July 1995 SYNTHESIS 831

Palladium-Catalyzed Selective Carbonylation of Vinyl Triflates in the Presence of 2-Iodophenols: A New Route to 3-Spiro-Fused Benzofuran-2(3H)-ones

Roberto Anacardio,^a Antonio Arcadi,^{b*} Gaetano D'Anniballe,^b Fabio Marinelli^{b*}

^a Dompé Research Center, località Campo di Pile, I-67100 L'Aquila, Italy

b Dipartimento di Chimica, Ingegneria Chimica e Materiali, via Vetoio- I-67100 L'Aquila, Italy Fax +39(862)4311432573

Received 22 February 1995

A convenient synthesis of 3-spiro-fused benzofuran-2(3*H*)-ones via palladium-catalyzed chemoselective carbonylation of vinyl triflates in the presence of *o*-iodophenols, followed by regioselective intramolecular Heck reaction, is described.

The benzofuran-2-one nucleus is present in some compounds of pharmacological interest showing hypocholesterolamic and radiation-protective activity, as well as in naturally occurring products such as marginalin.

Recently, synthetic procedures leading to 3-arylideneben-zofuran-2(3H)-ones^{2,3} and 3,3-diarylbenzofuran-2(3H)-ones⁴ have been reported.

As part of our current studies on the development of new palladium-catalyzed routes to heterocyclic systems,⁵ we thought that an easy approach to α,β -unsaturated o-iodophenyl esters 3 could represent a practical route to functionalized 3-spiro-fused benzofuran-2(3H)-ones 4 via intramolecular Heck reaction⁶ (see Scheme 2).

We therefore focused our attention on the preparation of compounds 3 starting from readily available vinyl triflates 1 and 2-iodophenols 2.

Palladium-catalyzed carbonylation of aryl, vinyl or benzyl halides, and aryl or vinyl triflates in the presence of suitable nucleophiles represents a well-documented procedure for the synthesis of a variety of aromatic and α,β -unsaturated esters, amides, α -ketoamides, α -keto esters and acids, anhydrides, acids, acid fluorides, lactones, lactams, aldehydes and imides. The reaction involves oxidative addition of halides or triflates to a palladium(0) species, followed by CO coordination and insertion. Nucleophilic attack on the resulting acylpalladium(II) intermediate affords the product and regenerates the palladium(0) catalyst. Moreover, carbonylation of 2-iodophenol derivatives has been reported to produce flavones and aurones through the formation of aroyl palladium iodide intermediate 7 (Scheme 1).

$$\begin{array}{c|c} Pd(0) & Pd-1 \\ \hline OH & CO \\ \end{array} \longrightarrow \begin{array}{c} Pd(0) \\ \hline \end{array} \longrightarrow \begin{array}{c} Products \\ \hline \end{array}$$

Scheme 1

We now wish to report that the palladium-catalyzed carbonylation of a mixture of 2-iodophenols **2** and vinyl triflates **1** in anhydrous MeCN at room temperature under an atmosphere of CO, in the presence of a catalytic amount of $Pd(PPh_3)_4$ and potassium carbonate as base, affords o-iodophenyl α,β -unsaturated esters **3** in high yield (see Scheme 2 and Table 1). It is worth noting that,

under our reaction conditions, the oxidative insertion of the palladium catalyst takes place chemoselectively into the vinyl-OTf bond; the order of reactivity we observed $(C=C-OTf>ArI)^{11}$ allows an effective synthesis of compounds 3.

