Note

A practical synthesis of 2-azidoethyl α -glycosides: useful spacer-arm glycosides for the synthesis of neoglycoconjugates [†]

Gangavaram V.M. Sharma * and Palakodety Radha Krishna

Bio-Organic Laboratory, Indian Institute of Chemical Technology, Hyderabad 500 007 (India) (Received June 30th, 1992; accepted November 10th, 1992)

Progress in the chemistry of glycoconjugates during the last decade reflects the availability of a wide array of methods for stereoselective O-glycosylation¹⁻³. Carbohydrate segments of biological interest can be coupled through a spacer⁴ to a soluble protein to yield synthetic antigens, and attachment to solid phases leads to immunoadsorbents. Spacer-arm glycosides have been made⁵ and used⁶ for several purposes. Our studies of the synthesis of the lipopolysaccharide of *Proteus* sps. culminated in the development of a method for the synthesis of 2-azidoethyl β -glycosides⁷ and was utilised for the synthesis of determinants as neoglycoconjugates^{8,9} which gave positive serodiagnostic results.

The stereoselective synthesis of α -linked saccharides is important since they are constituents of many biologically active glycoconjugates⁸. We now report an extension of the methodology for glycosylation with 2-pyridyl 1-thioglycosides^{10,11} for the synthesis of 2-azidoethyl α -glycosides.

The glycosyl donor 2-pyridyl 2,3,4-tri-O-benzyl-6-O-trityl-1-thio- β -D-glucopyranoside (1) was prepared from 1,2,3,4,6-penta-O-acetyl- β -D-glucopyranose; 2pyridyl 2,3,4,6-tetra-O-benzyl-1-thio- β -D-galactopyranoside (2), 2-pyridyl 2,3,4-tri-O-benzyl-1-thio- α , β -L-rhamnopyranoside (3), and 2-pyridyl 2,3,5-tri-O-benzyl-1thio- β -D-ribofuranoside (4) were prepared by known procedures^{10,11}; and 2-pyridyl 2,3,6-tri-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl- β -D-galactopyranosyl)-1-thio- β -Dglucopyranoside (5) was obtained from α -acetobromolactose¹² by adapting a reported¹⁰ procedure.

When the 2-pyridyl 1-thioglycosides 1-5 (1.0 mmol) were each heated with 2-azidoethanol (3 mmol) in anhydrous dichloromethane (10 mL, containing 3% of methyl iodide) in the presence of 4A molecular sieves at 50°C (12-72 h), the

⁺ IICT Communication No. 3074.

^{*} Author for correspondence.

corresponding α -glycosides, 2-azidoethyl 2,3,4-tri-O-benzyl-6-O-trityl- α -D-glucopyranoside (7), 2-azidoethyl 2,3,4,6-tetra-O-benzyl- α -D-galactopyranoside (8), 2azidoethyl 2,3,4-tri-O-benzyl- α -L-rhamnopyranoside (9), 2-azidoethyl 2,3,5-tri-Obenzyl- α -D-ribofuranoside (10), and 2-azidoethyl 2,3,6-tri-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl- β -D-galactopyranosyl)- α -D-glucopyranoside (11) were obtained after chromatography. That these compounds were α -glycosides was indicated by the $[\alpha]_D$ values and the NMR data (δ 97.1–101.7 for C-1; $J_{C-1,H-1}$ for 8 and 9 = 165 and 169 Hz, respectively). β -Glycosides were not detected during the glycosylation reactions.

The above mild procedure has potential for the synthesis of neoglycoconjugates.

EXPERIMENTAL

General methods.—Melting points were determined in open capillaries and are uncorrected. NMR spectra were recorded for solutions in CDCl₃ (internal Me₄Si) with a Varian 200-Gemini spectrometer (¹H, 200 MHz; ¹³C, 50 MHz). Optical rotations were measured with a JASCO DIP 360 or 370 polarimeter. Silica gel (60–120 mesh, Acme) was used for column chromatography. TLC was performed on Silica Gel 60 F₂₅₄ (Merck) with detection using a solution of 2% of phosphomolybdic acid and 1% of Ce₂SO₄ · 4H₂O in aq 20% H₂SO₄ at 130°C. All the reactions were carried out in dry solvents under anhydrous conditions unless otherwise stated. 2-Pyridyl 2,3,4-tri-O-benzyl-6-O-trityl-1-thio-β-D-glucopyranoside (1).—2-Pyridyl 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside¹¹ (2.2 g, 5.0 mmol) was O-deacetylated conventionally with methanolic NaOMe. A mixture of the resulting 2-pyridyl 1-thio-β-D-glucopyranoside and trityl chloride (1.53 g, 5.4 mmol) in pyridine (15 mL) was heated at 50°C for 7 h. Methanol was added and the mixture was distilled azeotropically with 4:1 toluene-heptane. Column chromatography (1:1 light petroleum-EtOAc, then EtOAc) of the residue gave 2-pyridyl 6-O-trityl-1-thio-β-D-glucopyranoside (2.2 g, 88%); $[\alpha]_D - 19^\circ$ (c 1.0, MeOH). ¹H NMR data: δ 3.2–4.0 (m, 9 H), 5.1 (d, 1 H, $J_{1,2}$ 9.5 Hz, H-1), 7.0–7.6 (m, 18 H, ArH), and 8.4 (m, 1 H, SPy).

