An Intramolecular Pyranone Diels–Alder Cycloaddition Approach to Cannabinol

Fangfang Fan,^a Jingjing Dong,^a Jinqian Wang,^a Lina Song,^a Chuanjun Song,^{a,*} and Junbiao Chang^{a,*}

^a College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China E-mail: chjsong@zzu.edu.cn or changjunbiao@zzu.edu.cn

Received: November 20, 2013; Revised: January 4, 2014; Published online: March 20, 2014

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201301037.

Abstract: The natural product cannabinol was syn-
thesized using an intramolecular pyranone Diels-
Alder cycloaddition reaction as the key step. Thisstrategy is well adapted to access cannabinol ana-
logues.Keywords: cannabinol; cycloaddition; natural prod-

Introduction

Cannabinoids comprise a class of more than 70 natural products isolated from the plant *Cannabis sativa*.^[1] Besides the well-known recreational use of the cannabis plant as a psychotropic drug, other medicinal applications include antiemetic,^[2] analgesic,^[3] anticonvulsant,^[4] and antibiotic^[1c,5] properties. The biological activities of cannabinoids arise due to their interaction with two G-protein coupled cellular receptors, the central cannabinoid receptor CB₁ and the peripheral cannabinoid receptor CB₂.^[6] Because CB₁ and CB₂ show differences in their function, agonists that can selectively bind to one of the receptors are desirable.^[7]

 Δ^9 -Tetrahydrocannabinol (THC; 1) (Figure 1) has been identified as the primary active ingredient of *Cannabis sativa*. On aromatization of the cyclohexene ring, it gives cannabinol (CBN; 2) which has shown potent antibacterial activity.^[8] More importantly, derivatives of 2 have been found to bind selectively to the CB₂ receptor.^[7b,9] Therefore, synthetic routes towards cannabinol and its derivatives have been of

Figure 1. Δ^9 -Tetrahydrocannabinol (1) and cannabinol (2).

Adv. Synth. Catal. 2014, 356, 1337-1342

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

great interest. Besides oxidative aromatization of tet-rahydrocannabinols,^[7a,b,10] other strategies for the synthesis of cannabinols include formation of the biaryl moiety by nucleophilic aromatic substitution or crosscoupling reactions followed by pyran formation,^[9,11] and construction of the second phenyl ring starting from a suitably substituted arene by various cyclization reactions including an Ru-catalyzed microwavemediated [2+2+2] cyclotrimerization reaction^[12] and a multicomponent domino reaction.^[13] Recently, Minuti and co-workers have developed a high pressure-promoted Diels-Alder reaction of 1-phenylbuta-1,3-dienes with methyl propiolate for the synthesis of phenylcyclohexadienes, which was also applied to the formal synthesis of cannabinol (2).^[14] However, the very high pressure $(9 \times 10^3 \text{ bar})$ required to secure a good yield of the products and the necessity for a separate oxidation step to produce the biaryls is rather inconvenient. Herein, we report our strategy for the synthesis of cannabinol (2), featuring an intramolecular pyranone Diels-Alder cycloaddition reaction^[15] of compound **4** as the key step to build up the tricyclic motif **3** (Scheme 1).

Results and Discussion

ucts; pyranones; total synthesis

Our synthesis started with regioselective acylation of the known olivetol dimethyl ether $\mathbf{5}^{[16]}$ to produce α,β -unsaturated ketone **6** (Table 1). Friedel–Crafts acylation of **5** with crotonoyl chloride in DCM or toluene gave a mixture of the desired 2-acylation prod-

Advanced

Scheme 1. Retrosynthetic analysis of cannabinol (2).

uct 6 and the isomeric 4-acylation product 7 in a ratio of 1:2, from which only a disappointing 20% yield of 6 was isolated (entries 1 and 2). The ratio of 6 to 7 could be improved to 2:3 by subjecting 5 to crotonic acid in the presence of TFAA and FeCl₃ (entry 3).^[17] Addition of 1,10-phenanthroline to the reaction mixture to reduce the reactivity of FeCl₃ in the hope that the 2-acylation product 6 could be obtained in improved yield resulted, however, in exclusive formation of compound 7 (in 58% isolated yield) (entry 4). Although the desired product 6 was not obtained, the high regioselectivity was noteworthy. We then treated 5 with n-butyllithium (1.2 equiv.) in the presence of TMEDA to effect ortho-lithiation^[11c,18] and subsequently treated the resulting organolithium with crotonoyl chloride (1.4 equiv.) (entry 5). To our delight, 6 was the only product formed although the reaction was not complete. After stirring the reaction mixture at ambient temperature for 3 h, 6 was isolated in 10% yield together with substantial amount of the unreacted 5 recovered. The quantity of reactants was then explored. After some experiments, it was found that the reaction was complete when the amounts of *n*-butyl-

Table 1. Regioselective acylation of olivetol dimethyl ether 5.

lithium and crotonoyl chloride were increased to 4.0 and 4.5 equivalents, respectively, and **6** was isolated in 81% yield.