Scheme 2

Regioselective 5-exo-trig cyclization of esters 3 has been successfully accomplished 12 in MeCN at 80°C in the presence of Pd(OAc)₂(PPh₃)₂ (5%) and 1.2 equiv of TlOAc 13 (see Scheme 2 and Table 1). The use of 1.2 equiv of Ag₂CO₃ 14 gave moderate results; product 4a was isolated in only 46% yield after reacting 3a for 23 h under the usual reaction conditions but using silver carbonate instead of thallium acetate. The importance of an HI scavenger is demonstrated by the cyclization of 3e in DMF at 80°C (6 h) without TlOAc, in the presence of KOAc (1.2 equiv) and Pd(OAc)₂ (5%), resulting in the formation of an 80: 20 mixture of the alkenes 4e and 5e (71% yield). 15

Scheme 3

Table 1. Preparation of 2-Iodophenyl Esters 3 and Benzofuranones 4

Yield ^a (%)	Product 4	Time ^b (h)	Yield ^c (%)
74	CH ₃ 4a	₹- Bu 2.5	85
71	CH ₃ O	Ph 5.5	75
79	CH ₉ 4c	H. IOAc 2	77
OCOPh 72	CH ₃ O 4d	—ocoph	70
H₃ 88	CH ₃ 4e		66
75	Ph 4f)}-ocH₃ 6	73
ks 65)}-осн₃ 24	59
	74 71 71 72 72 75	74 CH ₃ 4a 71 CH ₃ 4b 71 CH ₃ 4c 71 CH ₃ 4c 72 CH ₃ 4c 72 Ad The series of	74 CH _b Aa 71 CH _b Ab 75 CH _b CH _b Ac CH

Table 1. (continued)

Product 3	Yield ^a (%)	Product 4	Time ^b (h)	Yield°(%)
CI OCH ₃	62	CI OCH ₃	23	58ª
F CCH₃	78	FOCH ₃	23	75
Phco Cha	72	PhCO OCH ₃	4	75
3j		4 j		

^a Yield of pure isolated 3 based on triflate.

^b Reaction time for cyclization.

° Yield of pure isolated 4.

d 10 mol% of Pd(OAc)₂(PPh₃)₂ was used.

According to the previously reported results concerning the stereoselective construction of quaternary¹⁷ and tertiary¹⁸ carbon centers by intramolecular Heck reaction, the cyclization of esters 3c and 3d occurred with high stereoinduction to form single diastereomers 4c and 4d.¹⁶ On the contrary, in the cyclization of 3a and 3b the products 4a and 4b were obtained, respectively, as a 1.7:1 and 1.8:1 unseparated mixture of diastereomers, as judged by NMR analysis.

Attempts to synthesize **4e** through a one-pot procedure, starting from 6-methoxy-3,4-dihydro-1-naphthyl triflate (**1a**) and 2-iodo-4-methylphenol (**2a**), were unsuccessful.¹⁹

We were also unable to obtain a palladium-catalyzed tandem cyclization—hydride ion capture process;²⁰ reacting the substrate **3a** in DMF (100 °C, 3 h) with ammonium formate (3 equiv) and Pd(OAc)₂ led to **6a** in 70 % yield (Scheme 4).²¹ In this case the reaction outcome showed that hydride exchange of the initial arylpalladium intermediate was the favoured process.

Scheme 4

In conclusion, the reaction between vinyl triflates and 2-iodophenols in the presence of carbon monoxide and palladium catalyst is of significant synthetic value, since it can be used for the preparation of 2-iodophenyl α,β -unsaturated esters that represent useful intermediates for the synthesis of benzofuran-2(3H)-ones. Because of the ready availability of vinyl triflates from ketones²² and 2-iodophenols from phenols,²³ the present approach provides a straightforward and convenient route to these heterocyclic compounds.

The vinyl triflates²² and the substituted 2-iodophenols²³ were prepared as previously reported. Anhydr. MeCN and other solvents and chemicals were commercially available and were used without further purification. The products were purified by flash chromatography on silica gel (Merck, 0.040–0.063 mm). Melting points are uncorrected and were measured in capillary tubes on a Buchi apparatus. IR spectra were recorded with a Perkin-Elmer 683 spectrometer. ¹H NMR (200 MHz) and ¹³C (50.3 MHz) spectra were recorded with a Bruker AC 200 spectrometer using TMS as internal standard. Electron impact mass spectra (70 EV) were recorded with an Incos XL/Finnigan/Mat instrument.