A solution of the foregoing product in DMF (5 mL) was benzylated¹¹ to give **1** (2.2 g, 65%); $[\alpha]_D = -6.8^{\circ}$ (*c* 1.0, CHCl₃). NMR data: ¹H, δ 3.2–3.7 (m, 5 H), 4.3 (d, 1 H, $J_{1,2}$ 9 Hz, H-2), 4.6–5.0 (m, 6 H), 5.35 (d, 1 H, H-1), 6.7–8.5 (m, 34 H, ArH); ¹³C, δ 66.0, 70.5, 73.0, 75.0, 76.0, 78.0, 80.0, and 82.0 (C-2/6 and 3 OCH₂Ph), 84.0 (C-1), and 124.0–130.0 (aromatic). Anal. Calcd for C₅₁H₄₇NO₅S: C, 77.93; H, 6.02. Found: C, 78.00; H, 6.16.

2-Pyridyl 2,3,6-tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-1thio-β-D-glucopyranoside (6).—A solution of 2-mercaptopyridine (0.586 g, 5.28 mmol) in dry acetone (10 mL) was stirred with K₂CO₃ (1.38 g, 10.0 mmol) for 1 h. A solution of α-acetobromolactose (3.5 g, 5 mmol) in dry benzene (10 mL) was added and stirring was continued for 4 h. The mixture was washed with water, aq 1% KOH, and water, dried (Na₂SO₄), and concentrated. Column chromatography (2:1 light petroleum–EtOAc) of the residue afforded 6 (2.1 g, 58%); mp 147–150°C (from hexane–EtOAc); $[\alpha]_D$ +27° (*c* 1.0, CHCl₃). NMR data: ¹H, δ 1.9–2.2 (7 s, 21 H, 7 OAc), 3.7–3.9 (m, 3 H), 4.0–4.15 (m, 3 H), 4.3–4.6 (m, 2 H), 4.9–5.4 (m, 5 H), 5.8 (d, 1 H, J_{1,2} 10 Hz, H-1), and 7.0–8.4 (m, 4 H, SPy); ¹³C, δ 20.2 (7 CH₃CO), 60.7, 62.0, 66.5, 68.8, 69.6, 70.4, 70.7, 73.6, 75.9, 76.3, and 81.2 (C-1/6 and C-2'/6'), 100.6 (C-1), 120.5, 122.9, 136.4, 149.2, 155.2 (5 SPy), and 168.0–172.0 (7 OCOCH₃). Anal. Calcd for C₃₁H₃₉NO₁₇S: C, 51.02; H, 5.38. Found: C, 51.10; H, 5.50.

2-Pyridyl 2,3,6-tri-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-β-D-galactopyranosyl)-1thio-β-D-glucopyranoside (5).—A solution of **6** (0.48 g, 0.65 mmol) in dry MeOH (5 mL) was treated with a catalytic amount of NaOMe. After the usual work up, a solution of the product in DMF (3 mL) was benzylated¹¹ to furnish **5** (0.45 g, 66%); mp 103–106°C (from hexane–EtOAc); $[\alpha]_D$ + 3.2° (*c* 1.0, CHCl₃). NMR data: ¹H, δ 3.1–3.8 (m, 10 H), 4.0–4.9 (m, 17 H), 5.2 (d, 1 H, $J_{1,2}$ 10 Hz, H-1), 6.7–7.2 (m, 38 H, ArH), and 8.15 (s, 1 H, SPy); ¹³C, δ 68.0 (2 C), 72.4, 72.8, 72.9, 73.2, 73.6, and 74.6 (2 C), 75.1 (4 C), 76.2 (2 C), 82.4, 83.6, and 84.8 (C-1/6, C-2'/6', and 7 OCH₂Ph), 102.7 (C-1), 120.2 (C-3"), 123.1 (C-4"), 127.1–128.3 (aromatic), 136.4 (C-5"), and 149.5 (C-6"). Anal. Calcd for C₆₆H₆₇NO₁₀S: C, 74.33; H, 6.33. Found: C, 74.20; H, 6.52.

