obtained, which after recrystallization from ether afforded 305 mg (27%) of white needles, m.p. 78-80 °C. Anal. Calcd. for C₈H₈N₂: C, 72.73; H, 6.06; N, 21.22.

Found: C, 73.01; H, 5.72; N, 21.37.

Acknowledgment

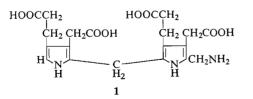
One of us (P. G. Riley) acknowledges the award of a research scholarship by the Science Research Council, London, England.

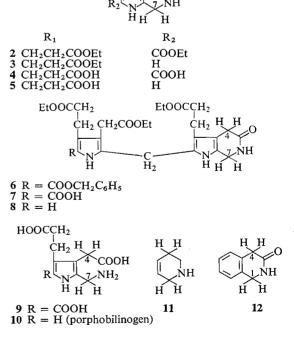
1. P. A. CROOKS and B. ROBINSON. Chem. Ind. London, 547 (1967).

- 2. R. E. WILLETTE. Advan. Heterocyclic Chem. 9, 27 (1968). J. A. ELVIDGE and R. G. FOSTER. J. Chem. Soc. 981
- 3. (1964).
- M. MARTIN-SMITH, S. T. REID, and S. STERNHELL. Tetrahedron Letters, 2393 (1965).
 P. J. BLACK and M. L. HEFFERNAN. Australian J.
- Chem. 18, 353 (1965) 6.
- R. R. LORENZ, B. F. TULLAR, C. F. KOELSCH, and S. ARCHER. J. Org. Chem. **30**, 2531 (1965). K. T. POTTS and J. E. SAXTON. J. Chem. Soc. 2641 7.
- (1954). 8. P. A. CROOKS and B. ROBINSON. Can. J. Chem. 47,
- 2061 (1969). 9
- L. A. COHEN, J. W. DALY, H. KNY, and B. WITKOP, J. Am. Chem. Soc. 82, 2184 (1960). R. V. JARDINE and R. K. BROWN. Can. J. Chem. 41, 2067 (1963).

Nuclear magnetic resonance spectrum and deuteration of porphobilinogen lactam and its derivatives¹

Y. C. KIM²


Division of Pure Chemistry, National Research Council of Canada, Ottawa, Canada


Received May 21, 1968

Derivatives of porphobilinogen are distinguished from those of its lactam in that the C₄- and C₇protons of the latter show homoallylic coupling, $J_{4,7} = 2.5-3.0$ Hz (150°) and the C₄-protons are exchangeable in alkaline solution.

Canadian Journal of Chemistry, 47, 3259 (1969)

As will be reported elsewhere (1), the very labile dipyrryl-methane 1 was synthesized for biogenetic studies as a reasonably stable potassium salt. As obtained by the hydrolysis of 8, it was difficult to characterize, and the usual methods did not clearly show that the lactam ring had been opened. We now report an examination of model porphobilinogen derivatives 2-10 (1-3) showing that, in lactam but not in open forms, the C₄- and C₇-protons show homoallylic coupling, $J_{4,7} = 2.5-3.0 \text{ Hz} (150^\circ)$ and the C_4 -protons are exchangeable; in alkaline D_2O_2 , this exchange is faster than ring-opening.

¹NRCC No. 10750. ²NRCC Postdoctorate Fellow, 1965-1967. Present ad-

dress: Frank W. Horner Ltd., Town of Mount Royal, Quebec.

Com- pound	J _{4,7} (Hz)* at 150° (DMSO-d ₆)	DMSO- d_6			CF₃COOH			$CDCl_3$			D_2O^{\dagger}		
		P-H‡	C_4 -H	С7-Н	P-H‡	C ₄ -H	C ₇ -H	P-H‡	C ₄ -H	С ₇ -Н	P-H‡	C₄-H	С7-Н
2	2.5	7.30	6.73	5.67	6.95	6.03	5.08	_		_			
3	3.0	7.45	6.82	5.74								—	
4 §	3.0	7.30	6.70	5.68	6.90	6.02	4.97			_	7.40	6.76	5.86
5Ŭ	3.0	7.50	6.80	5.70	6.89	6.00	4.87	<i></i>			7.60	6.92	5.93
6	3.0	7.46	6.90	5.82				7.32	6.70	5.66	_	—	
7	3.0	7.50	6.87	5.80								_	
8	3.0	7.58	6.90	5.80	_		_	7,46	6.76	5.70	_		

TABLE I The chemical shifts (τ) of some protons in compounds 2-8

*All signals were triplets. †The chemical shift of the HOD signal (assigned 5.30) was used as an internal standard. ‡Protons on the propionic methylenes. $Potassium salt in D_2O$. $Potasium salt in D_2O$.