2-Iodophenyl α,β -Unsaturated Esters 3a-j; General Procedure:

To a stirred solution of the triflate 1 (2 mmol) in anhydr. MeCN (10 mL) was added the 2-iodophenol 2 (2.4 mmol), K_2CO_3 (6 mmol) and Pd(PPh₃)₄ (0.04 mmol). The flask was purged with CO for 1–2 s, connected to a balloon of CO and stirred overnight at r.t. The reaction mixture was then poured into a separatory funnel containing 0.1 N aq HCl (150 mL) and extracted with EtOAc (3 × 150 mL). The organic layer was separated and the aqueous layer was washed twice with EtOAc. The combined organic layers were dried (Na₂SO₄) and concentrated at reduced pressure. The residue, purified by flash chromatography (hexane – EtOAc mixtures), gave esters 3a-j.

Table 2. Characterization of 2-Iodophenyl Esters 3 and Benzofuranones 4

Prod- uct	mp ^a (°C)	EIMS ^b m/z (rel. intensity)	IR ν (cm ⁻¹)	1 H NMR (CDCl ₃) δ , J (Hz)	13 C NMR (CDCl ₃)° δ , J (Hz)
3a	95-98	398 (M ⁺ , 2), 165 (100)	(KBr) 1740	7.64 (d, $J = 2.0$, 1 H), 7.34–7.30 (m, 1 H, 7.14 (dd, $J = 8.2$, 2.0, 1 H), 7.00 (d, $J = 8.2$, 1 H), 7.00 (d, $J = 8.2$, 1 H), 7.00 (d, $J = 8.2$, 1 H), 7.72 (e, 2 H), 0.01 (f, 0 H)	165.1, 149.1, 143.2, 139.5, 137.2, 130.0, 129.5, 122.6, 90.2, 43.2, 23.4, 27.8, 27.4, 25.7, 23.5, 20.4
3 b	99-102	418 (M ⁺ , 3), 185 (100)	(KBr) 1740	2.73–2.60 (m, 1 H), 2.30 (s, 3 H), 0.91 (s, 9 H) 7.82 (bs, 1 H), 7.40–7.05 (m, 7 H), 7.00 (d, <i>J</i> = 8.2, 1 H), 2.90–2.75 (m, 1 H), 2.27, (s, 3 H)	32.1, 27.8, 27.1, 25.7, 23.5, 20.4 164.8, 149.0, 145.7, 142.0, 139.5, 137.3, 130.0, 129.4, 128.5, 126.7, 126.3, 122.5, 90.2, 39.0, 34.0, 29.3, 24.9, 20.3
3c	173–175	576 (M ⁺ , 4), 343 (100), 283 (18)	(KBr) 1740	7.64 (d, $J = 1.7$, 1 H), $7.17-7.09$ (m, 2 H), 7.00 (d, $J = 8.2$, 1 H), 5.01 (bs, 1 H), 2.30 (s, 3 H), 2.05 (s, 3 H), 1.02 (s, 3 H), 0.83 (s, 3 H)	170.6, 162.3, 148.9, 146.7, 145.9, 139.5, 137.2, 129.9, 122.6, 90.3, 69.9, 56.6, 54.6
3d	135–137	618 (M ⁺ , 1), 385 (63), 105 (100)	(KBr) 1730	8.19 (d, $J = 7.6, 2$ H), $7.65 - 7.56$ (m, 2 H), $7.51 - 7.74$ (m, 2 H), $7.35 - 7.31$ (m, 1 H), $7.17 - 7.11$ (m, 2 H), $7.04 - 6.92$ (m, 3 H), 2.29 (s, 3 H), 1.06 (s, 3 H)	165.3, 162.2, 148.8, 148.6, 146.5, 145.8, 139.5, 137.92, 137.91, 137.2, 133.4, 130.0, 129.9, 129.5, 128.4, 126.1, 122.6, 121.5, 118.6, 90.3, 55.7, 46.2, 44.3