Having 6 in hand, we then finished our total synthesis of cannabinol (2) (Scheme 2). Michael addition of 6 with diethyl malonate provided 8 in excellent yield. Ester hydrolysis followed by decarboxylation in refluxing pyridine afforded keto acid 9, which cyclized on treatment with acetic anhydride to give dihydropyranone 10. Subsequent oxidation of 10 with DDQ gave pyranone 11 in excellent yield. Next, in order to get access to precursor 4 ($R = CH_3$) for the key intramolecular pyranone Diels-Alder cycloaddition reaction, one of the methyl protecting groups of 11 needed to be replaced with a propargyl group. Ouite a number of methods for the monodeprotection of aryl dimethyl ethers have been developed in the literature and applied in natural product synthesis.^[19] However, this proved to be difficult in our hands. Usually, the dideprotection product 12 itself or a mixture with the desired monodeprotection product (structure not shown) was obtained. Finally, we decided to remove both methyl protecting groups and react the resulting bis-phenol 12 with propargyl bromide to obtain the dipropargyl ether 13. The extra propargyl group could be removed later at a suitable stage after the cycloaddition reaction had been carried out. The dideprotection with BBr₃ proceeded as expected to give 12 in 69% isolated yield. After dipropargylation, 13 was ready for the key intramolecular pyranone Diels-Alder cycloaddition reaction, which proceeded smoothly in refluxing toluene and delivered pyran 14 in excellent yield. Next, selective oxidation of the benzylic methylene group with PCC furnished pyranone 15 in 86% isolated yield. Finally, addition of CH₃Li followed by treatment of the crude reaction mixture with TFA furnished the natural product can-

OMe		OMe O ↓ ↓ ∕	O OMe
C ₅ H ₁₁ OMe	acylation	C ₅ H ₁₁ OMe	+ C ₅ H ₁₁ OMe
5		6	7

Entry	Reagents and conditions	6 / 7 ^[a]	Yield [%] of 6 ^[b]
1	crotonoyl chloride, AlCl ₃ , CH ₂ Cl ₂ , reflux	33:67	20
2	crotonoyl chloride, AlCl ₃ , toluene, reflux	33:67	20
3	crotonic acid, TFAA, FeCl ₃ , DCM, r.t.	40:60	35
4	crotonic acid, TFAA, FeCl ₃ , 1,10-phenanthroline, DCM, r.t.	0:100	0
5	(a) <i>n</i> -BuLi (1.2 equiv.), TMEDA, Et_2O , -78 °C to r.t.;	100:0	10
	(b) crotonoyl chloride (1.4 equiv.), -78°C to r.t.		
6	(a) <i>n</i> -BuLi (4.0 equiv.), TMEDA, Et_2O , -78 °C to r.t.;	100:0	81
	(b) crotonoyl chloride (4.5 equiv.), -78 °C to r.t.		

^[a] Determined by ¹H NMR integration of the crude reaction mixture.

^[b] Isolated yield.

Scheme 2. Total synthesis of cannabinol (2).

nabinol (2) with simultaneous removal of the propargyl protecting group, so that an extra deprotection step was not necessary. A separate study on phenyl propargyl ether indicated that the propargyl deprotection reaction was effected by MeLi rather than TFA. A number of methods for propargyl ether deprotection have been reported.^[20] However, there is no literature precedent involving an organolithium reagent as depropargylation agent. Thus, our work has provided a new entry to propargyl ether deprotection. Detailed studies are currently underway and the results will be published elsewhere.

Conclusions

In summary, we have developed a novel approach to the total synthesis of the natural product cannabinol. The key step involves an intramolecular pyranone Diels–Alder cycloaddition reaction to build up the benzo[c]chromene framework. This strategy is well adapted to access broadly substituted C-ring analogues of cannabinol by using other α , β -unsaturated acyl chlorides or propargyl bromide derivatives.

