Regioselective Functionalization of the Oxazole Scaffold Using TMP-Bases of Mg and Zn

LETTERS 2013 Vol. 15, No. 24 6162–6165

ORGANIC

Diana Haas,[†] Marc Mosrin,[‡] and Paul Knochel^{*,†}

Department of Chemistry, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377 München, Germany, and Bayer CropScience AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany

Paul.Knochel@cup.uni-muenchen.de

Received October 21, 2013

ABSTRACT $\int_{(2)}^{(1)} \frac{1) \text{TMPZnCI-LICI}}{2) \text{ Ar}^{1}-X} \xrightarrow{(1)}_{Ar^{1}} \frac{1) \text{TMPZnCI-LICI}}{2) \text{ Ar}^{2}-\text{COCI}} \xrightarrow{(1)}_{Ar^{2}} \xrightarrow{(1)}_{Ar^{1}} \frac{1) \text{TMPZnCI-LICI}}{2) \text{ CuCN-2LICI}} \xrightarrow{(1)}_{Ar^{2}} \xrightarrow{(1)}_{CUCN-2LICI} \xrightarrow{(1)}_{Ar^{2}} \xrightarrow{(1)}_{Ar^{2}} \xrightarrow{(1)}_{CUCN-2LICI} \xrightarrow{(1)}_{Ar^{2}} \xrightarrow{(1)}_{Ar^{2}} \xrightarrow{(1)}_{CUCN-2LICI} \xrightarrow{(1)}_{Ar^{2}} \xrightarrow{(1)}_{CUCN-2LICI} \xrightarrow{(1)}_{Ar^{2}} \xrightarrow{(1)}_{CUCN-2LICI} \xrightarrow{(1)}_{Ar^{2}} \xrightarrow{(1)}_{CUCN-2LICI} \xrightarrow{(1)}_{Ar^{2}} \xrightarrow{(1)}_{CUCN-2LICI} \xrightarrow{(1)}_{Ar^{2}} \xrightarrow{(1)}_{CUCN-2LICI} \xrightarrow{(1)}_{CUCN-2LICI} \xrightarrow{(1)}_{Ar^{2}} \xrightarrow{(1)}_{CUCN-2LICI} \xrightarrow{(1)}_{CUCN-$

A general method for the synthesis of 2,4,5-trisubstituted oxazoles has been developed. Starting from commercially available oxazole, successive metalations using TMPMgCI·LiCl or TMPZnCI·LiCl led to the corresponding magnesiated or zincated species which were stable toward ring fragmentation. Furthermore, they readily reacted with various electrophiles, such as aryl and allylic halides, acid chlorides, TMSCI, and TMS-CN, providing highly functionalized oxazoles.

The synthesis of oxazoles is an important task in organic chemistry since these heterocycles are present in many biologically active compounds such as alkaloids, analgesics, antibiotics, and anticancers.¹ In addition, oxazoles are frequently utilized as building blocks in modern materials.² To date, the preparation of highly functionalized oxazoles involves condensation reactions such as the Robinson– Gabriel synthesis.³ However, these methods have some limitations, such as poor regioselectivity in the ring construction, multistep syntheses for the starting materials, and harsh reaction conditions. C–H arylation is another approach to functionalize oxazoles. This method shows great potential, and its scope is constantly increasing.⁴

These difficulties have been addressed by the development of alternative methods, in particular metalations of the oxazole scaffold. Indeed, there are many reports of successful lithiations of oxazoles at position 2.⁵ However, the direct functionalization of these heterocycles by lithiation is difficult due to side reactions such as ring fragmentation.⁶ Although a few lithiation reactions of positions 5 and 4 have been reported,⁷ these metalations require very low reaction temperatures and prefunctionalized starting

[†]Ludwig-Maximilians-University.

[‡]Bayer ČropScience AG.

^{(1) (}a) Wipf, P. Chem. Rev. **1995**, 95, 2115. (b) Lautens, M.; Roy, A. Org. Lett. **2000**, 2, 555. (c) Coqueron, P.-Y.; Didier, C.; Ciufolini, M. A. Angew. Chem., Int. Ed. **2003**, 42, 1411. (d) Lucas, B. S.; Gopalsamuthiram, V.; Burke, S. D. Angew. Chem., Int. Ed. **2007**, 46, 769. (e) Merkul, E.; Müller, T. J. J. Chem. Commun. **2006**, 4817. (f) Davyt, D.; Serra, G. Mar. Drugs **2010**, 8, 2755. (g) De Silva, H.; Henry, W. P.; Pitman, C. U., Jr. Synthesis **2012**, 44, 3337.