Preparation of benzylated 2-azidoethyl α -glycosides.—A solution of the benzylated 2-pyridyl 1-thioglycoside (1 mmol) in CH₂Cl₂ (10 mL, containing 3% of MeI) was treated with 4A molecular sieves (0.200 g) and 2-azidoethanol (3 mmol), and then heated at 50°C until the reaction was complete (TLC, usually 12–72 h). A 1:1 mixture of Celite and Na₂SO₄ was added, the mixture was filtered, the insoluble material was washed with CH₂Cl₂, and the combined filtrate and washings were concentrated. Column chromatography (light petroleum–EtOAc) of the residue afforded the α -glyoside in good yield.

2-Azidoethyl 2,3,4-tri-O-benzyl-6-O-trityl- α -D-glucopyranoside (7).—Reaction of 1 (0.50 g, 0.63 mmol) with azidoethanol for 16 h afforded 7 (0.329 g, 68%) isolated as a syrup; $[\alpha]_D$ + 7.4° (*c* 1.0, CHCl₃). NMR data: ¹H, δ 3.5 (t, 2 H, CH₂N₃), 3.6–3.75 (m, 2 H), 3.85–4.4 (m, 5 H), 4.7–5.1 (m, 8 H), and 7.15–7.6 (m, 30 H, ArH); ¹³C, δ 50.5 (CH₂N₃), 62.0, 66.2, 70.7, 73.1, 74.8, 75.8, 77.9, 80.2, and 81.9 (C-2/6, OCH₂, and 3 OCH₂Ph), 97.1 (C-1), and 126.1–129.9 (aromatic). Anal. Calcd for C₄₈H₄₇N₃O₆: C, 75.66; H, 6.21. Found: C, 75.81; H, 6.32.

2-Azidoethyl 2,3,4,6-tetra-O-benzyl-α-D-galactopyranoside (8).—Reaction of 2 (0.316 g, 0.5 mmol) with azidoethanol for 13 h furnished 8 (0.218 g, 72%) isolated as a syrup; $[\alpha]_D$ + 15° (*c* 1.0, CHCl₃). NMR data: ¹H, δ 3.5 (t, 2 H, CH₂N₃), 4.0 (t, 2 H, OCH₂CH₂N₃), 4.35–4.90 (m, 15 H, H-1/6 and 4 OCH₂Ph), and 7.15–7.40 (m, 20 H, 4 Ph); ¹³C, δ 50.5 (CH₂N₃), 66.7, 69.0, 69.6, 72.7, 73.1, 73.2, 74.6, 75.2, 76.2, and 78.6 (C-2/6, 4 CH₂Ph, and OCH₂), 98.1 (C-1), and 127.3–139.5 (aromatic); $J_{C-1,H-1}$ 169 Hz. Anal. Calcd for C₃₆H₃₉N₃O₆: C, 70.91; H, 6.41. Found: C, 71.01; H, 6.6.

2-Azidoethyl 2,3,4-tri-O-benzyl-α-L-rhamnopyranoside (9).—Reaction of **3** (0.36 g, 0.68 mmol) with azidoethanol for 72 h gave **9** (0.170 g, 50%) isolated as a syrup; $[\alpha]_D - 13^\circ$ (*c* 1.45, CHCl₃). NMR data: ¹H, δ 1.3 (d, 3 H, $J_{5,6}$ 5.8 Hz, H-6,6,6), 3.2–3.35 (m, 2 H, CH₂N₃), 3.5–3.9 (m, 5 H), 4.55–5.0 (m, 8 H), and 7.2–7.4 (m, 15 H, 3 Ph); ¹³C, δ 17.9 (CH₃), 50.3 (CH₂N₃), 66.1, 66.2, 72.0, 72.8, 74.7, 75.1, 79.8, and 80.1 (C-2/5, OCH₂, and 3 OCH₂Ph), 98.1 (C-1), and 127.5–128.2 (aromatic); $J_{C-1,H-1}$ 169 Hz. Anal. Calcd for C₂₉H₃₃N₃O₅: C, 69.16; H, 6.61. Found: C, 69.32; H, 6.90.

2-Azidoethyl 2,3,5-tri-O-benzyl- α -D-ribofuranoside (10).—Reaction of 4 (0.5 g, 1 mmol) with azidoethanol for 70 h afforded 10 (0.34 g, 70%) isolated as a syrup; [α]_D +71° (*c* 1.4, CHCl₃). NMR data: ¹H, δ 3.3–3.5 (m, 2 H, CH₂N₃), 3.7–3.9 (m, 2 H, OCH₂), 4.2–4.7 (m, 11 H), 5.05 (d, 1 H, $J_{1,2}$ 3.42 Hz, H-1), and 7.2–7.4 (m, 15 H, 3 Ph); ¹³C, δ 50.6 (CH₂N₃), 66.6, 69.7, 72.0, 72.3, 73.1, 74.9, 77.6, and 81.8 (C-2/5 and 4 OCH₂), 101.7 (C-1), and 127.4–129.6 (aromatic). Anal. Calcd for C₂₈H₃₄N₃O₅: C, 68.69; H, 6.38. Found: C, 68.82; H, 6.60.

