other nucleobases and other thietane systems. 
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