December 1993 SYNTHESIS 1213

Preparation of Fused Bis(α -methylene- γ -lactams)

Najat El Alami, Chantal Belaud, Jean Villieras

Laboratoire de Synthèse Organique, URA CNRS n°475, Faculté des Sciences et des Techniques, 2, Rue de la Houssinière, F-44072 Nantes Cedex 03, France

Received 18 May 1993

Lactamization of amidoacids **4**, prepared from the corresponding *tert*-butylesters, give fused bis(α -methylene- γ -lactams) **5** in high yields.

During the last few years, we have been interested in developing synthetic routes to α -methylene- γ -lactams¹⁻⁵ because some of these products exhibit a cytotoxic behaviour towards P388 leukaemia while their toxicity is ten times lower compared to the parent lactones.

We have previously described the reaction of the organozinc reagent derived from 2-(bromomethyl)acrylates 1 with nitriles 2^6 which affords new compounds 3 resulting from two successive additions of the organozinc intermediate reagent to the nitrile function, followed by a cyclization. This class of α -methylene- γ -lactams seems to exhibit interesting properties against P388 leukaemia and lung tumour cells probably owing to the presence of two electrophilic methylene moieties on the same molecule (Scheme 1).

Scheme 1

We describe here the synthesis of fused bis(α -methylene- γ -lactams) **5** from **3** which could exhibit important cytotoxic properties.

Compounds 3 (R = t-Bu) have been prepared in a one-step reaction of the organozinc reagent 1, derived

from *tert*-butyl 2-(bromomethyl)acrylate, with the corresponding nitriles **2**. The *tert*-butyl esters **3** are hydrolysed in the presence of dry hydrochloric acid in nitromethane. Lactamization of amidoacids **4** is then performed in the presence of methanesulfonyl chloride (1.5 equivalents), triethylamine (3 equivalents) and tetrabutylammonium hydrogen sulfate (0.05 equivalent) and gives yields of the corresponding fused bis(α -methylene- γ -lactams) **5** (Scheme 2).

Scheme 2

This set of reactions affords good yields of pure crystallized fused bis(α -methylene- γ -lactams) 5 which have been previously used for the synthesis of β -lactams from β -amino esters.⁸

The cytotoxic behaviour of compounds 5 towards P 388 leukaemia is now being studied.

