A Facile Synthesis of 2,6-Dimethyl-3-arylamino-4-oxo-3,4-dihydropyrimidines Carlo VENTURELLO*, Rino D'ALOISIO Istituto Guido Donegani S.p.A., 1-28 100 Novara, Italy 2-Arylazo-2,5-dimethyl-3-oxo-2,3-dihydrofurans 1^{1,2} as well as the analogous phenylene-bis-azo compounds³, easily obtainable by reaction of 2,5-dimethyl-3(2*H*)-furanone⁴ with diazotized arylamines and bis-diazotized phenylenediamines, respectively, are interesting and valuable substrates in heterocyclic chemistry. Convenient syntheses of 3-pyrazolones², bis-3-pyrazolones³, and 4-pyridazones⁵ starting from these materials have been reported. Recently⁶, we have shown that ring opening of the furanones 1 with ammonia leads to the previously unknown β -acetyl- β -(3-amino-2-butenoyl)-arylhydrazines 2. As a further example of the versatility of compounds 1 in the synthesis of heterocyclic compounds, we now report that their ring opening products 2 can easily be converted to 2,6-dimethyl-3-arylamino-4-oxo-3,4-dihydropyrimidines 3, a new class of 4-pyrimidones. Experimentally, the reaction is very simple. It only requires heating of 2 at 160-170°C, whereby cyclization to 3 occurs with loss of water. Chromatography on silica gel of the reaction mixture affords compounds 3 in an analytically pure state and in good yields (Table 1). The structure assigned to compounds 3 follows from spectral data and microanalyses (Tables 1 and 2). 2-H₃CO 4-Cl The synthesis of 4(3H)-pyrimidones is of considerable practical interest because of the herbicidal⁷ and biological⁸ activity exhibited by many of these compounds. The current literature contains a considerable number of methods leading to these heterocyclic compounds⁸⁻¹³. However, they are generally cumbersome and/or involve rather expensive starting materials. Table 1. 2,6-Dimethyl-3-arylamino-4-oxo-3,4-dihydropyrimidines (3) | Prod-
uct | Reaction
Conditions
Time/Bath
Temperature | R _f ^a | Yield ^b
[%] | m.p. [°C]° (solvent) | Molecular
formula ^d | |--------------|--|-----------------------------|---------------------------|-----------------------------|---| | 3a | 40 min/ | 0.67 | 85 | 121-123°
(ether, -25°C) | C ₁₂ H ₁₃ N ₃ O
(215.2) | | 3b | 160°C
10 min/
170°C | 0.72 | 72 | 141-143°
(ether, -25°C) | $C_{13}H_{15}N_3O$ (229.3) | | 3c | 7-8 min/
170°C | 0.67 | 78 | 151-153°
(ethyl acetate) | $C_{13}H_{15}N_3O_2$ (245.3) | | 3d | 10 min/
170°C | 0.66 | 80 | 175-176°
(ethyl acetate) | $C_{12}H_{12}CIN_3C$ (249.7) | ^a T.L.C. performed on Merck pre-coated silica gel 60F-254 plates using acetone/diethyl ether (1:4) as eluent; spot detected by observation under a 254 nm source or by spraying with a KMnO₄ solution Table 2. Spectral Data of Compounds 3 | Comp-
ound | 1 H-N.M.R. (CDCl ₃ /TMS) a δ [ppm] | I.R.
(Nujol) ^b
v [cm ⁻¹] | M.S.
