STEREOCHEMICAL STUDIES - 791

SYNTHESIS AND KINETIC STUDY ON THE RETRODIENE DECOMPOSITION OF NORBORNENE-CONDENSED 1.3-0XAZIN-4-ONES

GÉZA STÁJER, LÁSZLÓ MÓD, ANGELA E, SZABÓ, FERENC FÜLÜP end GÁBOR BERNÁTH^M

Institute of Pharmaceutical Chemistry, University Medical School, Szeged, POB 121, H-6701 Szeged, Hungary

and

PÁL SOHÁR

EGYT Pharmacochemical Works, POB 100, H-1475 Budapest, Hungary

(Received in the UK 7 February 1984)

Abstract - The <u>cis-exo-amino</u> acid 3 with norbornens skeleton was converted into 2-aryl-<u>cis-exo-</u>1,3-oxazin-4-ones 5a-d. These compounds, similarly to the <u>diendo</u> isomers <u>1a-d</u> studied by us earlier, undergo retrodiene decomposition under mild conditions to give 2-aryl-6H-1,3-oxazin-6-ones (<u>2a-d</u>) in 50-60% yield. The ratio of the decomposition rate constants of the tricyclic <u>diendo</u> and <u>diexo</u>-1,3-oxazin-4-ones, measured in toluene solution, is about 2.

In previous communications we reported the syntheses of tri-, tetra- and pentamethylenedihydro- and -tetrahydro-1,3-oxazines, as well as their 2- and 4-one and -thione derivatives²⁻⁶, and also the spectroscopic investigation⁷⁻⁹ of these compounds, our aim being comparative stereochemical and pharmacological studies. Since <u>cis</u>-trimethylene-condensed 1,3-oxazinones displayed considerable biological activity¹⁰, the investigations were extended to compounds with an ethylene or ethenylene bridge in the cyclopentane ring, <u>i.e.</u> to derivatives with a condensed norbornane or norbornene skeleton¹¹⁻¹³. The present work deals with the synthesis and the kinetics of the facile retrodiene decomposition of methylene-bridged tetrahydro-4<u>H</u>-3,1-benzoxazin-4-ones (<u>5</u>), and with the resulting 6<u>H</u>-1,3-oxazin-6-ones (<u>2</u>).

We recently briefly described the synthesis and thermolytic decomposition of the 2-aryl-5,8-methano-<u>r</u>-4a,<u>t</u>-5,<u>t</u>-8,<u>c</u>-8a-tetrahydro-4H-3,1-benzoxazin-4-ones (<u>1a-d</u>), leading to the 2-aryl-substituted derivatives 2^{14} . As an alternative mode of preparation and for purposes of kinetic comparison, the retrodiene reaction was also applied to the isomeric compounds 5. The 3-<u>exo</u>-aminobicyclop [2,2,1]hept-5-ene-2-<u>exo</u>-carboxylic acid (<u>3</u>) was prepared by cycloaddition of norbornadiene and chlorosulphonyl isocyanate according to the literature¹⁵, except that addition was performed at 0 °C instead of -40 °C. The chlorosulphonyl derivative was reduced with sodium sulphite¹⁶, and the resulting azetidinone transformed to the <u>cis-exo</u>-amino acid <u>3</u>¹⁵ (Scheme).

The amino acid <u>3</u> was cyclized to the 2-aryl-5,8-methano-<u>r</u>-4a,<u>c</u>-5,<u>c</u>-8,<u>c</u>-8a--tetrahydro-4<u>H</u>-3,1-benzoxazin-4-ones (<u>5</u>) by preparing the amides <u>4</u>; these were

2385

treated with thionyl chloride, followed by triethylamine. The new 1,3-oxazin-4-ones have melting points lower by about 20 °C than those of the <u>cis-endo</u> isomers 1, and their pyrolytic decomposition occurs on melting. The resulting 2g-d 1,3-oxazin-6-ones can be isolated in 50-60% yield, which is similar to that obtained on starting from the isomers 1. Thus, the present milder conditions of pyrolysis offer no preparative advantage.