Experimental Section

General

Solvents were dried according to standard procedures where needed. Melting points were determined on a XT4A hot-stage apparatus and are uncorrected. IR spectra were obtained using an IFS25 FT-IR spectrometer. ¹H and ¹³C NMR spectra were obtained on a Bruker AV300 or AV400 instru-

ment. Mass spectra were recorded on a Micromass Q-TOF mass spectrometer.

(*E*)-1-(2',6'-Dimethoxy-4'-pentylphenyl)but-2-en-1one (6)

To a solution of olivetol dimethyl ether 5 (337 mg, 1.62 mmol) and TMEDA (0.3 mL, 1.94 mmol) in dry THF (10 mL) at -78 °C under nitrogen, was added *n*-butyllithium (1.6M solution in hexane, 4 mL, 6.47 mmol). After addition, the mixture was allowed to warm to ambient temperature and stirred for 0.5 h before being cooled to -78°C again. Crotonoyl chloride (0.7 mL, 7.29 mmol) was added dropwise. The resulting mixture was allowed to warm to ambient temperature and stirred for a further 0.5 h, and then quenched with saturated aqueous ammonium chloride (30 mL). The mixture was extracted with ethyl acetate $(3 \times$ 30 mL). The combined organic extracts were dried (Na₂SO₄), filtered and evaporated under vacuum. The residue was purified by column chromatography on silica gel (10% ethyl acetate in petroleum ether) to give 6 as an orange oil; yield: 362 mg (81%). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.90$ (t, J = 6.9 Hz, 3 H), 1.30–1.35 (m, 4 H), 1.56–1.64 (m, 2 H), 1.89 (dd, J=6.9 Hz and 1.5 Hz, 3 H), 2.58 (t, J=7.8 Hz, 2H), 3.75 (s, 6H), 6.32 (dq, J=15.6, 1.5 Hz, 1.5 Hz)1 H), 6.37 (s, 2 H), 6.62 (dq, J = 15.6, 6.9 Hz, 1 H); ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3): \delta = 14.1, 18.4, 22.6, 31.1, 31.5, 36.7, 55.9,$ 104.2, 116.0, 134.1, 145.9, 146.3, 157.2, 195.7 ppm; IR (neat): $\nu_{max} = 1658, 1606, 1578, 1455, 1414, 1235, 1126 \text{ cm}^{-1}; \text{HR-MS}$ (ESI): m/z = 277.1802, calcd. for $C_{17}H_{25}O_3$ [M+H]⁺: 277.1804.

Diethyl 2-[4'-(2",6"-Dimethoxy-4"-pentylphenyl)-4'oxobutan-2'-yl]malonate (8)

To a solution of ketone **6** (4.5 g, 16.4 mmol) in dry ethanol (100 mL) was added diethyl malonate (5.3 g, 32.8 mmol) and anhydrous K_2CO_3 (0.5 g, 3.3 mmol). The resulting mixture

was heated to 80°C for 4 h, then cooled and quenched with 2M aqueous HCl (10 mL). The bulk of ethanol was evaporated under vacuum. The residue was partitioned between H_2O (100 mL) and ethyl acetate (30 mL). The separated aqueous phase was extracted with ethyl acetate $(2 \times 30 \text{ mL})$. The combined organic extracts were washed with brine $(3 \times$ 40 mL), then dried (Na₂SO₄), filtered and evaporated under vacuum. The residue was purified by column chromatography on silica gel (15% ethyl acetate in petroleum ether) to give 8 as an orange oil; yield: 6.97 g (97%). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.90$ (t, J = 6.9 Hz, 3H), 1.10 (d, J =6.9 Hz, 3H), 1.25 (t, J=7.2 Hz, 6H), 1.29–1.36 (m, 4H), 1.55–1.65 (m, 2H), 2.56 (t, J=7.5 Hz, 2H), 2.72–2.99 (m, 3H), 3.45 (d, J=6.3 Hz, 1H), 3.76 (s, 6H), 4.18 (q, J=7.5 Hz, 4H), 6.34 (s, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 14.1, 14.2, 17.4, 22.6, 29.3, 31.1, 31.6, 36.8, 49.0, 55.8, 56.4, 61.1, 61.2, 104.1, 117.8, 146.5, 156.7, 168.7, 168.9, 203.7; IR (neat): $v_{max} = 1749$, 1731, 1706, 1607, 1580, 1457, 1416, 1128 cm⁻¹; HRMS (ESI): m/z = 459.2350, calcd. for $C_{24}H_{36}NaO_7 [M+Na]^+: 459.2359.$