3e	117-119	420 (M ⁺ , 7), 187 (100), 159 (92)	(KBr) 1740	7.94 (d, $J = 8.4$, 1 H), 7.67 (d, $J = 1.9$, 1 H), 7.48 (t, $J = 5.0$, 1 H), 7.17 (dd, $J = 8.2$, 1.9, 1 H), 7.04 (d, $J = 8.2$, 1 H), 6.79 – 6.72 (m, 2 H), 3.79 (s, 3 H), 2.80 (t, $J = 7.9$, 2 H), 2.53 – 2.42 (m, 2 H), 2.31 (s, 3 H)	163.9, 159.0, 149.1, 140.2, 139.7, 138.0, 137.5, 130.1, 129.2, 127.4, 123.5, 122.7, 113.8, 111.1, 90.3, 55.2, 27.8, 23.7, 20.4
3f	105-107	482 (M ⁺ , 10), 296 (6), 187 (100), 159 (70)	(KBr) 1740	8.04 (d, $J = 2.1$, 1 H), 7.97 (d, $J = 8.4$, 1 H), 7.58–7.33 (m, 7 H), 7.22 (d, $J = 8.4$, 1 H), 6.80–6.74 (m, 2 H), 3.77 (s, 3 H), 2.79 (t, $J = 7.9$, 2 H), 2.52–2.41 (m, 2 H)	163.7, 159.0, 150.6, 140.8, 140.6, 138.8, 138.0, 137.8, 129.0, 128.8, 128.1, 127.7, 127.4, 127.0, 123.32, 123.25, 113.7, 111.1, 91.0, 55.1, 27.7, 23.7
3g	142-145	474 (M ⁺ , 12), 288 (5), 187 (100), 159 (78)	(KBr) 1750	7.90 (d, $J = 9.4$, 1 H), 7.64 (d, $J = 9.6$, 1 H), 7.59 (t, $J = 5.0$, 1 H), 7.50 (d, $J = 8.4$, 1 H), 7.16 (d, $J = 8.4$, 1 H), 6.80–6.74 (m, 2 H), 6.39 (d, $J = 9.6$, 1 H), 3.80 (s, 3 H), 2.82 (t, $J = 7.9$, 2 H), 2.58–2.47 (m, 2 H)	163.1, 159.7, 159.1, 154.7, 154.6, 142.8, 141.4, 138.0, 128.5, 127.2, 123.0, 119.5, 117.0, 116.3, 113.7, 111.2, 82.3, 55.2, 27.6, 23.7
3h	141-143	442 (M ⁺ + 2, 2), 440 (M ⁺ , 6), 187 (100), 159 (68)	(KBr) 1740	7.91 (d, $J = 8.2$, 1 H), 7.82 (d, $J = 2.4$, 1 H), 7.50 (t, $J = 5.0$, 1 H), 7.34 (dd, $J = 8.7$, 2.4, 1 H), 7.10 (d, $J = 8.7$, 1 H), 6.79 – 6.74 (m, 2 H), 3.79 (s, 3 H), 2.79 (t, $J = 8.7$, 2 H), 2.53 – 2.42 (m, 2 H)	163.4, 159.1, 150.1, 140.8, 138.6, 138.0, 131.9, 129.4, 127.3, 123.9, 123.2, 113.8, 111.2, 91.0, 55.2, 27.7, 23.7
3i	105-107	424 (M ⁺ , 16), 187 (100), 159 (64)	(KBr) 1740	7.92 (d, $J = 8.4$, 1 H), 7.58–7.47 (m, 2 H), 7.13–7.08 (m, 2 H), 6.80–6.74 (m, 2 H), 3.79 (s, 3 H), 2.79 (t, $J = 2.9$, 2 H), 2.53–2.43 (m, 2 H)	163.7 (d, $J = 1$ Hz), 159.7 (d, $J = 250$, C-F), 159.1, 147.7 (d, $J = 4$), 140.7, 138.0, 113.8, 111.2, 90.3 (d, $J = 8$), 55.2, 27.7, 23.7