Table 1. Compounds 3a-f Prepared

Prod- uct		mp (°C)	IR (KBr) v (cm ⁻¹)	1 H NMR (CDCl ₃ /TMS) δ , J (Hz)	13 C NMR (CDCl $_3$ /TMS) δ
3a	89	70	3200, 1710,	1.27 (s, 3H), 1.48 (s, 9H), 2.53 (s, 3H), 2.48, 2.83 (2d, <i>J</i> = 17,	27.9, 28.4, 39.5, 42.8, 56.0, 81.1,
			1690, 1620	2 H), 5.29 (m, 1 H), 5.57 (m, 1 H), 5.94 (t, $J = 2.5$, 1 H), 6.19 (d, $J = 1.6$, 1 H), 6.87 (s, 1 H)	113.9, 128.7, 137.5, 140.0, 166.7, 169.3
3b	85	106	3220, 1690,	0.92, 1.0 (2d, $J = 4.2, 6H$), 1.49 (s, 9H), 1.77 (m, 1H), 2.56 (s,	17.1, 17.2, 27.9, 33.7, 37.3, 37.6, 61.7,
			1660, 1620	2H), 2.64 (m, 2H), 5.22 (m, 1H), 5.58 (m, 1H), 5.84 (t, $J = 3.4$,	80.8, 114.8, 129.5, 137.2, 140.8,
				1H), 6.20 (d, $J = 2.5$, 1H), 7.52 (s, 1H)	167.1, 170.1
3c	75	100	3190, 1700,	1.49 (s, 9 H), 2.47, 2.53 (2 d, $J = 2.8, 2$ H), 2.23, 2.75 (2 d, $J = 13.4$,	28.0, 34.7, 38.5, 58.6, 59.2, 79.0, 81.1,
			1660, 1620	2H), 3.24 (d, $J = 1.7$, 2H), 3.32 (s, 3H), 5.28 (m, 1H), 5.87 (m,	116.3, 128.8, 137.2, 139.4, 166.9,
				1H), 5.94 (t, $J = 2.6$, 1H), 6.19 (d, $J = 1.6$, 1H), 6.49 (s, 1H)	169.5
3d	20	105	3220, 1720,	1.32 (t, J = 6.8, 3 H), 1.49 (s, 9 H), 1.79 (s, 3 H), 2.88 (s, 2 H), 2.9,	14.2, 21.7, 23.7, 28.0, 39.6, 42.0, 60.0,
			1690, 1660,	3.3 (2 d, J = 18, 2 H), 4.22 (q, J = 6.8, 2 H), 5.22 (m, 1 H), 5.60 (m, 1 H)	60.9, 81.0, 115.7, 130.5, 136.0, 136.3,
			1625	1H), 5.87 (m, 1H), 6.24 (m, 1H), 6.51 (s, 1H)	139.2, 166.7, 169.2, 169.5
3e	90	121	3180, 1680,	1.57 (s, 9 H), 2.94 (s, 2 H), 2.94, 3.25 (2 d, $J = 17$, 2 H), 5.27 (m,	27.9, 40.9, 44.0, 62.1, 80.9, 115.9,
			1650, 1620	1H), 5.5 (m, 1H), 5.94 (m, 1H), 6.14 (t, $J = 1.3$, 1H), 7.29 (s, 5H),	125.1, 127.0, 129.9, 136.8, 139.7,
				7.68 (s, 1H)	145.2, 166.6, 170.5
3f	92	134	3200, 1700,	1.47 (s, 9 H), 2.70 (s, 2 H), 2.9, 3.25 (2 d, J = 18, 2 H), 3.81 (s, 3 H),	27.9, 40.7, 44.2, 56.2, 60.7, 62.4, 80.9,
			1675, 1615	3.84 (s, 6H), 5.32 (m, 1H), 5.52 (m, 1H), 5.96 (t, $J = 4.2$, 1H),	102.7, 115.9, 129.7, 136.9, 139.9,
				6.15 (d, $J = 2$, 1H), 6.52 (s, 1H), 7.51 (s, 1H)	141.3, 153.2, 166.6, 170.6

^a Yield of 3 based on 1.

^b Satisfactory microanalyses obtained: $C \pm 0.25$, $H \pm 0.15$, $N \pm 0.30$.