2-Azidoethyl 2,3,6-tri-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-β-D-galactopyranosyl)α-D-glucopyranoside (11).—Reaction of 5 (0.310 g, 0.29 mmol) with azidoethanol for 20 h gave 11 (0.2 g, 66%) isolated as a syrup; $[\alpha]_D + 41^\circ$ (*c* 0.25, CHCl₃). NMR data: ¹H, δ 3.3–3.6 (m, 8 H), 3.7–3.9 (m, 8 H), 4.2–5.1 (m, 16 H), and 7.1–7.4 (m, 35 H, 7 Ph); ¹³C, δ 50.4 (CH₂N₃), 66.6, 67.8, 68.0, 70.4, 72.4, 72.9, 73.2, 73.5, 73.6, 74.5, 75.0, 75.3, and 76.3 (2 C), 78.8 and 79.8 (2 C), 82.2 (C-2/6, C-2'/6', 7 OCH₂Ph, and OCH₂), 97.5 and 102.7 (C-1,1), and 126.9–128.1 (aromatic). Anal. Calcd for C₆₃H₆₇N₃O₁₁: C, 72.60; H, 6.48. Found: C, 72.82; H, 6.61.

ACKNOWLEDGMENT

We thank Dr. A.V. Rama Rao for his interest in this work.

REFERENCES

- 1 A.F. Bochkov and C.E. Zaikov, Chemistry of the O-Glycoside Bond: Formation and Cleavage, Pergamon, Oxford, 1979.
- 2 H. Paulsen, Angew. Chem. Int. Ed. Engl., 21 (1982) 155-173; Chem. Soc. Rev., 13 (1984) 15-45.
- 3 R.R. Schmidt, J. Michel, and M. Roos, Liebigs Ann. Chem., (1982) 1343-1357; R.R. Schmidt, Angew. Chem. Int. Ed. Engl., 25 (1986) 212-235.
- 4 R.U. Lemieux, D.A. Baker, and D.R. Bundle, J. Am. Chem. Soc., 97 (1975) 4076–4083; Can. J. Biochem., 55 (1977) 507–512.
- 5 J. Dahmen, T. Fried, G. Magnusson, and G. Noori, *Carbohydr. Res.*, 111 (1982) c1-c4; J. Dahmen, T. Fried, G. Gronberg, T. Lave, G. Magnusson, and G. Noori, *ibid.*, 118 (1983) 292-301; C.P. Stowell and Y.C. Lee, *Adv. Carbohydr. Chem. Biochem.*, 37 (1980) 225-281.
- 6 R.U. Lemieux, Chem. Soc. Rev., 7 (1978) 423-452; J.H. Pazur, Adv. Carbohydr. Chem. Biochem., 39 (1981) 405-447; J.C. Chabada and T.Y. Shen, Carbohydr. Res., 67 (1978) 55-63; J.S. Slama and R.R. Rando, Biochemistry, 19 (1980) 4595-4600.
- 7 A.Y. Chernyak, G.V.M. Sharma, L.O. Kononov, P. Radha Krishna, H.B. Levinsky, N.K. Kochetkov, and A.V. Rama Rao, *Carbohydr. Res.*, 223 (1992) 303–309.
- 8 A.Y. Chernyak, G.V.M. Sharma, L.O. Kononov, P. Radha Krishna, A.V. Rama Rao, and N.K. Kochetkov, *Glycoconjugate J.*, 8 (1991) 82–89.
- 9 A.Y. Chernyak, L.O. Kononov, P. Radha Krishna, N.K. Kochetkov, and A.V. Rama Rao, Carbohydr. Res., 225 (1992) 279-289.
- 10 G.V. Reddy, V.R. Kulkarni, and H.B. Mereyala, *Tetrahedron Lett.*, 30 (1989) 4283-4286; H.B. Mereyala and G.V. Reddy, *Tetrahedron*, 47 (1991) 6435-6448.
- 11 H.B. Mereyala, D. Ravi, G.V.M. Sharma, B.V. Rao, and G.B. Reddy, *Tetrahedron*, 48 (1992) 545-562.
- 12 W.N. Haworth, E.L. Hirst, M.M.T. Plant, and R.J.W. Reynolds, J. Chem. Soc., (1930) 2644-2653.