The nuclear magnetic resonance (n.m.r.) spectra of the lactams 2-8 suggested homoallylic coupling between the C_4 - and C_7 -protons. These appear as broad singlets, $w_{1/2} = 7-9$ Hz at 35°, and as well-resolved triplets, $J_{4,7} = 2.5-3.0$ Hz at 150° (Table I). Analogous homoallylic coupling had been noted (4,5), particularly in 11 (6) which had $J_{2,5} = 3.0$ Hz. In contrast to these signals for the C_4 - and C_7 -protons in 4 and 5, those for the corresponding protons in the open forms 9 (K salt in $D_2O: C_4$ - and C_7 -protons at τ 6.63 and τ 5.90) and 10 (Na salt in D₂O: C₄- and C₇-protons at τ 6.80 and τ 6.49) were all sharp singlets indicating no homoallylic coupling.

After the lactam 2 had stood for one week in DMSO- d_6 /KOBu^t at 50°, its spectrum at 150° showed no C_4 -proton signal at τ 6.73 and the triplet at τ 5.67 for the C₇-protons had collapsed to a singlet. As this could only be ascribed to deuteration at C_4 , it established both the assignments for the C_4 - and C_7 -protons and also the homoallylic coupling. Again the open analogues 9 and 10 differed, showing no exchange in alkaline D₂O.

In 2 N KOD/D₂O, 4 was rapidly deuterated at C4 and more slowly hydrolyzed to largely C_4 -deuterated 9. Here the C_4 -proton signal at τ 6.90 was largely eliminated in 7 min, completely in 1 h, and the appearance of a small sharp singlet at τ 6.75 indicated some hydrolysis to 9 prior to the deuteration. Concurrently, the C_7 -proton signal of 4 at τ 6.02 first sharpened, then was replaced by the sharp singlet at τ 6.52 representing C_7 -protons of 9, whether or not deuterated at C_4 . At the same time, the signal for the propionic methylenes of 4, a poorly-resolved multiplet at τ 7.57, became a well-resolved multiplet at τ 7.45, identical with that observed in the spectrum of the potassium salt of 9. The spectrum of the recovered deuterated 9 in CF₃COOH was identical with that of 9 except that the 2H singlet at τ 6.02 (C₄-protons) had almost disappeared. Here the C₇-protons of 9 appear as a quartet (τ 5.33, J = 5.5 Hz) in CF₃COOH but as a singlet in CF₃COOD; evidently the quartet arises from coupling of the C_7 -protons with those of the protonated amino group.

In $1 N \text{ NaOD/D}_2O$, 5 behaved analogously. Within 15 min it was deuterated on C_4 then converted into C_4 -deuterated 10, a little undeuterated 10 being formed also.

The same homoallylic coupling and deuterium exchange was found in the less closely related lactam 12, which was prepared for the purpose. Its n.m.r. spectrum in CDCl₃ showed the C₄-protons as a poorly resolved triplet (τ 6.47, J =1.5 Hz) and the C_1 -protons as a broad singlet $(\tau 5.57, w_{1/2} = 5.0 \text{ Hz})$. The spectrum in DMSO- d_6 at 130° was no better resolved. After 12 was deuterated by leaving it in CH₃ONa/CH₃OD for 3 days at 20°, its spectrum showed no signal at τ 6.47 and that at τ 5.57 was sharper ($w_{1/2}$ = 3.3 Hz).

Experimental

Compounds 2,4,5 and 10 (2), 3 (3) and 6-8 (1) were obtained by literature methods.