Kinetic measurements were also carried out to compare the thermolytic decompositions of the tricyclic <u>cia-ando-la-d</u> and <u>cia-axo-l</u>,3-oxazines <u>5a-d</u>. Quantitative determination of the decomposition products 2 was based on the characteristically different UV absorption of the etarting materials <u>1</u> or <u>5</u> and the products <u>2</u>. Compounds <u>1</u> and <u>5</u> have absorption maxima at 245 nm in ethanol or <u>n</u>-hexane solution, whereas the absorption peak for the <u>1</u>,3-oxazin-6-ones <u>2</u> is at 310 nm. The UV spectra of compounds <u>2</u> are the same in toluene or chlorobenzene solution. Use of these two solvents in kinetic measurements has advantages, partly because of the higher boiling points (chlorobenzene, 138.2 ^OC; toluene, 110.6 ^OC), and partly because the ethanolysis of compounds <u>1</u> and <u>5</u>, as well as that of <u>2</u> (reported for the related tetramethylene-1,3-oxazin-4-ones¹⁷), is thereby excluded. Our measurements were made in toluene ($\varepsilon_{20} \circ_{C} = 2.29$) and the more polar chlorobenzene ($\varepsilon_{20} \circ_{C} = 10.3$) in the temperature range 110-130 ^OC. The substituents on the 2-phenyl group had practically no effect on the UV maxima of compounds <u>1</u>, <u>2</u> and <u>5</u>.

The first-order decomposition rate constants of compounds 1 and 5 were calculated from the UV absorption changes of the 10^{-3} mol/litre solutions, the concentration of the product 2 being determined. Table 4 lists the rate constants and activation emergies. The decomposition rate constants of the tricyclic <u>diendo</u> derivatives 1 in toluene at 120 °C are about twice as high as those of the <u>diexo</u> isomers 5. The solvent and <u>pars</u> substituents on the phenyl group have hardly any influence on the rate. No significant difference is seen in the calculated activation emergies.

Com- pound	H-5 ² H-48 ^b	H- 4ª H-8a ^b	н <u>-5^с</u> (1н)	H-6 <u>m</u> (lh)	H-7 ≞ (lH)	H-8 ^C (1H)	_{Н-9} <u>d</u> (2н)	н-2′,6′ <u>т</u> (2Н)	H-3',5' <u>m</u> (2H)	H-4' <u>m</u> (lH)	сн _з <u>в</u> (3н)	vC=0 band	γC=N band ¹
10	3,12	4_46	3,47	6_21	6_17	3,55	1,45 1,56	7,93	7_4 <u>m</u>	(3H) [®]	-	1750	1680
16	3,10	4_45	3_48	6,20	6,12	3_55	1,45 1,55	7,82	7,18	-	2,36	1755	1685
<u>lc</u>	3,15	4.50	3_48	6,25	6,15	3,57	1,47 1,58	7,88	7_36	-	-	1760	1680
1d	3_16	4_48	3_49	6_23	6,12	3_58	1_49 1_59	8_ 40 <u>f</u> 7_ 76 ^g	7_46 <u>h</u>	-	-	1763	1688
20	6_22	7.82	-	-	-	-	-	8,22	7,50	7.60	-	1750	
2b	6_18	7_80	-	-	-	-	-	8,09	7_28	-	2,42	1730	
2 <u>c</u>	6_22	7,81	-	-	-	-	-	8.14	7_46	-	-	1755	
2d	6,25	7_82	-	-	-	-	-	8_ 32 <u>f</u> 8_ 05 <u>9</u>	7_ 58 <u>h</u>	-	-	1765	
52	2.57	3_ 86	3.24	6,36	6,28	3,42	1_40 1_50	8,02	7,35-7,5	5 (3H) [●]	-	1760 1 -1770-	1695 <u>7</u> -1700
<u>5b</u>	2,55	3_80	3_22	6.35	6.30	3.40	1.38 1.50	7,91	7,22	-	2,39	1770	1685
<u>5c</u>	2,58	3_80	3,23	6,35	6_30	3_42	1.38 1.52	7,97	7,40		-	1762	1690
5d	2_59	3_86	3.24	6_35	6_30	3_42	1,35 1,52	8_12 ^f 7_85 <u>9</u>	7_49 ^{<u>h</u>}	-	-	1760	1695

