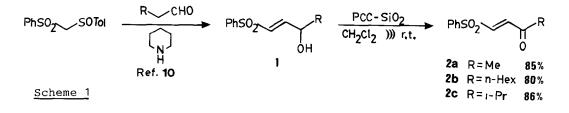
β-Phenylsulfonylenones as α,β-Acetylenic Ketones Equivalents in Diels-Alder Reactions

Fernando M. Leon and Juan C. Carretero*


Departamento de Quimica (C-I). Facultad de Ciencias. Universidad Autónoma de Madrid. Cantoblanco. 28049-Madrid. SPAIN.

Key Words: β -Phenylsulfonylenones; Vinylsulfones; Diels-Alder Reactions; α , β -Acetylenic ketone Equivalents; 1,4-Cyclohexadienes.

ABSTRACT: (E)- β -phenylsulfonylenones, readily prepared by oxidation of the alcohols, react with a wide variety of dienes in the presence of activated silica gel. The basic elimination of the phenylsulfonyl group in the resulting adducts gives high yields of the corresponding enones, thus showing the usefulness of these dienophiles as reactive synthetic equivalents of a, β -acetylenic ketones.

Since the first extensive study in 1980 of the use of phenyl vinyl sulfone as an ethylene equivalent in Diels-Alder cycloadditions by Paquette's group¹, many efforts have been made in the last decade in the development of functionalized $a_{,\beta}$ -unsaturated sulfones as useful reagents in [4+2] cycloadditions². Thus, silyl-substituted vinyl sulfones³, 1,2-bis(sulfonyl)ethylene⁴ and 2-sulfonyl-1-nitroethylene⁵ have been reported as versatile masked acetylene equivalents. On the other hand, phenyl vinyl sulfone⁶ and (S)-1-p-tolylsulfinyl-1-t-butylsulfonylethylene⁷ have been reported as ketene synthetic equivalents (the latter as chiral ketene equivalent). However, to the best of our knowledge there has not been published a systematic study about the Diels-Alder reaction with β -sulfonylenones⁸ and the synthetic potentiality of the adducts. In this communication we report a general method of synthesis of acyclic β -phenylsulfonyl enones⁹ and their use as masked $a_{,\beta}$ -acetylenic ketones in Diels-Alder reactions.

Recently we have described¹⁰ a practical one-step method to the preparation of (E)-*P*-hydroxy- α_{β} -unsaturated phenyl sulfones (1) from p-tolylsulfinyl phenylsulfonyl methane and enolizable aldehydes. The oxidation of these alcohols with PCC-silica gel under sonication, following the method reported by Luzzio¹¹, afforded β phenylsulfonylenones 2 with excellent yields¹² (scheme 1).

In the absence of Lewis acids the Diels-Alder reaction of dienophiles 2 with unactivated dienes is very slow. For instance, the reaction of 2a with 1,3-cyclohexadiene (4 equiv.) in CH₂Cl₂, at r.t., afforded 60% conversion after 10 days. Among several catalysts tested, we found that these Diels-Alder reactions were greatly accelerated by adsortion of dienophile 2 and diene on chromatographic silica gel¹³. The results are summarized in table 1.

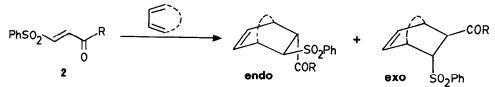
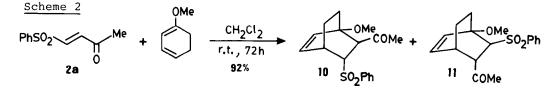



Table 1: Diels-Alder reaction of dienophiles 2.

Entry	Dienop	. R	Diene (eq)	Conditions Ad	duct	Yıeld(%)ª	endo:exo ^b
1	2a	Ме	Cyclohexadiene (6)	°, 35h	3	96	5:6
2	2b	n-Hex	Cyclohexadıene (6)	^c , 42h	4	90	2:3
3	2c	1-Pr	Cyclopentadiene (6)	°, 3.5h	5	91	1:1
4	2a	Me	Cyclopentadiene (6)	°, 2.5h	6	98	1 • 1
5	2a	Me	Furan (6+6)ª	^c , 48h	7	90	8:1
6	2a	Me	2,3-Dimethylbutadiene	(6) ^c , 6h	8	98	
7	2a	Me	Anthracene (2)	toluene, 100°C, 48h	9	70 °	

^a Yield in isolated products. Compounds 2-9 were fully characterized by NMR, IR, MS and elemental analyses. ^b Isomer ratio determined by ¹H NMR¹⁴. ^c carried out by adsortion in silica gel, at r.t., without solvent (weight ratio SiO₂/2=10.1). ^d The second six equivalents of furan were added after 24 h of reaction. ^e 17% of 2a was recovered.

In these mild conditions almost quantitative yields of adducts were obtained with a wide range of dienes (entries 1 to 6). Good yields were obtained even with very poor dienes, such as furan (entry 5) and anthracene (entry 7). However the stereoselectivity of the cycloaddition was very low; being the highest *endo*selectivity¹⁴ observed with furan (d.e.=60%). By contrast, high regioselectivity and stereoselectivity were observed in the reaction of 2a with 1-methoxy-1,3-cyclohexadiene (scheme 2). This Diels-Alder reaction gave a mixture of two adducts (10 and 11) in a 12:1 ratio, showing that the regioselectivity was mainly controlled by the carbonyl group.