^{(2) (}a) Barnett, M. D.; Daub, G. H.; Hayes, N. F.; Ott, D. G. J. Am. Chem. Soc. **1960**, 82, 2282. (b) Reiser, A.; Leyshon, L. J.; Saunders, D.; Mijovic, M. V.; Bright, A.; Bogie, J. J. Am. Chem. Soc. **1972**, 94, 2414. (c) Toyo'oka, T.; Chokshi, H. P.; Givens, R. S.; Carlson, R. G.; Lunte, S. M.; Kuwana, T. Biomed. Chromatogr. **1993**, 7, 208.

^{(3) (}a) Robinson, R. J. Chem. Soc. **1909**, 95, 2167. (b) Gabriel, S. Ber. **1910**, 43, 1283. (c) Turchi, I. J.; Dewar, M. J. S. Chem. Rev. **1975**, 75, 389.

^{(4) (}a) Verrier, C.; Lassalas, P.; Théveau, L.; Quéguiner, G.; Trécourt, F.; Marsais, F.; Hoarau, C. *Beilstein J. Org. Chem.* **2011**, 7, 1584. (b) Strotman, N. A.; Chobanian, H. R.; Guo, Y.; He, J.; Wilson, J. E. *Org. Lett.* **2010**, *12*, 3578. (c) Théveau, L.; Verrier, C.; Lassalas, P.; Martin, T.; Dupas, G.; Querolle, O.; Van Hijfte, M.; Marsais, F. *Chem.—Eur. J.* **2011**, *17*, 14450. (d) Ackermann, L.; Althammer, A.; Fenner, S. *Angew. Chem., Int. Ed.* **2008**, *48*, 201.

^{(5) (}a) Hodges, J. C.; Patt, W. C.; Connolly, C. J. J. Org. Chem. 1991,
56, 449. (b) Harn, N. K.; Gramer, C. J.; Anderson, B. A. Tetrahedron Lett. 1995, 36, 9453. (c) Vedejs, E.; Monahan, S. D. J. Org. Chem. 1996,
61, 5192. (d) Anderson, B. A.; Harn, N. K. Synthesis 1996, 583. (e)
Anderson, B. A.; Becke, L. M.; Booher, R. N.; Flaugh, M. E.; Harn,
N. K.; Kress, T. J.; Varie, D. L.; Wepsiec, J. P. J. Org. Chem. 1997, 62, 8634. (f) Smith, A. B., III; Minibiole, K. P.; Freeze, S. Synlett 2001, 1739.
(g) Reeder, M. R.; Gleaves, H. E.; Hoover, S. A.; Imbordino, R. J.; Pangborn, J. J. Org. Process Res. Dev. 2003, 7, 696. (h) Williams, D. R.;

materials and do not allow the use of oxazole derivatives containing sensitive functional groups. Recently, we have reported a set of novel sterically hindered TMP-bases (TMP = 2,2,6,6-tetramethylpiperidyl) complexed by LiCl.⁸ TMPMgCl·LiCl (1)⁹ and TMPZnCl·LiCl (2)¹⁰ have proven to be especially efficient for a broad range of metalations particularly for sensitive heterocycles.

Herein, we report the full functionalization of oxazole (3) using successive metalations with TMP-bases 1 and 2 (Scheme 1).

Scheme 1. Successive Metalations of Oxazole (3) at Positions 2, 5, and 4 Using TMPMgCl·LiCl (1) and TMPZnCl·LiCl (2)

Thus, treatment of oxazole (3) with TMPZnCl·LiCl (2; 1.4 equiv, $0 \,^{\circ}$ C, 1 h)¹⁰ leads to the quantitative formation of the corresponding 2-oxazolylzinc reagent which successfully

(7) (a) Meyers, A. I.; Lawson, J. P. *Tetrahedron Lett.* 1981, *22*, 3163.
(b) Williams, D. R.; Brooks, D. A.; Meyer, K. G.; Pagel, M. *Tetradedron Lett.* 1998, *39*, 8023. (c) Li, B.; Buzon, R. A.; Zhang, Z. Org. Process Res. Dev. 2007, *11*, 951. (d) Lee, K.; Counceller, C. M.; Stambuli, J. P. Org. Lett. 2009, *11*, 1457.

(8) (a) Kopp, F.; Krasovskiy, A.; Knochel, P. *Chem. Commun.* **2004**, 2288. (b) Ren, H.; Krasovskiy, A.; Knochel, P. *Org. Lett.* **2004**, *6*, 4215. (c) Krasovskiy, A.; Knochel, P. *Angew. Chem., Int. Ed.* **2004**, *43*, 3333. (d) Ren, H.; Krasovskiy, A.; Knochel, P. *Chem. Commun.* **2005**, 543. (e) Krasovskiy, A.; Straub, B. F.; Knochel, P. *Angew. Chem., Int. Ed.* **2006**, *45*, 159.