5-(2',6'-Dimethoxy-4'-pentylphenyl)-3-methyl-5-oxopentanoic Acid (9)

A mixture of diethyl malonate 8 (7.5 g, 17.2 mmol) and sodium hydroxide (6.8 g, 172 mmol) in ethanol (100 mL) and water (57 mL) was refluxed for 1 h, and then cooled. The bulk of the ethanol was evaporated under vacuum. The residue was partitioned between 2M aqueous HCl (60 mL) and ethyl acetate (50 mL). The separated aqueous phase was extracted with ethyl acetate $(2 \times 50 \text{ mL})$. The combined organic extracts were dried (Na₂SO₄), filtered and evaporated under vacuum. The residue was dissolved in pyridine (172 mL). The resulting mixture was heated to reflux for 12 h, and then cooled. The bulk of pyridine was evaporated under vacuum. The residue was partitioned between 2M aqueous HCl (60 mL) and ethyl acetate (60 mL). The separated aqueous phase was extracted with ethyl acetate ($2 \times$ 60 mL). The combined organic extracts were dried (Na₂SO₄), filtered and evaporated under vacuum to give keto acid 9 as an orange oil; yielkd: 4.9 g (90%), ¹H NMR (300 MHz, CDCl₃): $\delta = 0.90$ (t, J = 6.9 Hz, 3 H), 1.05 (d, J =6.6 Hz, 3H), 1.29-1.35 (m, 4H), 1.57-1.65 (m, 2H), 2.24 (m, 1H), 2.50–2.86 (m, 6H), 3.76 (s, 6H), 6.35 (s, 2H); ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3): \delta = 14.1, 19.9, 22.6, 26.3, 31.0, 31.5, 36.7,$ 40.7, 51.1, 55.7, 104.1, 117.7, 146.6, 156.7, 179.1, 204.4; IR (neat): $v_{max} = 1705$, 1608, 1582, 1463, 1416, 1369, 1282, 1230, 1130 cm⁻¹; HR-MS (ESI): m/z = 359.1833, calcd. for $C_{19}H_{28}NaO_5 [M+Na]^+: 359.1834.$

6-(2',6'-Dimethoxy-4'-pentylphenyl)-4-methyl-3,4-dihydro-2*H*-pyran-2-one (10)

A solution of keto acid **9** (3.2 g, 9.51 mmol) in acetic anhydride (50 mL) was heated to reflux for 5 h. The cooled mixture was evaporated under vacuum. The residue was partitioned between water (100 mL) and ethyl acetate (40 mL). The separated aqueous phase was extracted with ethyl acetate (2×40 mL). The combined organic extracts were washed successively with saturated aqueous sodium bicarbonate (5×50 mL) and brine (3×50 mL), and then dried (Na₂SO₄), filtered and evaporated under vacuum. The resi

due was purified by column chromatography on silica gel (10% ethyl acetate in petroleum ether) to give dihydropyranone **10** as an orange oil; yield: 3.0 g (100%). ¹H NMR (300 MHz, CDCl₃): δ =0.90 (t, *J*=6.9 Hz, 3H), 1.17 (d, *J*=6.9 Hz, 3H), 1.28–1.35 (m, 4H), 1.57–1.64 (m, 2H), 2.41 (m, 1H), 2.57 (t, *J*=7.8 Hz, 2H), 2.72–2.84 (m, 2H), 3.78 (s, 6H), 5.23 (d, *J*=3.3 Hz, 1H), 6.36 (s, 2H); ¹³C NMR (75 MHz, CDCl₃): δ =14.1, 20.2, 22.6, 26.4, 31.1, 31.6, 36.9, 36.9, 56.1, 104.2, 109.6, 113.3, 144.0, 146.4, 158.7, 170.1; IR (neat): v_{max}=1763, 1688, 1607, 1577, 1459, 1416, 1236, 1128, 1023 cm⁻¹; HR-MS (ESI): *m*/*z*=319.1901, calcd. for C₁₉H₂₇O₄ [M+H]⁺: 319.1909.