3ј	oil	510 (M ⁺ , 6), 187 (100), 159 (60)	(neat) 1740, 1670	8.31 (d, <i>J</i> = 1.9, 1 H), 7.94 (d, <i>J</i> = 8.4, 1 H), 7.83–7.75 (m, 3 H), 7.58–7.41 (m, 4 H), 7.30 (d, <i>J</i> = 8.4, 1 H), 6.79–6.73 (m, 2 H), 3.77 (s, 3 H), 2.79 (t, <i>J</i> = 7.8, 2 H), 2.53–2.43 (m, 2 H)	193.9, 163.0, 159.1, 154.5, 141.2, 150.0, 138.0, 136.8, 136.5, 132.7, 131.2, 129.9, 128.6, 128.4, 127.3, 123.1, 123.0, 113.7, 112.2, 90.7, 55.1, 27.6, 23.8
4a ^d	oil	270 (M ⁺ , 25), 214 (41), 57 (100)	(neat) 1810	7.11–6.94 (m, 3 H), 6.20–6.13 (m, 1 H), 5.50–5.38 (m, 1 H), 2.35/2.34 (two <i>Me</i> -Ar), 1.01/0.98 (two <i>t</i> -Bu)	180.0/178.1 (CO), 48.7/47.5 (quat)
4b ^d	oil	290 (M ⁺ , 38), 262 (20)	(neat) 1810	7.34–6.87 (m, 8 H), 6.10 (major diast., dd, $J = 9.8$, 2.9), 6.04 (minor diast., dd, $J = 9.8$, 2.9), 5.52 (major diast., dd, $J = 9.8$, 2.4), 5.46	179.1/178.4 (CO), 48.2/47.6 (quat)
4c	198-200	448 (M ⁺ , 24), 388 (100)	(KBr) 1810, 1730	(minor diast., dd, $J = 9.8, 2.4$), 2.27 (bs, 3 H) 7.09–7.04 (m, 1 H), 6.97–6.94 (m, 2 H), 6.29 (d, $J = 5.9, 1$ H), 5.83 (dd, $J = 5.9, 3.3, 1$ H), 5.01 (bs, 1 H), 2.36 (s, 3 H), 2.05 (s, 3 H), 1.82 (s, 3 H), 0.84 (s, 3 H)	177.0, 170.5, 150.6, 135.9, 132.9, 132.2, 129.1, 127.1, 124.9, 110.3, 65.4 (quat), 55.1 (quat), 36.0 (quat)
4d	196–198	490 (M ⁺ , 2), 105 (100)	(KBr) 1800, 1740	8.22-8.17 (m, 2H), 7.65-7.46 (m, 3H), 7.27-7.21 (m, 1 H), 7.13-6.93 (m, 5 H), 6.41 (dd, $J = 5.8$, 1.7, 1 H), 5.92 (dd, $J = 5.8$, 3.3, 1 H), 2.36 (s, 3 H), 1.25 (s, 3 H)	176.9, 165.4, 150.7, 148.9, 137.9, 137.4, 135.6, 133.5, 133.1, 132.8, 130.1, 129.6, 129.3, 128.5, 126.9, 126.1, 124.9, 121.7, 118.8, 110.5, 65.4 (quat), 55.3 (quat)
4e	oil	292 (M ⁺ , 92), 264 (100)	(neat) 1810	7.17-7.05 (m, 2 H), 6.84 (bs, 1 H), 6.78 (d, $J = 2.2$, 1 H), $6.70-6.56$ (m, 2 H), 6.34 (ddd, $J = 9.8$, 4.3 , 3.1 , 1 H), 5.67 (ddd, $J = 9.8$, 2.6 , 1.7 , 1 H), $3.83-3.48$ (m, 2 H), 3.78 (s, 3 H)	177.3, 159.1, 151.1, 135.2, 134.7, 133.5, 129.7, 128.6, 128.3, 125.4, 125.3, 124.7, 113.5, 113.1, 110.3, 55.2, 52.8 (quat), 30.2, 21.1