(9) (a) Krasovskiy, A.; Krasovskaya, V.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 2958. (b) Lin, W.; Baron, O.; Knochel, P. Org. Lett. 2006, 8, 5673. (c) Garcia-Alvarez, P.; Graham, D. V.; Hevia, E.; Kennedy, A. R.; Klett, J.; Mulvey, R. E.; O'Hara, C. T.; Weatherstone, S. Angew. Chem., Int. Ed. 2008, 47, 8079. (d) Mulvey, R. E. Organometallics 2006, 25, 1060. (e) Westerhausen, M. Dalton Trans. 2006, 4755. (f) Mulvey, R. E.; Mongin, F.; Uchiyama, M.; Konchel, P. Org. Lett. 2008, 10, 2497. (h) Mosrin, M.; Boudet, N.; Knochel, P. Org. Biomol. Chem. 2008, 6, 3237. (i) Piller, F. M.; Knochel, P. Synthesis 2011, 1751.

(10) (a) Mosrin, M.; Knochel, P. Org. Lett. 2009, 11, 1837. (b) Bresser, T.; Knochel, P. Angew. Chem., Int. Ed. 2011, 50, 1914. (c) Duez, S.; Steib, A. K.; Manolikakes, S. M.; Knochel, P. Angew. Chem., Int. Ed. 2011, 50, 7686. (d) Klier, L.; Bresser, T.; Nigst, T. A.; Karaghiosoff, K.; Knochel, P. J. Am. Chem. Soc. 2012, 134, 13584. (e) Unsinn, A.; Ford, M. J.; Knochel, P. Org. Lett. 2013, 15, 1128. (f) Crestey, F.; Zimdars, S.; Knochel, P. Synthesis 2013, 45, 000A. (g) Monzon, G.; Knochel, P. Synlett 2010, 304.

(11) (a) Negishi, E.; Valente, L. F.; Kobayashi, M. J. Am. Chem. Soc. 1980, 102, 3298. (b) Negishi, E.; Kobayashi, M. J. J. Org. Chem. 1980, 45, 5223. (c) Negishi, E. Acc. Chem. Res. 1982, 15, 340. undergoes Negishi cross-couplings¹¹ using Farina's ligand $((o-furyl)_3P)^{12}$ with various *ortho-, meta-* or *para-*substituted aryl iodides, as well as an aryl bromide furnishing the desired cross-coupling products **4a**–**h** in 74–94% yield (Table 1, entries 1–8). The 2-oxazolylzinc reagent also reacts well in Pd-catalyzed Negishi acylation reactions¹³ with benzoyl chloride and 3-chlorobenzoyl chloride, providing the ketones **4i** and **4j** in 73–86% yield (entries 9 and 10). The 2-zincated oxazole also reacts after transmetalation with CuCN·2LiCl¹⁴ in a copper(I)-mediated allylation reaction with ethyl 2-(bromomethyl)acrylate¹⁵ to furnish the allylated oxazole **4k** in 78% yield (entry 11).

 Table 1. 2-Substituted Oxazoles of Type 4 Obtained by Regioselective Zincation of Oxazole (3) Using TMPZnCl·LiCl (2) and Quenching with Electrophiles

entry	electrophile	product, yield ^a
	, C R	O R N
1	$R = CO_2Et$	4a , 92% ^a (80%) ^c
2	R = Cl	4b , 83% ^b
3	$R = CF_3$	4c , 74% ^b
4	R = OMe	4d , 90% ^b
5	$\mathbf{R} = \mathbf{C}\mathbf{N}$	4e , 87% ^b
	R	
6	$R = NO_2$	4f , 94% ^b
7	R = CN	4g , 82% ^b
8	OHC	
		4h , 79% ^b
9	$\mathbf{R} = \mathbf{H}$	4i. 73% ^d
10	R = Cl	4j , $86\%^d$
11	Br CO ₂ Et	
		4k , 78% ^e

^{*a*} Isolated yield of analytically pure product. ^{*b*} Pd-catalyzed crosscoupling using 3 mol % Pd(dba)₂ and 6 mol % P(*o*-furyl)₃. ^{*c*} The aryl bromide was used as an electrophile for Pd-catalyzed cross-coupling using 4 mol % Pd(PPh₃)₄. ^{*d*} Pd-catalyzed acylation reaction using 4 mol % Pd(PPh₃)₄. ^{*e*} CuCN·2LiCl was used for the reaction with this electrophile.