6-(2',6'-Dimethoxy-4'-pentylphenyl)-4-methyl-2*H*pyran-2-one (11)

DDQ (5.8 g, 19.1 mmol) was added to a solution of dihydropyranone 10 (4.1 g, 12.7 mmol) in dry 1,4-dioxane (100 mL). The resulting mixture was heated to reflux for 1 h and cooled. The bulk of solvent was evaporated under vacuum. The residue was diluted with DCM (40 mL), and then filtered. The filter cake was washed with DCM (20 mL). The filtrate was washed successively with saturated aqueous sodium bicarbonate $(3 \times 40 \text{ mL})$ and brine $(3 \times 40 \text{ mL})$, and then dried (Na₂SO₄), filtered and evaporated under vacuum. The residue was purified by column chromatography on silica gel (17% ethyl acetate in petroleum ether) to give pyranone 11 as a yellow solid; yield: 3.9 g (96%); mp 91-94°C. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.90$ (t, J = 6.9 Hz, 3H), 1.28-1.38 (m, 4H), 1.57-1.67 (m, 2H), 2.17 (d, J=1.5 Hz, 3H), 2.58 (t, J=7.8 Hz, 2H), 3.76 (s, 6H), 6.02 (m, 1H), 6.10 (d, J = 1.5 Hz, 1H), 6.38 (s, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.1$, 21.6, 22.6, 31.0, 31.6, 36.9, 56.0, 104.1, 108.8, 111.1, 111.6, 147.6, 155.9, 156.0, 158.5, 164.1; IR (KBr): $v_{max} = 1720, 1649, 1608, 1577, 1561, 1468, 1418, 1238,$ 1129 cm⁻¹; HR-MS (ESI): m/z = 339.1554, calcd. for $C_{19}H_{24}NaO_4 [M+Na]^+: 339.1572.$

6-(2',6'-Dihydroxy-4'-pentylphenyl)-4-methyl-2*H*-pyran-2-one (12)

To a solution of pyranone 11 (3.4 g, 10.9 mmol) in dry DCM (20 mL) at -78 °C under argon, was added boron tribromide (1.0M solution in DCM, 11.4 mL, 11.4 mmol). After addition, the mixture was allowed to warm to ambient temperature and stirred for 15 h before being quenched with icecooled water (50 mL). The bulk of DCM was evaporated under vacuum. The residue was extracted with ethyl acetate $(3 \times 30 \text{ mL})$. The combined organic extracts were washed successively with saturated aqueous sodium bicarbonate $(3 \times$ 40 mL) and brine $(3 \times 40 \text{ mL})$, and then dried (Na_2SO_4) , filtered and evaporated under vacuum. The residue was purified by column chromatography on silica gel (3% methanol in DCM) to give pyranone 12 as a colorless solid; yield: 2.2 g (69%); mp 191-193 °C. ¹H NMR (300 MHz, DMSO d_6): $\delta = 0.87$ (t, J = 6.9 Hz, 3 H), 1.25–1.34 (m, 4 H), 1.47–1.56 (m, 2H), 2.15 (s, 3H), 2.40 (t, J=7.8 Hz, 2H), 6.01 (s, 1H), 6.20 (s, 3H), 9.54 (s, 2H); ¹³C NMR (100 MHz, CD₃OD): $\delta = 14.4, 21.6, 23.6, 31.8, 32.5, 36.9, 108.0, 111.2 112.8, 148.4,$ 157.8, 158.3, 159.7, 166.8; IR (KBr): v_{max}=3392, 1685, 1630, 1565, 1524, 1451, 1200, 1174, 1049 cm⁻¹; HR-MS (ESI): m/z = 311.1248, calcd. for C₁₇H₂₀NaO₄ [M + Na]⁺: 311.1259.

4-Methyl-6-[4'-pentyl-2',6'-bis(prop-2"-yn-1"-yloxy)phenyl]-2*H*-pyran-2-one (13)