1214 Short Papers SYNTHESIS

Table 2. Compounds 4a-f Prepared

Prod- uct	Yield (%)a,b		IR (KBr) ν (cm ⁻¹)	1 H NMR (DMSO- d_{6} /TMS) δ , J (Hz)	$^{13}{ m C}$ NMR (DMSO- $d_6/{ m TMS})$ δ
4a	83	164	3280, 1710, 1650, 1600	1.19 (s, 3H), 2.33, 2.79 (2d, <i>J</i> = 16.8, 2H), 2.44 (s, 2H), 5.21 (m, 1H), 5.65 (m, 2H), 6.18 (m, 1H), 8.12 (s, 1H)	28.3, 38.2, 41.6, 56.6, 113.9, 129.0, 136.6, 141.6, 167.9, 168.5
4b	88	165	3280, 1720, 1650, 1610	0.86 (d, <i>J</i> = 3.4, 3H), 0.95 (d, <i>J</i> = 3.4, 3H), 1.7 (m, 1H), 2.3, 2.66 (2d, <i>J</i> = 15.2, 2H), 2.52 (s, 2H), 5.23 (m, 1H), 5.55 (m, 1H), 5.7 (m, 1H), 6.15 (m, 1H), 8.09 (s, 1H)	16.9, 32.7, 36.7, 36.9, 60.9, 113.0, 129.5, 136.4, 141.9, 168.5, 168.7
4c	77	152	3300, 1700, 1650, 1620	2.3, 2.6 (2d, $J = 17.1$, 2H), 2.61 (s, 2H), 3.13 (s, 2H), 3.25 (s, 3H), 5.23 (m, 1H), 5.71 (m, 1H), 5.76 (m, 1H), 6.28 (m, 1H), 8.19 (s, 1H)	33.3, 37.1, 58.4, 58.6, 78.2, 113.0, 129.2, 135.9, 141.2, 168.5
4d	63	198	3290, 1720, 1695, 1645, 1620	1.22 (t, J = 8.2, 3H), 1.65 (s, 3H), 1.85 (s, 3H), 2.56, 2.86 (dd, J = 12.5, 2H), 2.72, 3.13 (dd, J = 14.6, 2H), 4.1 (q, J = 8.2, 2H), 5.18 (m, 1H), 5.6 (m, 1H), 5.89 (m, 1H), 6.22 (m, 1H), 7.9 (s, 1H)	13.9, 20.8, 23.9, 38.2, 39.5, 59.7, 60.1, 113.9, 130.8, 132.8, 137.1, 140.4, 168.5, 168.8
4 e	91	193	3280, 1690, 1650, 1600	2.78, 3.24 (2 dd, <i>J</i> = 13.5, 2 H), 3.05 (s, 2 H), 5.27 (m, 1 H), 5.61 (m, 1 H), 5.89 (m, 1 H), 6.30 (m, 1 H), 7.25 (m, 6 H)	39.5, 42.5, 61.4, 114.1, 125.1, 126.7, 128.2, 129.9, 135.8, 140.6, 146.5, 168.4, 168.7
4f	82	218	3290, 1685, 1645, 1600	2.64, 2.98 (dd, J = 10, 2H), 2.94, 3.32 (dd, J = 1, 2H), 3.69 (s, 3H), 3.83 (s, 6H), 5.26 (m, 1H), 5.62 (m, 1H), 5.72 (m, 1H), 6.19 (m, 1H), 6.73 (s, 2H), 8.85 (s, 1H)	41.6, 45.4, 58.1, 62.0, 63.8, 105.4, 116.3, 131.5, 138.7, 142.9, 144.2, 154.9, 170.9

^a Yield of 4 based on 3.

Table 3. Compounds 5a-f Prepared

Prod- uct		mp (°C)	IR (KBr) ν (cm ⁻¹)	¹ H NMR (CDCl ₃ /TMS) δ , J (Hz)	$^{13}\text{C NMR (CDCl}_3/\text{TMS)}$
5a	79	144	1765, 1750, 1680, 1650	1.35 (s, 3H), 2.81 (m, 4H), 5.61 (t, $J = 2.2, 2H$), 6.25 (t, $J = 2.5, 2H$)	28.1, 41.6, 60.1, 122.0, 141.0, 163.0
5b	82	142	1780, 1750, 1680, 1650	0.81 (d, J = 8.5, 6 H), 1.77 (m, 1 H), 2.64 (dt, J = 17, 3.4, 2 H), 3.09 (d, J = 17, 2 H), 5.54 (dd, J = 1.3, 2.6, 2 H), 6.15 (dd, J = 1.3, 2.6, 2 H)	17.1, 37.3, 37.8, 65.7, 121.0, 141.0, 164.8
5c	78	144	1775, 1750, 1690, 1650	2.67 (dt, $J = 17$, 3.2, 2H), 3.05 (d, $J = 17$, 2H), 3.25 (s, 2H), 3.33 (s, 3H), 5.57 (dd, $J = 1.4$, 2.8, 2H), 6.21 (dd, $J = 1.4$, 2.8, 2H)	37.3, 59.6, 63.4, 77.3, 121.6, 140.7, 1644
5d	75	155	1780, 1750, 1720, 1690, 1650	1.22 (t, $J = 7.6$, 3 H), 1.66 (s, 3 H), 1.8 (s, 3 H), 3.21–3.6 (m, 4 H), 4.1 (q, $J = 7.6$, 2 H), 5.55 (t, $J = 2.5$, 2 H), 6.18 (t, $J = 2.7$, 2 H)	13.8, 21.2, 22.8, 43.8, 61.3, 63.3, 121.5, 134.7, 136.6, 140.1, 164.5, 168.6
5e	81	211	1770, 1750, 1690, 1650	3.25 (m, 4H), 5.45 (t, J = 2.2, 2H), 6.13 (t, J = 2.5, 2H), 7.29 (s, 5H)	44.1, 65.8, 122.2, 124.9, 127.9, 128.9, 140.0, 144.6, 164.5
5f	82	178	1770, 1750, 1690, 1650	3.3 (m, 4H), 3.81 (s, 3H), 3.9 (s, 6H), 5.63 (t, J = 2.2, 2H), 6.23 (t, J = 2.5, 2H), 6.56 (s, 2H)	44.2, 56.3, 60.7, 65.9, 102.4, 122.3, 137.7, 140.0, 153.6, 164.6

a Yield of 5 based on 4.