(12) (a) Farina, V.; Baker, S. R.; Benigni, D. A.; Sapino, C., Jr. *Tetrahedron Lett.* **1988**, *29*, 5739. (b) Farina, V.; Baker, S. R.; Benigni, D. A.; Hauck, S. I.; Sapino, C., Jr. *J. Org. Chem.* **1990**, *55*, 5833.

(13) Negishi, E.; Bagheri, V.; Chatterjee, S.; Luo, F.-T.; Miller, J. A.; Stoll, A. T. *Tetrahedron Lett.* **1983**, *24*, 5181.

(14) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem. 1988, 53, 2390.

(15) Villieras, J.; Rambaud, M. Synthesis 1982, 924.

^{(6) (}a) Meyers, A. I.; Collington, E. W. J. Am. Chem. Soc. 1970, 92, 6676. (b) Dondoni, A.; Fantin, G.; Fagagnolo, M.; Medici, A.; Pedrini, P. Synthesis 1987, 693. (c) Gilchrist, T. L. Adv. Heterocycl. Chem. 1987, 41, 4. (d) Iddon, B. Heterocycles 1994, 37, 1321. (e) Crowe, E.; Hossner, F.; Hughes, M. J. Tetrahedron Lett. 1995, 51, 8889. (f) Vedejs, E.; Luchetta, L. M. J. Org. Chem. 1999, 64, 1011. (g) Bayh, O.; Awad, H.; Mongin, F.; Hoarau, C.; Bischoff, L.; Trécourt, F.; Quéguiner, G.; Marsais, F.; Blanco, F.; Abarca, B.; Ballesteros, R. J. Org. Chem. 2005, 70, 9074. (i) Pirrung, M. C.; Ghorai, S. J. Am. Chem. Soc. 2006, 128, 11772.

A second metalation of the 2-substituted oxazoles of type **4** occurs at position 5 and is readily achieved by adding either TMPMgCl·LiCl (1)⁹ or TMPZnCl·LiCl (2).¹⁰ Thus, treatment of the 2-arylated oxazoles **4a** and **4b** with TMPMgCl·LiCl (1; 1.4 equiv, $-40 \,^{\circ}$ C, $0.5 \,h$)⁹ leads to the quantitative formation of the 5-magnesiated oxazole. These oxazolylmagnesium reagents readily react with various electrophiles, such as NC-CO₂Et, MeSO₂SMe,¹⁶ TsCN, or TMSCl to provide the 2,5-disubstituted oxazoles **5a**-e in 72–93% yield (Table 2).¹⁷

 Table 2. 2,5-Disubstituted Oxazoles of Type 5 Obtained by

 Regioselective Magnesiation of Oxazole Derivatives of Type 4

 Using TMPMgCl·LiCl (1) and Quenching with Electrophiles

^a Isolated yield of analytically pure product.

Alternatively, the 5-zincated species can be prepared by reacting 2-substituted oxazoles of type **4** with TMPZnCl·LiCl (**2**; 1.4 equiv, 50 °C, 2 h).¹⁰ The zinc derivative of **4a** is then subjected to Negishi cross-couplings with 1-chloro-4-iodobenzene or 4-iodobenzonitrile to provide the bisarylated oxazoles **6a** and **6b** in 83–92% yield (Table 3, entries 1 and 2). After zincation of **4a** and **4e** and transmetalation with CuCN·2LiCl, a copper(I)-mediated allylation with allyl bromide or 3-bromocyclohexene leads to oxazoles **6c** and **6d** in 76–79% yield (entries 3 and 4). Pd-catalyzed acylation with benzoyl chloride, 4-fluorobenzoyl

 Table 3. 2,5-Disubstituted Oxazoles of Type 5 Obtained by

 Regioselective Zincation of Oxazole Derivatives of Type 4

 Using TMPZnCl·LiCl (2) and Quenching with Electrophiles

^{*a*} Isolated yield of analytically pure product. ^{*b*} Pd-catalyzed crosscoupling using 3 mol % Pd(dba)₂ and 6 mol % P(*o*-furyl)₃. ^{*c*} CuCN-2LiCl was used for the reaction with these electrophiles. ^{*d*} Pd-catalyzed acylation reaction using 4 mol % Pd(PPh₃)₄. ^{*e*} Pd-catalyzed crosscoupling using 3 mol % Pd(dba)₂ and 6 mol % P(*o*-furyl)₃, 4 mol % CuI, and NEt₃.

chloride, or 3,4-difluorobenzoyl chloride provides the oxazolyl ketones **6e–h** in 76–98% yield. Furthermore, after zincation and reaction with iodine, the 2-substituted oxazole **4b** undergoes a regioselective Sonogashira reaction¹⁸ *in situ* with phenylacetylene in the presence of 3 mol %

⁽¹⁶⁾ The thiomethyl group can be subjected to cross-coupling reactions; see: Liebeskind, L. S.; Srogl, J. Org. Lett. **2002**, *4*, 979.