To a solution of pyranone 12 (230 mg, 0.8 mmol) in acetone (20 mL) were added potassium carbonate (442 mg, 3.2 mmol) and propargyl bromide (0.33 mL, 4.4 mmol). The resulting mixture was heated to reflux for 12 h and cooled. The bulk of solvent was evaporated under vacuum. The residue was partitioned between ethyl acetate (20 mL) and water (40 mL). The separated aqueous phase was extracted with ethyl acetate (2×20 mL). The combined organic extracts were washed with brine (3×30 mL), and then dried (Na₂SO₄), filtered and evaporated under vacuum. The residue was purified by column chromatography on silica gel (25% ethyl acetate in petroleum ether) to give pyranone 13 as an orange solid; yield: 234 mg (90%); mp 95-97 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.89$ (t, J = 6.9 Hz, 3H), 1.31-1.36 (m, 4H), 1.58-1.66 (m, 2H), 2.17 (s, 3H), 2.49 (t, J=2.4 Hz, 2 H), 2.60 (t, J=7.8 Hz, 2 H), 4.66 (d, J=2.4 Hz, 4H), 6.02 (s, 1H), 6.13 (s, 1H), 6.58 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.1$, 21.6, 22.6, 30.8, 31.4, 36.7, 56.8, 76.0, 78.5, 106.9, 110.4, 111.4, 111.8, 147.4, 155.0, 156.0, 156.5, 163.8; IR (KBr): $v_{max} = 3290$, 2123, 1732, 1612, 1582, 1565, 1454, 1402 cm⁻¹; HR-MS (ESI): m/z = 387.1552, calcd. for $C_{23}H_{24}NaO_4$ [M + Na]⁺: 387.1572.

9-Methyl-3-pentyl-1-(prop-2'-yn-1'-yloxy)-6*H*benzo[*c*]chromene (14)

A solution of pyranone 13 (666 mg, 1.83 mmol) in dry toluene (35 mL) was heated to reflux for 12 h and cooled. The bulk of toluene was evaporated under vacuum. The residue was partitioned between ethyl acetate (40 mL) and water (50 mL). The separated aqueous phase was extracted with ethyl acetate (2×40 mL). The combined organic extracts were washed with brine $(3 \times 50 \text{ mL})$, and then dried (Na₂SO₄), filtered and evaporated under vacuum. The residue was purified by column chromatography on silica gel (5% ethyl acetate in petroleum ether) to give benzo[c]chromene 14 as an orange oil; yield: 507 mg (87%). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.92$ (t, J = 6.9 Hz, 3 H), 1.34–1.38 (m, 4H), 1.62–1.69 (m, 2H), 2.41 (s, 3H), 2.57–2.61 (m, 3H), 4.82 (d, J=2.4 Hz, 2 H), 4.96 (s, 2 H), 6.58 (s, 2 H), 7.03–7.08 (m, 2H), 8.19 (s, 1H); ${}^{13}C$ NMR (100 MHz, CDCl₃): $\delta =$ 14.2, 21.9, 22.7, 30.8, 31.6, 36.2, 56.6, 68.9, 75.7, 78.7, 107.3, 111.0, 111.1, 124.3, 127.1, 127.5, 128.8, 128.9, 137.7, 144.6, 155.6, 156.8; IR (neat): v_{max} =3290, 2124, 1613, 1582, 1561, 1454 cm⁻¹; HR-MS (ESI): m/z = 343.1652, calcd. for $C_{22}H_{24}NaO_2 [M+Na]^+: 343.1674.$

9-Methyl-3-pentyl-1-(prop-2'-yn-1'-yloxy)-6*H*benzo[*c*]chromen-6-one (15)

To a solution of benzo[*c*]chromene **14** (78 mg, 0.25 mmol) in dry DCM (10 mL) were added PCC (436 mg, 2.0 mmol) and celite (436 mg). The resulting mixture was heated to reflux for 12 h, and then cooled and filtered. The filter cake was washed with DCM (15 mL). The filtrate was washed with brine (3×30 mL), and then dried (Na₂SO₄), filtered and evaporated under vacuum. The residue was purified by column chromatography on silica gel (10% ethyl acetate in petroleum ether) to give benzo[*c*]chromenone **15** as a colorless solid; yield: 72 mg (86%); mp 138–141 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.90$ (t, J = 7.0 Hz, 3 H), 1.31–1.38 (m, 4H), 1.63–1.70 (m, 2H), 2.53 (s, 3H), 2.63 (t, J = 2.4 Hz, 1H), 2.67 (t, J = 7.8 Hz, 2H), 4.92 (d, J = 2.4 Hz, 2H), 6.76 (d, J = 1.3 Hz, 1H), 6.88 (d, J = 1.3 Hz, 1H), 7.34 (dd, J = 8.1 and 0.9 Hz, 1H), 8.30 (d, J = 8.1 Hz, 1H), 8.80 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.1$, 22.6, 22.7, 30.6, 31.5, 36.0, 56.7, 76.3, 78.0, 106.5, 108.8, 111.0, 118.2, 127.5, 129.0, 130.2, 134.5, 145.6, 145.7, 152.7, 156.0, 161.7; IR (KBr): v_{max}=3310, 1716, 1621, 1502, 1293, 1111 cm⁻¹; HR-MS (ESI): m/z = 335.1642, calcd. for C₂₂H₂₃O₃ [M+H]⁺: 335.1647.