Table 1. Characteristic IR frequencies (cm⁻¹) and ¹H NMR chemical shifts (5, ppm) for compounds <u>la-d</u>, <u>2a-d</u> and <u>5a-d</u>

d, 1H (A or B part of an AB spectrum), JAB ≈ 6.8 Hz
 dd, 1H, J(4a,8a) ≈ 8 Hz, J(4a,5) ≈ J(8,8a) ≈ 4 Hz (lard) or d, 1H, J(4a,8a) ≈ 8 Hz, J(4a,5) < 1 Hz (sred)
 singlet-like broad signal
 d AB spectrum JAB ≈ 9 Hz
 overlapping multiplets of H-3',5' and H-4'
 f H-2
 H+6
 H+5
 i split bands
 f reguencies of the delocalized X-system appear instead of a →C=N band
</pre>

Com- pound	C-2	C4	C-4a	C-5	C6	C-7	C-8	C-8a	C-9	C-1'	C-2',6'	C-31,51	C-4*	СНз
10	?	?	46_7 ^b	45, 5 ^b	136_6 ²	135,7ª	49_7 ^b	60_3	41_3	?	127_8 ^C	128_3 ^C	131_4	~
15	149,9	166_7	46.7 <u>b</u>	49_4 <u>b</u>	136,6 ⁸	135,3 ⁸	49_7 <u>b</u>	60_2	41.2	?	129.0 ^C	129_3 <u>C</u>	141.9	21.4
10	149_1	166_4	46_8 ^b	49, 5 ⁰	136_6 ²	135,5 ⁸	49.7 ^b	60_4	41_3	?	129_1 <u>°</u>	128_7 <u>C</u>	138.0	-
14	148,1	166.0	46.8 <u>b</u>	49_ 5 ^b	136 _ 5⁸	135_5 8	49_6 ^b	60_4	41_3	135_9 ^C	129_4 <u>d</u> 127_2 ^e	131_0 ^f 128_8 ^g	133_0 <u>C</u>	-
20	158,1	154,6	-	109,6	165_1	-	-	-	-	140_8	128_8 ⁹	128_9 ⁸	133,5	-
2b	158.3	154_7	-	109_1	165,2	-	-	-	-	140_6	129,7 ⁸	128.9 ⁸	144.5	21,7
2c	157,8	154.4	-	109.8	164.1	-	-	-	-	140_2 ^b	130_0 ⁸	129, 4⁸	140_5 ^b	
2d	157.3	154,2	-	110,2	154_2	-	-	-	-	138_2	131_0 <u>4</u> 130_4 ^e	129_8 ^f 127_5 ^g	133_7	-
58	?	167_0	44_6	49 _ 4⁸	138, 5 <mark>5</mark>	136.7 ^b	51,5 ⁸	59_4	40_5	?	127_9 ^C	128,4 ^C	131,7	
5b	150,3	167_0	44.5	4 9_ 3_8	138.4 ^b	136_6 ^b	51 .4⁸	59.2	40_4	?	127_8 ^C	129_1 <u>C</u>	142.1	21.4
50	149_1	166_2	44_4	49_1 ^{_8}	138,3 ^b	136 .4 ^b	51.2 ⁸	59_2	40_3	?	128.9 ^C	128_5 ^C	137.7	
5 <u>d</u>	148.5	166.3	44.6	49_4 ²	138_6 ^b	136_6 <u></u>	51_ 4ª	59,6	40_5	136_2	130_5 <u>d</u> 126_8	130_8 <mark>f</mark> 129_89	133_1 <u>°</u>	-

Table 2, ¹³C NMR data (δ, ppm) on compounds <u>la</u>d, <u>2a</u>d and <u>5a</u>d

abc reversed assignment is also possible

₫ _{C-2},

≜ C-6' f C-3'

9 C-5'

2388

The above retrodiene decomposition is a convenient procedure for the synthesis of 2-aryl-6H-1,3-oxazin-6-ones, which are difficult to obtain by other routes. Though several methods of synthesizing this group of compounds are known, e.g. ¹⁸⁻²², to our knowledge only a single 2-substituted derivative has been prepared, by gas-phase pyrolysis of methyl (2-phenyl-5-oxo-2-oxazolin-4yl)acetate, involving ring expansion²³.