⁽¹⁷⁾ The regioselectivity of 2-substituted oxazole functionalization is supported by the X-ray data of compound 5c (see Supporting Information).

^{(18) (}a) Sonogashira, K.; Tohda, Y. M.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467. (b) Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874. (c) Doucet, H.; Hierso, J.-C. Angew. Chem., Int. Ed. 2007, 46, 834.
(d) Chinchilla, R.; Nájera, C. Chem. Soc. Rev. 2011, 40, 5084. (e) Sonogashira, K. In Metal-catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998.

 Table 4. 2,4,5-Trisubstituted Oxazoles of Type 7 Obtained by

 Regioselective Zincation of Oxazole Derivatives of Type 5 or 6

 Using TMPZnCl·LiCl (2) and Quenching with Electrophiles

^{*a*} Isolated yield of analytically pure product. ^{*b*} Pd-catalyzed crosscoupling using 3 mol % Pd(dba)₂ and 6 mol % P(*o*-furyl)₃. ^{*c*} Pdcatalyzed acylation reaction using 4 mol % Pd(PPh₃)₄. ^{*d*} CuCN · 2LiCl was used for the reaction with this electrophile.

 $Pd(dba)_2$, 6 mol % P(o-furyl)₃, 4 mol % CuI, and Et_3N to afford the 2,5-disubstituted oxazole **6j** in 80% yield. Remarkably, the metalation of 2-substituted oxazole derivatives with

TMPZnCl·LiCl can be performed at 50 °C, whereas the use of TMPMgCl·LiCl requires more accurate temperature control (reaction temperature should be -40 °C).

The prepared 2,5-disubstituted oxazoles of type 6 and 5 can be further regioselectively metalated at position 4 using TMPZnCl·LiCl (2; 1.4 equiv, 50 °C, 3-8 h)⁹ to afford the expected 4-zincated species. These zincated polyfunctional oxazoles undergo Negishi cross-couplings, Pd-catalyzed acylation reactions, or copper(I)-mediated allylations. Thus, after the zincation of the 2,5-substituted oxazole 6a, Negishi cross-couplings were performed with various aryl iodides, such as 1-iodo-4-(trifluoromethyl)benzene and 4-iodobenzonitrile, furnishing the desired 2,4,5arylated oxazoles 7a and 7b in 73-82% yield (Table 4, entries 1 and 2). Similarly, the keto-substituted oxazole 6f is an excellent substrate for a Negishi cross-coupling reaction with 4-iodoanisole and provides the desired trisubstituted oxazole 7c in 76% yield. Furthermore, the 5-acylated oxazole 6e undergoes a Pd-catalyzed Negishi acylation with benzoyl chloride, providing the trisubstituted oxazole 7d in 78% yield (entry 4). Also, the allylation of the zincated oxazole derived from 6h with 3-bromocyclohexene in the presence of CuCN·2LiCl leads to the expected trisubstituted oxazole 7e in 74% (entry 5). Finally, the oxazole 5d is arylated by our standard procedure with 1-chloro-4-iodobenzene, furnishing the 5-silyloxazole 7f in 84% vield.¹⁹

In conclusion, we have developed a new general method for performing multiple regioselective metalations of oxazole (3) *via* successive reactions using TMPMgCl·LiCl(1) or TMPZnCl·LiCl(2) leading to a variety of new functionalized oxazole derivatives with the regiocontrolled introduction of all substituents. Further extension of this method toward the synthesis of biologically active oxazoles is currently underway in our laboratory.

Acknowledgment. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007–2013) ERC Grant Agreement No. 227763. We thank the Fonds der Chemischen Industrie for financial support, as well as Heraeus Holding GmbH (Hanau), Rockwood Lithium (Frankfurt), and BASF SE (Ludwigshafen) for the generous gift of chemicals. We also thank Prof. Dr. Konstantin Karaghiosoff for the X-ray analysis.

Supporting Information Available. Experimental details and full spectroscopic data for all new compounds is given in the Supporting Information. This material is available free of charge via the Internet at http://pubs.acs. org.

⁽¹⁹⁾ For removal of the TMS-group on heterocycles, see: Dunst, C.; Knochel, P. J. Org. Chem. 2011, 76, 6972.

The authors declare no competing financial interest.