Cannabinol (2)^[12]

Methyllithium (1.6M solution in diethyl ether, 1.2 mL, 1.9 mmol) was added dropwise to a solution of benzo[c]chromenone 15 (63 mg, 0.19 mmol) in dry diethyl ether (10 mL) at -10 °C under argon. The resulting mixture was stirred for 1 h at -10 °C, before being allowed to warm to ambient temperature and stirred for a further 3 h. The reaction was then cooled to 0°C. Saturated aqueous ammonium chloride (30 mL) was added and the resulting mixture extracted with ethyl acetate $(3 \times 30 \text{ mL})$. The combined organic extracts were washed with brine $(3 \times 30 \text{ mL})$, and then dried (Na_2SO_4) , filtered and evaporated under vacuum. The residue was dissolved in DCM (20 mL). TFA (3 drops) was added and the reaction stirred at ambient temperature for 12 h before being quenched with ice-cooled water. The bulk of DCM was evaporated under vacuum. The residue was partitioned between ethyl acetate (20 mL) and water (30 mL). The separated aqueous phase was extracted with ethyl acetate (2×20 mL). The combined organic extracts were washed successively with saturated aqueous sodium bicarbonate $(3 \times 30 \text{ mL})$ and brine $(3 \times 30 \text{ mL})$, and then dried (Na₂SO₄), filtered and evaporated under vacuum. The residue was purified by column chromatography on silica gel (6% ethyl acetate in petroleum ether) to give cannabinol (2) as an orange oil; yield: 52 mg (89%); ¹H NMR (300 MHz, CDCl₃): $\delta = 0.89$ (t, J = 6.9 Hz, 3 H), 1.29–1.34 (m, 4 H), 1.56–1.65 (m, 8H), 2.38 (s, 3H), 2.50 (t, J=7.8 Hz, 2H), 5.22 (br s, 1 H), 6.29 (d, J=1.2 Hz, 1 H), 6.44 (d, J=1.2 Hz, 1 H), 7.07 (d, J=7.8 Hz, 1 H), 7.14 (d, J=7.8 Hz, 1 H), 8.16 (s, 1H); MS (ESI): m/z (%)=333 (100) [M+Na]⁺, 311 (95) $[M + H]^+$.

Acknowledgements

We are grateful to the National Natural Science Foundation of China (#20902085; #21172202; #81330075) for financial support.

References

[1] a) C. E. Turner, M. A. Elsohly, E. G. Boeren, J. Nat. Prod. 1980, 43, 169–234; b) R. Mechoulam, N. K. McCallum, S. Burstein, Chem. Rev. 1976, 76, 75–112; c) M. M. Radwan, M. A. Elsohly, D. Slade, S. A. Ahmed, I. A. Khan, S. A. Ross, J. Nat. Prod. 2009, 72, 906–911.