In contrast with other retrodiene reactions, which usually require much more drastic conditions, the pyrolysis occurs here at the melting points of the compounds (heated in an oil-bath): 150-160 $^{\circ}$ C for the <u>endo</u> isomers <u>1</u>, and 110-140 $^{\circ}$ C for the <u>exo</u> compounds <u>5</u>. The kinetic measurements showed that decomposition also takes place in toluene or chlorobenzene, at temperature considerably lower than the melting point. Only a few procedures have been reported²⁴⁻³⁰ for the retrodiene preparation of other heterocycles under similarly mild conditions.

In previous retro Diels-Alder reactions the adduct, prepared in one step, already contained the desired heterocycle; another novel feature of the present process is that the diene is used as a carrier in the building-up of the required molecule in several steps, and pyrolytic decomposition is effected subsequently_

The facile decomposition of tricyclic 1,3-oxazin-4-ones is explained by the formation of a heteroaromatic compound, conjugated with the 2-aryl group, when cyclopentadiene (acting as a protective group during the synthesis) is eliminated.

The described method of synthesizing compounds 2 is applicable only to 2-aryl derivatives; attempted cyclization of aliphatic amides 4, prepared with acetyl chloride from the amino acid 3, failed to give the homogeneous compound 5.

IR, ¹H and ¹³C NMR spectra

The IR, ¹H and ¹³C NMR data on compounds <u>la-d</u>, <u>2a-d</u> and <u>5a-d</u> listed in Tables 1 and 2_

The <u>endo-endo</u> or <u>exo-exo</u> anellation of the oxazinone ring to the norbornene skeleton in compounds <u>la-d</u> and <u>5a-d</u>, respectively, is proved by the double doublet or doublet splitting of the H-8a signal¹² in the ¹H NMR spectrum. The dihedral angle of the H-C_{8a} bonds is $\sim 50^{\circ}$ in the <u>endo-endo</u> isomers, and in $\sim 90^{\circ}$ in the <u>exo-exo</u> isomers. Consequently, in compounds <u>5a-d</u>, due to the Karplus relation³¹, no splitting is expected, for the H-8,H-8a <u>vicinal</u> spin-spin interaction and the H-4a,H-8a interaction give a doublet¹².

The assignments of the signals are based on interrelations between the series discussed in this paper and the 4-deoxy analogues described earlier¹², where double resonance and differential NOE were used to prove the assignments,

For 2a-d, of course, the proton and carbon signals of the norbornene moiety are absent, and the ¹H and ¹³C spectre exhibit instead the <u>AB</u> multiplet of H-4,5 and the lines of C-4,5 in the oxazinone ring, respectively.

EXPERIMENTAL

¹H and ¹³C NMR spectra were recorded at 250 MHz and 63 or 20 MHz, respectively, in CDCl₃ solution ($\delta_{TMS} = 0$ ppm) with a Bruker WM-250-FT spectrometer; IR spectra were obtained on a Bruker IFS-113V-FT instrument.