Table 2. (continued)

	`	<i>'</i>			
Prod- uct	mp ^a (°C)	EIMS ^b m/z (rel. intensity)	IR v (cm ⁻¹)	1 H NMR (CDCl ₃) δ , J (Hz)	¹³ C NMR (CDCl ₃) ^c δ, J (Hz)
4f	60-63	354 (M ⁺ , 50), 326 (100)	(KBr) 1810	7.58 (dd, $J = 8.4, 1.9, 1 \text{ H}$), 7.51–7.45 (m, 2 H), 7.42–7.24 (m, 5 H), 6.80–6.78 (m, 1 H), 6.66–6.64 (m, 2 H), 6.37 (ddd, $J = 9.8, 4.3, 3.1, 1 \text{ H}$), 5.73 (ddd, $J = 9.8, 2.6, 1.7, 1 \text{ H}$), 3.85–3.50 (m, 2 H), 3.76 (s, 3 H)	177.0, 159.1, 152.7, 140.2, 138.5, 135.3, 134.2, 128.9, 128.8, 128.4, 128.1, 127.4, 126.9, 125.2, 124.6, 123.7, 113.5, 113.2, 111.0, 55.2, 52.8 (quat), 30.2
4g	174–176	346 (M ⁺ , 46), 318 (100)	(KBr) 1820, 1750	7.63 (d, $J = 9.6$, 1 H), 7.48 (d, $J = 8.4$, 1 H), 7.16 (d, $J = 8.4$, 1 H), 6.80 (bs, 1 H), 6.65–6.64 (m, 2 H), 6.45 (dd, $J = 9.8$, 3.8, 1 H), 6.25 (d, $J = 9.6$, 1 H), 5.71 (dd, $J = 9.8$, 2.2, 1 H), 3.94–3.60 (m, 2 H), 3.76 (s, 3 H)	176.2, 159.3, 159.2, 155.2, 150.0, 143.3, 135.8, 130.5, 129.3, 127.0, 123.2, 121.4, 119.7, 116.1, 115.1, 113.7, 113.3, 107.8, 55.2, 51.7 (quat), 30.3
4h	oil	314 (M ⁺ + 2, 24), 312 (M ⁺ , 72), 284 (100)	(neat) 1810	7.35–7.30 (m, 1 H), 7.14 (J = 8.4, 1 H), 7.03 (d, J = 2.2, 1 H), 6.80–6.77 (m, 1 H), 6.71–6.65 (m, 1 H), 6.56 (d, J = 8.4, 1 H), 6.37 (ddd, J = 9.8, 4.3, 3.1, 1 H), 5.66 (ddd, J = 9.8, 2.6, 1.7, 1 H), 3.84–3.49 (m, 2 H), 3.78 (s, 3 H)	176.3, 159.3, 151.6, 135.22, 135.20, 130.2, 129.4, 129.3, 128.2, 125.2, 124.5, 123.8, 113.7, 113.3, 112.1, 55.3, 52.8 (quat), 30.1
4i	134–136	296 (M ⁺ , 88), 268 (100)	(KBr) 1810	7.20–6.99 (m, 2 H), 6.80–6.65 (m, 3 H), 6.57 (d, J = 8.6, 1 H), 6.37 (ddd, J = 9.8, 4.3, 3.1, 1 H), 5.67 (ddd, J = 9.8, 2.6, 1.7, 1 H), 3.83–3.48 (m, 2 H), 3.78 (s, 3 H)	175.1, 160.0 (d, $J = 243$, C-F), 159.3, 149.0, 135.2, 55.3, 55.2 (d, $J = 1.8$, quat), 30.2
4 j	oil	382 (M ⁺ , 64), 354 (80), 277 (100)	(neat) 1820, 1670	7.85 (dd, <i>J</i> = 8.4, 1.9, 1 H), 7.75–7.70 (m, 2 H), 7.60–7.40 (m, 4 H), 7.29 (d, <i>J</i> = 8.4, 1 H), 6.79–6.77 (m, 1 H), 6.71–6.56 (m, 2 H), 6.38 (ddd, <i>J</i> = 9.8, 4.3, 3.2, 1 H), 5.70 (ddd, <i>J</i> = 9.8, 2.4, 1.7, 1 H), 3.82–3.50 (m, 2 H), 3.76 (s, 3 H)	195.1, 176.2, 159.2, 156.2, 137.3, 135.2, 134.5, 134.1, 132.5, 132.4, 129.7, 129.5, 128.3, 128.1, 127.0, 124.5, 123.8, 113.6, 113.3, 110.5, 55.2, 52.3 (quat), 30.1
5f ^d	oil	292 (M ⁺ , 39), 264 (100)	(neat) 1820	7.09 – 7.04 (m, 3 H), 6.75 (d, <i>J</i> = 2.6, 1 H), 6.70 – 6.60 (m, 3 H), 6.04 (ddd, <i>J</i> = 9.6, 5.1, 3.6, 1 H), 3.78 (s, 3 H), 3.02 (ddd, <i>J</i> = 17.3, 3.6, 1.4, 1 H), 2.67 (ddd, <i>J</i> = 17.3, 5.1, 2.4, 1 H), 2.26	179.5, 159.6, 149.5, 134.15, 134.12, 132.7, 129.4, 128.6, 127.2, 125.5, 124.4, 124.3, 113.21, 113.19, 110.5, 55.3, 50.3
6a	101-102	272 (M ⁺ , 4), 165 (100), 107 (29)	(KBr) 1740	(s, 3 H) 7.22 (t, $J = 3.1$, 1 H), 7.16 (d, $J = 8.5$, 2 H), 6.96 (d, $J = 8.5$, 2 H), 2.51–2.53 (m, 1 H), 2.34 (s, 3 H), 0.91 (s, 9 H)	(quat), 34.8, 21.1 166.1, 148.9, 142.1, 135.1, 129.9, 121.4, 43.3, 32.2, 27.8, 27.1, 25.7, 23.6, 20.9