All solvents were dried by standard methods. All experiments were carried out with exclusion of moisture. The melting points are uncorrected. ¹H and ¹³C NMR spectra were recorded on JEOL FX 90Q ¹H (90 MHz) ¹³C (22.5 MHz). IR spectra were recorded on Perkin-Elmer 1420.

5-Substituted 5-(3- *tert*-Butoxycarbonyl-2-methylenepropyl)-3-methylene-2-pyrrolidones (3); General Procedure:

To a suspension of granulated Zn 30 mesh (2.48 g, 38 mmol) in a THF solution (15 mL) of nitrile 2 (14 mmol) under N_2 , a solution of tert-butyl-2-(bromomethyl)acrylate (6.63 g, 30 mmol) in dry THF (10 mL) was added dropwise at r.t. The mixture was then stirred under reflux for 2 h, poured into sat. aq NH₄Cl (100 mL) and extracted with EtOAc (2 × 100 mL). The combined organic layers were washed with brine (100 mL), dried (MgSO₄) and finally evaporated under reduced pressure. The crude yellow oil was purified by chromatography on silica gel with hexane/EtOAc (30/70) as eluent to afford the corresponding α -methylene- γ -lactam tert-butyl ester 3.

5-Substituted 5-(3-Carboxy-2-methylenepropyl)-3-methylene-2-pyrrolidones (4); General Procedure:

A stream of dry HCl was bubbled through a solution of lactam ester 3 (8 mmol) in cool (0° C) anhydr. MeNO₂ (40 mL) until saturation. The mixture was then stirred for 3 h at r.t, and the solvent removed

under reduced pressure. The crude acid 4 was purified by recrystallization from MeOH.

8-Substituted Hexahydro-2,6-dimethylene-1*H*-pyrrolizine-3,5-diones 5 [Fused Bis(α-methylene-y-lactams)]; General Procedure:

A mixture of acid 4 (3.89 mmol), Bu_4NHSO_4 (66 mg, 0.2 mmol), CH_3SO_2Cl (0.5 mL, 5.83 mmol), Et_3N (1.5 mL, 11.67 mmol) and freshly purified $CHCl_3$ (50 mL) was stirred at r.t. for 4 h (TLC control). The reaction flask was then evacuated under reduced pressure. The brown residue was chromatographed on a silica gel column using hexane/EtOAc as eluent.

- (1) Belaud, C.; Roussakis, C.; Letourneux, Y.; El Alami, N.; Villieras, J. Synth. Commun. 1985, 15, 1223.
- (2) El Alami, N.; Belaud, C.; Villieras, J. Tetrahedron Lett. 1987, 28,
- (3) El Alami, N.; Belaud, C.; Villieras, J. J. Organomet. Chem. 1988, 348, 1.
- (4) El Alami, N.; Belaud, C.; Villieras, J. J. Organomet. Chem. 1988, 353, 157.
- (5) El Alami, N.; Belaud, C.; Villieras, J. Synth. Commun. 1988, 18, 2073.
- (6) El Alami, N.; Belaud, C.; Villieras, J. J. Organometal. Chem. 1987, 319, 303.
- (7) Roussakis, C.; Verbist, J.F., unpublished results.
- (8) Watanabe, Y.; Mukayama, T. Chem. Lett. 1981, 443.

 $^{^{\}text{b}}$ Satisfactory microanalyses obtained: C \pm 0.25, H \pm 0.15, N \pm 0.30.

^b Satisfactory microanalyses obtained: $C \pm 0.25$, $H \pm 0.15$, $N \pm 0.30$.