G. STAJER et al.

3-exo-Aminobicyclo[2,2,1]hept-5-ene-2-exo-carboxylic acid 3

Norbornadiene (20_3 g; 0_22 mol) was dissolved in dry ether (100 ml) at 0 ^OC, and a solution of chlorosulphonyl isocyanate (31,1 g; 0,22 mol) in ether (40 ml) was added dropwise at the same temperature, with stirring. Stirring was continued until the mixture had warmed up to room temperature and a sample gave no vigorous reaction with water. The mixture was then cooled again to 0 ^OC and water (50 ml) was added by drops, with cooling and stirring. The ether phase was washed with water (2x50 ml) and dried (Na₂SO₄), and the ether was evaporated off. The residue was dissolved in benzene (40 ml) and added, dropwise and with stirring, to a mixture of Na₂SO₂ (22.0 g) in water (70 ml) and benzene (40 ml); during this procedure the aqueous phase was kept slightly alkaline by the addition of 10% KOH. The organic phase was separated and dried (Na $_{2}$ SO $_{4}$), and the solvent was evaporated off. The solid residue was treated, under external cooling, with just enough conc, HCl to cover the product. In a few minutes a vigorous exothermic reaction ensued; when this was over, the product was dissolved in water (100 ml) and the mixture was eveporated to dryness. Addition of water (20 ml) and evaporation was repeated twice to eliminate all excess HCL. The residue was dissolved in water (200 ml) and transferred to a Dowex 50 ionexchange reein column in acid form. The column was washed with water until neutral, and the amino acid 3 was eluted with a 1:1 mixture (2000 ml) of conc. NH_OH and water. The residue obtained after evaporation of the eluate was diesolved in water (50 ml), the solution was filtered, and acetone was added until turbidity appeared. Crystallization at +4 ^OC gave a white crystalline product (14_4 g, 42_7%), m_p_ 256-258 ^OC_ (Found: C, 62_56; H, 7_31; N, 9_02_ CoH11NO2 requires: C, 62_73; H, 7_24; N, 9_14 %)_

N-Acyl-3-exo-aminobicyclo[2,2,1]hept-5-ene-2-exo-carboxylic acid 4a-d

 $3-\underline{exo}$ -Aminobicyclo[2,2,1]hept-5-ene-2- \underline{exo} -carboxylic acid (3) (3.0 g; 0.22 mol) was dissolved in 10% NaOH (40 ml), the appropriate acid chloride (0.022 mol) was added, and the solution was stirred for 1 h. The solution was then acidified with HCl, and the precipitated product $\underline{4p}-\underline{d}$ was filtered off, washed with water, dried and crystallized from EtOH. The compounds prepared are listed in Table 3.

2-Aryl-5,8-methano-r-4a,c-5,c-8,c-8a-tetrahydro-4H-3,1-benzoxazin-4-ones 5g-d

The acyl derivative $\underline{Ag} - \underline{d}$ (8 mmol) was allowed to stand with thionyl chloride (ll_7 ml) for 30 min at room temperature. The excess of thionyl chloride was removed by evaporation to dryness below 30 $^{\circ}$ C. Ether was added and the evaporation was repeated twice. The residue was dissolved in benzene (20 ml), triethylamine (2.4 ml) was added, and the mixture was left to stand at ambient temperature for 20 h. The triethylamine hydrochloride precipitate was filtered off and the filtrate was evaporated. The residue was dissolved in dry benzene at room temperature and the same volume of dry ether was added. The colourless product was crystallized at 4 $^{\circ}$ C. The compounds prepared are listed in Table 3.

2-Aryl-6H-1,3-oxazin-6-ones 2a-d

The compound $\frac{5}{2}$ (1.0 g) was heated in a dry flask at 150 $^{\circ}$ C for 10 min. The dark product was purified on a silica gel column, elution being performed with benzene. After evaporation of the solvent, the colourless crystalline products $2a^{23}$ and $2b-d^{14}$ were obtained.

Com-	M_p_,	Yield,	F	ound,	%		Re	quired	%
pound	°c	%	С	н	N	Formula	С	H	N
40	200-202	90	70,14	5_65	5_63	C _{1 5} H _{1 5} NO ₃	70,02	5_88	5_44
<u>4b</u>	199-201	92	70,72	6.24 4.62	5_25 4_65	C16H17NO3	70,83 61,76	6_32 4_84	5,16
<u>4c</u>	206-208	90	61,50			C15H14C1NO3			4_ 80
4 <u>d</u>	201-203	89	55,42	4.17	4.42	C15 ^H 13 ^{C1} 2 ^{NO} 3	55_24	4_02	4_29
58	110-111	68	75,44	5_63	5, 96	C15H13NO2	75,30	5 _ 48	5,85
<u>5b</u>	125-127	62	75,96	5_98	5_70	C16H15N02	75_87	5, 97	5,53
<u>5c</u>	125-127	70	65.61	4_24	5,06	C15H12C1NO2	10 ₂ 65_82	4_42	5,12
50	139-141	66	58, 4 0	3,55	4,78	C ₁₅ H ₁₁ C1 ₂ NO ₂	58_46	3 . 6 0	4, 55