^a Uncorrected, measured in capillary tubes.

3-Spiro-Fused Benzofuran-2(3H)-ones 4a-j; General Procedure:

To a stirred solution of esters 3a-j (0.5 mmol) in MeCN (10 mL) were added TlOAc (0.6 mmol) and Pd(OAc)₂(PPh₃)₂ (0.025 mmol). The reaction mixture was stirred at 80 °C under an N₂ atmosphere for the time required (see Table 1). The reaction mixture was then poured into a separating funnel containing 0.1 N aq HCl (150 mL) and extracted with EtOAc (3 × 150 mL). The organic layer was separated and the aqueous layer was washed twice with EtOAc. The combined organic layers were dried (Na₂SO₄) and concentrated at reduced pressure. The residue, purified by flash chromatography (hexane – EtOAc mixtures), gave benzofuran-2(3H)-ones 4a-j.

We thank Mr. Renato Di Bartolomeo for helpful technical assistance.

- (1) Holland, F.G. In Burger's Medicinal Chemistry, 4th ed., part II; Wolf, M.E.; Ed.; Wiley: 1979, 1234-1235.
- (2) Barbier, M. Synth. Comm. 1991, 21, 2317, and references therein.
- (3) Nicolaides, D.N.; Adamopoulos, S.G.; Lefkaditis, D.A.; Litinas, K.E.; Tarantili, P.V. J. Chem. Soc., Perkin Trans. I 1992, 283, and references therein.
- (4) Cariou, M.; Simonet, J. Tetrahedron Lett. 1991, 32, 4913.