- [2] S. E. Sallan, N. E. Zinberg, E. Frei III, N. Engl. J. Med. 1975, 293, 795–797.
- [3] B. R. Martin, A. H. Lichtman, Neurobiol. Dis. 1998, 5, 447–461.
- [4] J. M. Cunha, E. A. Carlini, A. E. Pereira, O. L. Ramos, C. Pimentel, R. Gagliardi, W. L. Sanvito, N. Lander, R. Mechoulam, *Pharmacology*. **1980**, *21*, 175–185.
- [5] R. Mechoulam, Br. J. Pharmacol. 2005, 146, 913–915.
- [6] a) L. A. Matsuda, S. J. Lolait, M. J. Brownstein, A. C. Young, T. I. Bonner, *Nature* **1990**, *346*, 561–564; b) S. Munro, K. L. Thomas, M. Abu-Shaar, *Nature* **1993**, *365*, 61–65.
- [7] a) A. Mahadevan, C. Siegel, B. R. Martin, M. E. Abood, I. Beletskaya, R. K. Razdan, J. Med. Chem. 2000, 43, 3778–3785; b) M. H. Rhee, Z. Vogel, J. Barg, M. Bayewitch, R. Levy, L. Hanuš, A. Breuer, R. Mechoulam, J. Med. Chem. 1997, 40, 3228–3233; c) O. M. H. Salo, K. H. Raitio, J. R. Savinainen, T. Nevalainen, M. Lahtela-Kakkonen, J. T. Laitinen, T. Järvinen, A. Poso, J. Med. Chem. 2005, 48, 7166–7171.
- [8] G. Appendino, S. Gibbons, A. Giana, A. Pagani, G. Grassi, M. Stavri, E. Smith, M. M. Rahman, J. Nat. Prod. 2008, 71, 1427–1430.
- [9] A. D. Khanolkar, D. Lu, M. Ibrahim, R. I. Duclos Jr, G. A. Thakur, T. P. Malan Jr, F. Porreca, V. Veerappan, X. Tian, C. George, D. A. Parrish, D. P. Papahatjis, A. Makriyannis, J. Med. Chem. 2007, 50, 6493–6500.
- [10] a) R. Adams, B. R. Baker, R. B. Wearn, J. Am. Chem. Soc. 1940, 62, 2204–2207; b) P. C. Meltzer, H. C. Dalzell, R. K. Razdan, Synthesis 1981, 985–987; c) K. P. Bastola, A. Hazekamp, R. Verpoorte, Planta Med. 2007, 73, 273–275.
- [11] a) T. Hattori, T. Suzuki, N. Hayashizaka, N. Koike, S. Miyano, Bull. Chem. Soc. Jpn. 1993, 66, 3034–3040;

b) Y. Li, Y.-J. Ding, J.-Y. Wang, Y.-M. Su, X.-S. Wang, *Org. Lett.* **2013**, *15*, 2574–2577; c) M. P. Nüllen, R. Göttlich, *Synlett* **2013**, 1109–1112.

- [12] J. A. Teske, A. Deiters, Org. Lett. 2008, 10, 2195-2198.
- [13] P. R. Nandaluru, G. J. Bodwell, Org. Lett. 2012, 14, 310–313.
- [14] L. Minuti, A. Temperini, E. Ballerini, J. Org. Chem. 2012, 77, 7923–7931.
- [15] For reviews, see: a) A. Goel, V. J. Ram, *Tetrahedron* 2009, 65, 7865–7913; b) B. T. Woodard, G. H. Posner, *Recent Advances in Diels–Alder Cycloadditions of 2-Pyrones*, in: *Advances in Cycloaddition*, (Ed.: M. Harmata), Jai Press (Elsevier), 1999, Vol. 5, pp 47–83.
- [16] J. Poldy, R. Peakall, R. A. Barrow, Org. Biomol. Chem. 2009, 7, 4296–4300.
- [17] a) J. Chang, L. Sun, J. Dong, Z. Shen, Y. Zhang, J. Wu, R. Wang, J. Wang, C. Song, *Synlett* **2012**, 2704–2706;
 b) C. Song, H. Liu, M. Hong, Y. Liu, F. Jia, L. Sun, Z. Pan, J. Chang, *J. Org. Chem.* **2012**, 77, 704–706.
- [18] a) R. W. Rickards, H. Roenneberg, J. Org. Chem. 1984, 49, 572–573; b) J. W. Huffman, X. Zhang, M. J. Wu, H. H. Joyner, J. Org. Chem. 1989, 54, 4741–4743; c) V. Vaillancourt, K. F. Albizati, J. Org. Chem. 1992, 57, 3627–3631.
- [19] a) G. I. Feutrill, R. N. Mirrington, *Tetrahedron Lett.* 1970, 1327–1328; b) J. R. Hwu, F. F. Wong, J.-J. Huang, S.-C. Tsay, *J. Org. Chem.* 1997, 62, 4097–4104; c) F. Saadati, H. Meftah-Booshehri, *Synlett* 2013, 1702–1706; d) B. M. Trost, K. Dogra, *Org. Lett.* 2007, *9*, 861–863.
- [20] a) M. Pal, K. Parasuraman, K. R. Yeleswarapu, Org. Lett. 2003, 5, 349–352; b) S. Punna, S. Meunier, M. G. Finn, Org. Lett. 2004, 6, 2777–2779, and references cited therein.