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An efficient synthesis of cis-2,6-di-(2-quinolylpiperidine) has been developed. The key steps involve Wit-
tig reaction of N-Cbz-protected cis-piperidine-2,6-dicarboxaldehyde (3) with 2-(triphenylphosphinyl-
methyl)quinoline bromide (4) and sequential removal of the N-Cbz group and double bond reduction.
This synthetic procedure provides an efficient preparation for this useful norlobelane analogue.

� 2013 Elsevier Ltd. All rights reserved.
Introduction

Lobelane (N-methyl-cis-2,6-diphenethylpiperidine, Fig. 1), a
minor piperidine alkaloid of Lobelia inflata,1 has been shown to
exhibit good affinity and selectivity for the tetrabenazine (TBZ)
binding site on the vesicular monoamine transporter (VMAT2),
and is also a potent inhibitor of vesicular dopamine uptake.2 Struc-
ture–activity relationship (SAR) studies indicate that lobelane
analogues lacking the N-methyl substituent (i.e., norlobelane ana-
logues) retain their affinity for the TBZ binding site on VMAT2,
suggesting that the presence of the N-methyl group is not critical
for interaction with VMAT2. Furthermore, other studies have
shown that norlobelane is a potent inhibitor of [3H]DA uptake into
striatal vesicles (Ki = 43 nM).2 SAR studies have also shown that the
phenyl moieties in lobelane can be replaced with 1-naphthyl or
2-naphthyl groups, resulting in analogues that are potent and
selective inhibitors of VMAT2.2a However, such analogues have
poor water-solubility and poor drug-like properties. Recent studies
have shown that lobelane analogues in which the phenyl moieties
have been replaced with heterocyclic rings, such as pyridyl, quino-
lyl, or indolyl, have improved water-solubility (Fig. 1). Only the
quinolyl analogues retained potent VMAT2 inhibitory properties,3

with quinlobelane (Fig. 1) exhibiting potent inhibition of vesicular
[3HDA] uptake (Ki = 51 nM). However, the synthetic procedures
utilized in this study were not amenable to the synthesis of 2-qui-
nolyl analogues of norlobelane [e.g., cis-2,6-di-(2-quinolylpiperi-
dine); compound 1, Scheme 1] and its analogues. In order to
obtain more drug-like 2-quinolyl analogues of both norlobelane
and lobelane for studying both structure–activity and structure–
property relationships, a new and efficient synthesis of cis-2,6-di-
(2-quinolylpiperidine) is now reported, which may be useful for
the general synthesis of a wide range of compounds of this type.

Results and discussion

We now report a versatile and efficient method for the prepara-
tion of 2-quinolylnorlobelane. Our retrosynthetic approach is
outlined in Scheme 1, and is centered around a Wittig reaction
for the construction of two double bonds sequentially. The requi-
site precursor 3 (Scheme 1) can be synthesized from commercial
pyridine-2,6-dicarboxylic acid.

The synthesis of target molecule 1 was executed as shown in
Scheme 2. Pyridine-2,6-dicarboxylic acid was heated under reflux
in methanol containing a few drops of concentrated H2SO4 to form
lobelane.
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Scheme 1. Retrosynthetic analysis of cis-2,6-di-(2-quinolyl piperidine) (1).

Scheme 2. Synthetic route to compound 1. Reagents and conditions: (a) Concd H2SO4, MeOH, reflux, 71%; (b) 10% Pd/C, H2O, rt, 91%; (c) CbzCl, DIPEA, THF, rt, quant; (d) LiBH4,
THF, 0 �C?rt, 81%; (e) Swern oxidation, �78 �C; (f) 4, tert-BuOK, THF, rt, 51% (two steps); (g) 6 N HCl, reflux, quant; (h) 10% Pd/C, rt, 75%.

Scheme 3. Synthetic route to compound 4. Reagents and conditions: (a) SeO2, solvent-free, 170 �C, 81%; (b) NaBH4, EtOH, rt, 92%; (c) 33% HBr/AcOH, reflux, 98%; (d) PPh3,
toluene, reflux, 95%.
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the sulfate salt 5. Reduction of 5 under 50 psi H2 pressure followed
by crystallization of the crude product from hexane provided the
pure cis-isomer 6 in 91% yield,4 which was then protected as its
N-Cbz derivative 7. In our original plan, we utilized DIBAL-H for
the reduction of 7, in the hope of obtaining aldehyde 3 in one step.
Unfortunately, an unidentified mixture was obtained after work-
up of the reaction. To obtain the key intermediate 2, we reduced
ester 7 with LiBH4 to afford alcohol 8. Then, we explored Dess–
Martin periodinane and PCC reactions in our attempts to oxidize
compound 8 to the key intermediate 3. However, only complex
mixtures were obtained, which may have been due to facile
decomposition of aldehyde 3 during purification by column chro-
matography. We subsequently found that alcohol 8 could be oxi-
dized efficiently to 3 under Swern conditions.5 In the Wittig



D. Ding et al. / Tetrahedron Letters 54 (2013) 5211–5213 5213
reaction of 3 with compound 4 (Scheme 3), which is the pivotal
step in the synthesis of 1, we found that it was advantageous to
utilize the crude aldehyde 3 directly without further purification
to afford the optimal yield of 2 (it is noteworthy that all attempts
to obtain a pure sample of compound 3 failed). In our initial at-
tempts to synthesize 2, THF was used as solvent and n-BuLi was
utilized as base, and the product was isolated in 6% yield in the
two-step procedure. In order to optimize the reaction conditions,
other bases were evaluated. The yields obtained by substituting
n-BuLi with either LiHMDS, NaHMDS, or NaOEt were 8%, 10%,
and 11%, respectively, for the two-step synthetic procedure. To
our satisfaction, when tert-BuOK was used as base, the yield of 2
improved significantly to 51% for the two step reaction.