(70 eV) ^c
m/e (M ⁺) | |---------------|---|---|---| | 3a | 2.31 (d, 3H, 6-CH ₃ , J=0.8
Hz); 2.54 (s, 3H, 2-CH ₃);
6.32 (m, 1H, 5-H); 6.60-6.76
(m, 2H _{arom}); 6.88-7.38 (m,
3H _{arom}); 7.32 (s, 1H, NH) ^d | 3238, 1682,
1546, 1496 | 215 | | 3b | 2.27 (s, 3 H, ArCH ₃); 2.31 (d, 3 H, 6-CH ₃ , J = 0.8 Hz); 2.53 (s, 3 H, 2-CH ₃); 6.31 (m, 1 H, 5-H); 6.60, 7.07 (approx. AB d, 2 H _{arom} , J_{AB} = 8.6 Hz); 7.23 (s, 1 H, NH) ^d | 3265, 1683,
1535, 1510 | 229 | | 3e | 1H, NH)
2.31 (d, 3H, 6-CH ₃ , J =0.8
Hz); 2.59 (s, 3 H, 2-CH ₃); 3.95
(s, 3 H, OCH ₃); 6.20-6.36 (m,
2H, 5-H and H _{arom}); 6.70-7.08
(m, 3 H _{arom}); 7.46 (s, 1 H, NH) ^d | | 245 | | 3d | 2.31 (d, 3 H, 6-CH ₃ , J =0.8 Hz); 2.52 (s, 3 H, 2-CH ₃); 6.32 (m, 1 H, 5-H); 6.61, 7.21 (approx. AB d, 2 H _{arom} , J _{AB} =8.9 Hz); 7.31 (s, 1 H, NH) ^d | 3222, 1673,
1543, 1491 | 3.0 | ^a N.M.R. spectra were recorded with a Bruker WH-90 instrument. ## 2,6-Dimethyl-3-arylamino-4-oxo-3,4-dihydropyrimidines 3; Genera Procedure: Finely powdered β -acetyl- β -(3-amino-2-butenoyl)-arylhydrazine (2; 5 mmol), prepared from 2-arylazo-2,5-dimethyl-3-oxo-2,3-dihydrofuran (1) and ammonia as previously described, is stirred well in an inclined, rotating, round-bottomed flask at $160-170^{\circ}$ C for the prescribed time (see Table 1). The solid (oil for 3a) material obtained is chromatographed on silica gel (70-230 mesh; 70 g) using acetone/diethyl ether (1:9) [1:4 for 3d] as eluent, and the fraction having the prescribed R_f (see Table 1) is collected. Removal of the solvent affords the desired product in 72-85% yields as solids (3b-d). Product 3a gives a syrup which slowly solidifies (Table 1). We are grateful to Mr. G. C. Bacchilega and Mrs. T. Fiorani for the N.M.R. and mass spectra. Received: April 11, 1983 Belgian Patents 620379 (1963); 637891 (1964), P. Beiersdorf & Co.; C. A. 59, 7537 (1963); 62, 10449 (1965). b Yields refer to isolated, uncrystallized product. ^c Melting points were determined by the Kofler method and are uncorrected. d Satisfactory microanalysis obtained: C ±0.20, H ±0.09, N ±0.11, Cl +0.15. ⁹ I. R. Spectra were recorded with a Perkin-Elmer 125 spectrophotometer. ^c Mass spectra were recorded with a Varian MAT CH 5 instrument. d Exchangeable with D2O. ¹ C. Venturello, J. Chem. Soc. Perkin Trans. 1 1978, 681. ² C. Venturello, R. D'Aloisio, Synthesis 1979, 283. ³ C. Venturello, R. D'Aloisio, Gazz. Chim. Ital. 110, 419 (1980). ^{2,5-}Dimethyl-3(2H)-furanone is conveniently prepared from commercial butanedione (biacetyl) by a simple procedure: C. Venturello, R. D'Aloisio, Synthesis 1977, 754. ⁵ C. Venturello, R. D'Aloisio, Synthesis 1979, 790. ⁶ C. Venturello, R. D'Aloisio, Tetrahedron Lett. 1982, 2895. ⁷ K. H. G. Pilgram, R. D. Skiles, U. S. Patent 3823 135 (1974), Shell Oil Co.; C. A. 81, 105 560 (1974). ⁸ R. N. Lacey, British Patent 699812 (1953), British Industrial Solvents Ltd.; C. A. 49, 2527 (1955). R. N. Lacey, J. Chem. Soc. 1954, 839 H. Ruschig, K. Schmitt, L. Ther, W. Meixner, U. S. Patent 3 185 689 (1965), Hoechst AG; C. A. 63, 2985 (1965). Downloaded by: Chinese University of Hong Kong. Copyrighted material. - ⁹ For reviews, see: - D. J. Brown, The Pyrimidines, in The Chemistry of Heterocyclic Compounds, Vol. 16, A. Weissberger, Ed., Interscience Publishers, New York, 1962, chapters II and III. - D. J. Brown, *The Pyrimidines*, in *The Chemistry of Heterocyclic Compounds*, Vol. 16, Suppl. I, A. Weissberger, E. C. Taylor, Eds., Wiley-Interscience, New York, 1970, chapters II and III. - W. Ziegler, E. Argyrides, A. Steiger, Monatsh. Chem. 102, 301 (1971). - A. V. Dean, R. C. Anderson, Synthesis 1974, 286. - ¹² K. A. Gupta, A. Saxena, P. C. Jain, Synthesis 1981, 905. - ¹³ A. Marsura, C. Luu Duc, Synthesis 1982, 595.