Table 3. Physical and analytical data on the prepared compounds 4g-d, 5g-d

Kinetic measurements

The UV spectra were recorded with a Specord UV-VIS instrument; absorption was measured by means of a Spectromom 195 spectrophotometer with digital display. The concentration of $\frac{1}{2}$, $\frac{2}{2}$ and $\frac{5}{2}$ was 10^{-3} mol/litre. For each series of measurement 8-10 ampoules of 2 ml capacity were used; these were flushed with nitrogen and charged with 2,00 ml of a solution in spectroscopically pure toluene or chlorobenzene. The sealed ampoules were placed in an ultrathermostat allowing temperature regulation with 0,1 °C accuracy. The ampoules were maintained at the required temperature (110, 115, 120, 125 or 130 °C) and after each 30-min period one of them was removed from the thermostat and cooled in ice-water; the solution was adjusted to $20^{\pm}1$ °C, 1 ml was diluted to 10,00 ml with toluene or chlorobenzene, and the absorption of the resulting solution was measured in a 1 cm quartz cell at 310 nm. Quantitative determination of compounds 2 was accomplished via a calibration plot.

Table 4. Rate constants and thermodynamic parameters of thermal decomposition of compounds $\frac{1}{2}$ and $\frac{5}{2}$

No	k ₁₋ 10 ⁵ sec ⁻¹											_	∆S [‡]	
	383	κ	388	κ	393 1	κ	398 K		403		kJ_mol ⁻¹		e,u,	
	L'B	0 <u>p</u>	т	С	т	С	Т	C	т	С	Т	С	Т	С
12	2,36	2,95	3,96	4,99	6.51	8,21	10,60	13,40			126.9	127.7	-2.0	-2_0
50			1,89	2,25	3_15	3_75	5_12	6,15	8.30	9, 98	128_1	129_4	-3_8	-2.8
16	2,41	2_96	4_15	4.92	6,62	8,05	10_80	13,40			126_4	129_4	-4_2	-2_8
5b			1_63	2,06	2_70	3_45	4.42	5_70	7_15	9, 34	128_1	131.0	-4_0	-1_8
lc	2,81	3_15	4.62	5,23	7,52	8,62	12_20	14_10			123_9	126,0	-2_6	-2,9
50			1,90	2,20	3,18	3_70	6,17	10,10	8_ 50	10,01	129,8	132_3	-2,8	-0_9
ld	2.81	3.22	4_76	5,38	7,95	9_04	13,20	15,10			129_8	129,8	-1_0	-0,7
58			2,10	2.46	3.48	4.17	5_65	6,95	9,25	11_40	128,5	133,1	-3,5	-0_3

📕 T = toluene

 $\frac{b}{c}$ c = chlorobenzene

The first-order rate constants were calculated from the equation:

$$k_1 = \frac{2.303}{t} \log \frac{a}{a-x}$$

The activation energies were obtained with the empirical Arrhenius formula:

$$\Delta E^{*} = \frac{4.576.T_{1}.T_{2} \log k_{2}/k_{1}}{T_{2}^{-T}I}$$

where $\mathbf{k_1}$ and $\mathbf{k_2}$ are the rate constants measured at the different temperatures. The activation entropies were computed via the formula

$$\Delta S^{\ddagger} = 4.576 (\log k + \frac{\Delta H^{\ddagger}}{4.576} - \log \frac{k}{100} T)$$

where $\Delta H^{\ddagger} = \Delta E^{\ddagger} - RT$. The results are shown in Table 4.