With the key compound 2 in hand, our initial strategy was to
synthesize compound 1 from 2 in one step by removal of the N-
Cbz group followed by double bond hydrogenation over 20%
Pd(OH)2. However, when this procedure was followed, TLC analysis
indicated a complex mixture, which proved difficult to purify by
column chromatography.

A similar outcome was observed when 10% Pd/C was used. We
speculated that these problems might be due to hydrogenolytic
ring opening of the piperidine ring under the reduction condi-
tions utilized. In order to circumvent this problem, a strategy
involving two separate steps was employed. First, we attempted
to reduce the double bonds utilizing Wilkinson’s catalysis6 prior
to removal of the N-Cbz group; however, no reaction occurred,
and the starting material was recovered. Subsequently, we turned
to a second strategy, and attempted the removal of the N-Cbz
group of 2 followed by double bond reduction. We found that
6 N HCl at reflux could be used to deprotect the N-Cbz group
affording compound 9 in quantitative yield. Hydrogenation of 9
to the desired compound 1 was achieved utilizing 10% Pd/C as
catalyst in 75% yield.

Scheme 3 provides the synthetic route to phosphonium salt 4,
which was utilized in the Wittig reaction of compound 3 to 2
(Scheme 2). 2-Methylquinoline was oxidized by SeO2 at a high
temperature (170 �C) under solvent-free conditions to afford alde-
hyde 10 in good yield. It should be noted that when this oxidation
reaction was performed in high boiling points solvents such as 1,4-
dioxane, the yield was very low, even after prolonged reaction
times. Aldehyde 10 could be reduced by NaBH4 in EtOH to afford
carbinol 11 in 92% yield, followed by bromination of 11 in 33%
HBr/AcOH to afford bromide 12 in high yield7 (we found that when
compound 10 was brominated with 48% aq HBr, the yield of 12 was
only 72% and the reaction required a long time for completion).
Compound 12 was then heated under reflux with triphenyl
phosphine (PPh3) in toluene to obtain the desired compound 4 in
95% yield.

Characterization data (1H NMR, 13C NMR and high resolution
mass spectrometry) for compounds 1, 2 and 9 are provided in
the References and Notes section8.

In conclusion, an efficient method for the preparation of cis-2,6-
di-(2-quinolylpiperidine) (1) has been developed. The key step in
the synthetic scheme is the introduction of the two 2-quinolyl
moieties via Wittig reaction with N-Cbz-protected cis-piperidine-
2,6-dicarboxaldehyde. Other quinolyl analogues of norlobelane
and lobeline are currently being prepared utilizing this synthetic
procedure, and their biological evaluation is underway.
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All new compounds were characterized by 1H NMR, 13C NMR and high
resolution mass spectrometry (HRMS). Selected data (NMR spectra were
recorded in CDCl3, 1H at 300 MHz and 13 C at 75 MHz): (i) Compound 2:
colorless oil; 1H NMR: d 7.91 (d, 2H, J = 8.4 Hz), 7.78 (d, 2H, J = 7.5), 7.68–7.60
(m, 4H), 7.48–7.25 (m, 9H), 6.86 (dd, J = 16.2 Hz, 2H), 6.82 (dd, J = 16.2 Hz, 2H),
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155.9, 155.8, 148.1, 137.6, 136.8, 136.2, 131.5, 129.6, 129.4, 128.7, 128.3, 128.2,
127.6, 127.4, 126.2, 119.3, 67.8, 52.2, 28.5, 15.6 ppm; HRMS (EI) Calcd for
C35H31N3O2, 525.2416. Found 525.2419 (ii) Compound 9: viscous oil; 1H NMR: d
8.10–8.01 (m, 4H), 7.77–7.65 (m, 4H), 7.58–7.45 (m, 4H), 7.26–6.86 (m, 4H),
3.60–3.55 (m, 2H), 2.04–1.86 (m, 3H), 1.63–1.43 (m, 3H); 13C NMR: d 156.0,
148.2, 139.3, 136.5, 130.8, 129.8, 129.4, 127.6, 127.5, 126.3, 119.0, 59.2, 32.1,
24.7; HRMS(EI) calcd for C27H25N3 391.2048; Found 391.2045 (iii) Compound 1:
viscous oil; 1H NMR: d 8.08–7.99 (m, 4H), 7.76–7.79 (m, 2H), 7.62–7.68 (m, 2H),
7.50–7.45 (m, 2H), 7.32–7.26 (m, 2H), 3.11–3.06 (m, 4H), 2.61–2.57 (m, 2H),
2.02–1.94 (m, 4H), 1.78–1.71 (m, 3H), 1.27–1.19 (m, 3H); 13C NMR: d 162.5,
148.0, 136.6, 129.6, 128.9, 127.7, 126.9, 125.9, 121.6, 56.8, 37.0, 35.9, 32.4, 24.8;
HRMS(EI) Calcd for C27H29N3 395.2361. Found 395.2367.
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