1,4-Dihydro-3[2H]-isoquinolone (12)

In a 250 ml flask fitted with a magnetic stirrer, condenser and drying tube, were placed 150 ml of THF and 1 g of 2-thiohomophthalimide (7). Two teaspoons of Raney Nickel (Grace No. 28) were added as a slurry in 50 ml of THF and the mixture was stirred and refluxed for 3 h. The nickel was filtered off within an hour for, if the mixture first stood overnight, an unidentified com-

pound m.p. 300° containing nickel was the only product obtained. The filtrate was evaporated and the residue was crystallized from aqueous acetone (Darco) as greenish-yellow crystals (0.54 g, 65%), m.p. 150-152° (lit. (8): colorless crystals, m.p. 149.5–150.5°); infrared spectrum (Nujol): 3330 cm⁻¹, 3200 cm⁻¹ (v_{NH}), 3050 cm⁻¹ (v_{CH} aromatic), 1665 cm⁻¹ (v_{CO} amide), 1606 cm⁻¹ ($v_{C:C}$), 748 cm⁻¹ (δ_{CH} aromatic); n.m.r. spectrum (CDCl₃): τ 6.47 (C₄-H) (on expanding the spectrum, this signal became a poorly-resolved triplet, J = 1.5 Hz), $\tau 5.57$ (s, C₁-H), $\tau 2.89$ (aromatic), $\tau 2.00$ (NH); mass spectrum, m/e = 147 (mol. wt., 147.18).

Anal. Calcd. for C₉H₉NO: C, 73.45; H, 6.16; N, 9.52. Found: C, 73.53; H, 5.98; N, 9.34.

Acknowledgment

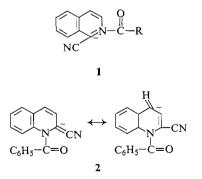
The author gratefully acknowledges a personal

grant during 1967-1968 from G. D. Searle and Company, Skokie, Illinois.

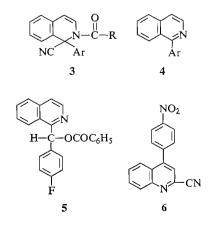
- J. M. OSGERBY, J. PLUŠČEC, Y. C. KIM, and S. F. MACDONALD. To be published.
 A. H. JACKSON and S. F. MACDONALD. Can. J. Chem.
- 35, 715 (1957).
- 3. G. P. ARSENAULT and S. F. MACDONALD. Can. J.
- Chem. 39, 2043 (1961).
 S. STERNHELL. Rev. Pure Appl. Chem. 14, 15 (1964).
 K. KATARI, K. TORI, Y. KIMURA, T. YOSHIDA, T. NAKASAKI, and H. MINATO. J. Med. Chem. 10, 11 (1977). 1149 (1967).
- 6. J. N. SHOOLERY. Discussions Faraday Soc. 34, 104 (1962).
- 7. P. A. S. SMITH and R. O. KAN. Org. Syn. 44, 91 (1964).
- 8. R. HUISGEN and J. REINERTSHOFER. Ann. 575, 197 (1952).

Reissert compound studies. XXI. Arylation reactions¹

ROBERT PICCIRILLI² AND FRANK D. POPP


Department of Chemistry, Clarkson College of Technology, Potsdam, New York 13676

Received March 18, 1969


The anions derived from both the isoquinoline and the quinoline Reissert compounds have been arylated by use of nitro and dinitro arylhalides. p-Fluorobenzaldehyde reacts preferentially at the carbonyl group and does not lead to arylation.

Canadian Journal of Chemistry, 47, 3261 (1969)

A variety of reactions have been reported for the anions 1 and 2 derived from the isoquinoline and quinoline Reissert compounds (2). We now wish to report on the arylation of these anions.

Reaction of the anion 1 ($R = CH_3$ or C_6H_5) derived from the appropriate isoquinoline Reissert compound and sodium hydride in dimethylformamide (3) with 2,4-dinitrofluorobenzene gave 3 (R = CH₃ or C₆H₅; Ar = 2,4-(NO₂)₂C₆H₃) which could be hydrolyzed to 4 (Ar = 2,4- $(NO_2)_2C_6H_3$. Reaction of $\mathbf{1}(R = CH_3 \text{ or } C_6H_5)$ under the same conditions with 2-bromo-3nitropyridine proceeded in a similar manner to give 3 (R = CH₃ or C_6H_5 ; Ar = 2- $(3-NO_2C_5H_3N)$) which could be hydrolyzed to 1-(3-nitro-2-pyridyl) isoquinoline (4, Ar = 2- $(3-NO_2C_5H_3N)$). For unexplained reasons the

¹For Part XX, see Reference 1.

²N.S.F. Undergraduate Research Participant.