REFERENCES

1	At the same time this paper is regarded as Part 66, of the series "Saturated
	Heterocycles", Part 78/65,: F, Fülöp, G, Bernáth and P, Sohár, J. <u>Chem</u> , <u>Soc</u> .
	Perkin Trans, I in press,
	Presented in part at the Ninth International Congress of Heterocyclic
_	Chemistry, Tokyo, Aug. 21-26, 1983, See: Abstracts, p. 517.
2	G. Bernáth, F. Fülöp, L. Gera, L. Hackler, A. Kálmán, Gy. Argay and P. Sohár,
_	<u>Tetrahedron</u> 35, 799 (1976).
3	G. Bernáth, F. Fülöp, Gy. Jerkovich and P. Sohár, Acta Chim. Acad. Sci. Hung.
	101, 61 (1979).
4	G. Bernáth, Gy. Göndös, K. Kovács and P. Sohár, <u>Tetrahedron</u> 29, 981 (1973).
5	G, Stájer, A, E, Szabó, F, Fülöp, G, Bernáth and P, Sohár, <u>Heterocycles</u>
e	<u>19</u> , 1191 (1982).
0	G, Stájer, A, E, Szabó, F, Fülöp, G, Bernáth, A, Kálmán, Gy, Argay and
-7	P. Sohár, <u>Tetrahedron</u> 39, 1829 (1983),
1	G. Bernáth, K. L. Láng, K. Kováce and L. Radice, <u>Acta Chim. Acad. Sci. Hung</u> .
٥	<u>73, 81 (1972).</u>
0	P, Sohár and G, Bernáth, <u>Org. Magn. Reson</u> , <u>5</u> , 159 (1973),
ت ۱۸	P. Sohár, L. Gera and G. Bernáth, <u>Org. Magn. Reson. 14</u> , 204 (1980).
10	G. Bernáth, F. Fülöp, Z. Ecsery, G. Blazeó and E. Minker, <u>Pharmazie</u> <u>38</u> , 89
11	(1983).
	G. Stájer, A. E. Szabó, F. Fülöp, G. Bernáth and P. Sohár, <u>J. Heterocyclic</u>
12	<u>Chem</u> . 20, 1181 (1983).
13	P. Sohár, G. Stájer and G. Bernáth, <u>Org. Magn. Reson. 21</u> , 512 (1983).
	G. Stájer, A. E. Szabó, J. Szúnyog, G. Bernáth and P. Sohár, <u>Chem. Ber</u> .
14	submitted for publication.
	G. Stajer, A. E. Szabo, F. Fulop and G. Bernath, <u>Synthesis</u> accepted for
15	publication,
16	T Durat and M \exists Sullivan \exists Ora (ben 35 2043 /1070)
17	H Nohire K Watenebe T Tabikewe and K Saigo Heterogycles 7, 301 (1977)
18	C. C. Barker, J. Chem. Soc. 1954. 317.
19	H, R. Kricheldorf, Angew. Chem. Int. Ed. Engl. 11, 128 (1972)

²⁰ W. Steglich, E. Buschmann and O. Hollitzer, <u>Angew. Chem. 86</u>, 596 (1974).
²¹ A. Krantz and B. Hoppe, <u>J. Am. Chem. Soc. 97</u>, 6590 (1975).
²² F. Risitano, G. Grassi, F. Foti, F. Caruso and G. Vecchio, <u>J. Chem. Soc.</u> <u>Perkin Trane. I 1979</u>, 1522.
²³ S. Jendrzejewski and W. Steglich, <u>Chem. Ber. 114</u>, 1337 (1981).
²⁴ R. Huisgen, M. Seidel, G. Wallbillich and H. Knupfer, Tetrahedron <u>17</u>, 3 (1962).
²⁵ R. Huisgen and M. Christl, <u>Angew. Chem. Int. Ed. Engl. 5</u>, 456 (1967).
²⁶ J. Sauer, A. Mielert and D. Lang, <u>Chem. Ber. 98</u>, 1435 (1965).
²⁷ L. A. Carpino and D. E. Barr, <u>J. Org. Chem. 31</u>, 764 (1966).
²⁸ J. C. Hinshaw and E. L. Alred, <u>J. Chem. Soc. Chem. Commun. 1969</u>, 72.
²⁹ O. Meresz and P. Foster-Verner, <u>J. Chem. Soc. Chem. Commun. 1972</u>, 950.
³⁰ H. Koch, H. R. Higgins and H. F. Schuster, <u>Tetrahedron Lett</u>, <u>1977</u>, 431.
³¹ M. Karplus, <u>J. Chem. Phys. 30</u>, 11 (1959); <u>33</u>, 1842 (1962).