- (5) Arcadi, A.; Cacchi, S.; Marinelli, F. In *Trends in Organometallic Chemistry*; Menon, J., Ed.; Trivandrum: India, in press.
- Laschat, S.; Narjes, F.; Overman, L.E. Tetrahedron 1994, 50, 347, and references therein.
- (7) Kubota, Y.; Hanaoka, T.; Takeuchi, K.; Sugi, Y. Synlett 1994, 515, and references therein.
 Perry, R.J.; Wilson, B.D.; Miller, R.J. J. Org. Chem. 1992, 57, 2883 and references therein.
 Schoenberg, A.; Bartoletti, I.; Heck, R.F. J. Org. Chem. 1974, 30, 3318
- (8) Cacchi, S.; Lupi, A. Tetrahedron Lett. 1986, 27, 3931. Cacchi, S.; Ciattini, P.G.; Morera, E.; Ortar, G. Tetrahedron Lett. 1985, 26, 1109.
- (9) Moser, W.R.; Wang, A.W.; Kildahl, N.K. J. Am. Chem. Soc. 1988, 110, 2816.
- (10) Ciattini, P.G.; Morera, E.; Ortar, G.; Strano Rossi, S. Tetrahedron 1991, 47, 6449.
 Kalinin, V.N.; Shostakovsky, M.V.; Ponomaryov, A.B. Tetrahedron Lett. 1990, 31, 4073.
 An, Z.W.; Catellani, M.; Chiusoli, G.P. Gazz. Chim. Ital. 1990, 120, 383.
 An, Z.W.; Catellani, M.; Chiusoli, G.P. L. Organomat. Chem.
 - An, Z.W.; Catellani, M.; Chiusoli, G.P. J. Organomet. Chem. 1989, 371, C51.
- (11) The order of reactivity for triflates/halides (without comparison between aryl iodides and vinyl triflates) has been reviewed: Ritter, K. Synthesis 1993, 735.

^b Satisfactory microanalyses obtained: $C \pm 0.32$; $H \pm 0.39$.

c "quat" = quaternary aliphatic carbons.

d Obtained as unseparated mixture of two diastereoisomers.

836 Papers SYNTHESIS

(12) A related Pd-catalyzed cyclization of 2-bromophenyl acrylates gave coumarin: Cao, L.; Bei, M.; Hua, L. Fenzi Cuihua 1991, 5, 296; Chem. Abstr. 1992, 116, 128586b.

- (13) Grigg, R.; Loganathan, V.; Santhakumar, V.; Sridharan, V.; Teasdale, A. Tetrahedron Lett. 1991, 32, 687.
- (14) Abelman, M.M.; Oh, T.; Overman, L.E. J. Org. Chem. 1987, 52, 4133.
- (15) When the cyclization of **3a** was carried out in MeCN (80°C, 3 h), KOAc (1.2 equiv) and Pd(OAc)₂(PPh₃)₂ (5%), the starting material was recovered in 79% yield.
- (16) No attempts were made to determine the configuration of the new quaternary chiral center.
- (17) Maidin, A.; Overman, L.E. Tetrahedron Lett. 1992, 33, 4859. Abelman, M.M.; Overman, L.E.; Tran, V.D. J. Am. Chem. Soc. 1990, 112, 6959.
- (18) Tietze, L.F.; Burkhardt, O. Synthesis 1994, 1331.

- (19) When 1a (1 mmol) was reacted with 2a (1.2 mmol) in 10 mL of anhydr. MeCN (80°C, overnight) under a balloon of CO in the presence of TlOAc (1.2 mmol) and Pd(OAc)₂(PPh₃)₂ (0.05 mmol), a GLC analysis revealed the absence of 3a and 4a in the reaction mixture. Similar results (3a being formed in ca. 7% yield) were obtained carrying out the reaction as above with 3 mmol of K₂CO₃.
- (20) Burns, B.; Grigg, R.; Ratananukul, P.; Sridharan, V.; Stevenson, P.; Worakun, T. *Tetrahedron Lett.* **1988**, *29*, 4329.
- (21) **6a** was the main reaction product (85% yield) also with potassium formate as hydride source.
- (22) Arcadi, A.; Cacchi, S.; Marinelli, F. Tetrahedron 1993, 49, 4955. Stang, P.J.; Treptow, W. Synthesis 1980, 283.
- (23) Edgar, K.J.; Falling, S.N. J. Org. Chem. 1990, 55, 5287.