Due to the acid nature of the β -hydrogen with respect to the sulfonyl moiety, this group has been easily eliminated by treating the adducts 3 to 11 with common bases. Some results are shown in table 2.

Table 2: Basic elimination	of	phenylsulfonyl	group	in	adducts	3	to	11.
----------------------------	----	----------------	-------	----	---------	---	----	-----

Entry	Adduct	Base (exp. conditions)	Product	Yield (%)ª
1	3	NaOEt (0.95 eq), EtOH, 0°C, 25 min.	COMe	95
2	4	KO ^t Bu (2.0 eq), ^t BuOH-CH₂Cl₂ O C, 60 min.	COHe)	4 90
3	6	KO ^t Bu (1.2 eq), ^t BuOH-CH₂Cl₂, O°C, 15 min	COMe 14	98
4	6	NaOEt (1.3 eq), EtOH, O`C, 15 min	Low COMe 15 OEt	90
5	7	NaOEt (1.0 eq), EtOH, O´C, 15 min	0 COMe 16	90
6	8	NaOEt (0.9 eq), EtOH, O°C, 15 min.	17 COMe	81 ^b
7	8	NaOEt (1.3 eq), EtOH, O`C, 15 min.	18 _COMe	97
8	9	KO ^t Bu (1.2 eq), ^t BuOH-CH₂Cl₂, O C, 15 min.	19	98
9 (10+11 (12:1 ratio)	KO ^t Bu (1.4 eq), ^t BuOH−CH₂Cl₂, r.t., 44 h.	20 OMe COMe	850

^a Yields in isolated products. Compounds **12-20** were characterized by NMR, IR and MS. ^b Carried out in argon atmosphere, 19% of **18** was also detected. ^c Obtained as a 12:1 mixture of both regionsomers. In order to prevent the conjugated addition of alkoxide to the resulting enone, a non-nucleophilic base such as KO^tBu is more suitable (compare entries 3 and 4). From the monocyclic adduct 8 the 1,4-dihydrobenzene 17 can be isolated by using a deficiency of base and argon atmosphere (entry 6). In the presence of an excess of base the aromatic product 18 was isolated as the only product (entry 7).

In summary (E)- β -phenylsulfonylenones 2, easily prepared by oxidation of the corresponding alcohols, act as very reactive synthetic equivalents of α , β -acetylenic ketones in Diels-Alder reactions following the sequence: cycloaddition+basic elimination of the sulfonyl group.

References and Notes

- 1.- Carr R.V.C.; Paquette L.A. J. Am. Chem. Soc. 1980, 102, 853.
- 2.- For a recent review see "The Chemistry of Vinylsulphones", Simpkins N.S. Tetrahedron 1990, 46, 6951.
- 3 a) Paquette L.A.; Williams R.V. Tetrahedron Lett. 1981, 22, 4643. b) Carr R.V.C.;
 Williams R.V.; Paquette L.A. J. Org. Chem. 1983, 48, 4976.
- 4.- a) De Lucchi O.; Lucchini V.; Pasquato L.; Modena G. J. Org. Chem. 1984, 49, 596.
- b) Azzena U.; Cossu S., De Lucchi O.; Melloni G. *Tetrahedron Lett.* **1989**, *30*, 1845. 5.- a) Ono N.; Kamimura A.; Kaji A. *Tetrahedron Lett.* **1986**, *27*, 1595. b) Ono N.;
- kamimura A.; Kaji A. J. Org. Chem. 1988, 53, 251.
- 6.- Little R.D.; Myong S.O. Tetrahedron Lett. 1980, 21, 3339.
- 7.- Lopez R., Carretero J.C. Tetrahedron: Asymmetry 1991, 2, 93.
- 8.- Some Diels-Alder reactions with trans-β-benzoylvinyl phenyl sulfone have been previously reported: a) Snyder H.R.; Hallada D.P. J. Am. Chem. Soc. 1952, 74, 5595. b) Sauer J.; Wiest H.; Mielert A. Chem. Ber. 1964, 97, 3183. For the use of β-phenylsulfonylacrylate esters in Diels-Alder reactions see: Buss A.D.; Hirst G.C.; Parsons P.J. J. Chem. Soc., Chem. Commun. 1987, 1836.
- 9.- For other syntheses of β-sulfonylenones see: a) Najera C.; Baldo B.; Yus M. J. Chem. Soc., Chem. Commun. 1987, 92. b) Trost B.M.; Seoane P.; Mignani S.; Acemoglu M. J. Am. Chem. Soc. 1989, 111, 7487.
- 10.- a) Dominguez E.; Carretero J.C. Tetrahedron Lett. 1990, 31, 2487. b) Dominguez E.; Carretero J.C. Tetrahedron 1990, 46, 7197. c) Trost B.M.; Grese T.A. J. Org. Chem. 1991, 56, 3189.
- 11.- Adams L.L.; Luzzio F.A. J. Org. Chem. 1989, 54, 5387.
- 12.- (E)- β -phenylsulfonylenones 2 are stable solids. However, these compounds must be stored protected of the sun light in order to avoid isomerization to the (Z)-isomer.
- 13.- Veselovsky V.; Gybin A.; Lozanova A.; Moiseenkovy A.; Smit W. Tetrahedron Lett.
 1988, 29, 175. Silica gel (Merck, 230-400 mesh) was activated by heating in an oven a 200 C for 12h.
- 14.- The stereochemical assignment of the endo and exo adducts has been inequivocally established from their ¹H NMR data and their comparation with the data of related adducts⁵.

(Received in UK 16 July 1991)

5408