Benzoylgomisin Q and Benzoylgomisin P, Two New Lignans from Schisandra sphenanthera REHD. et WILS.

Yukinobu Ikeya,**,a Eiji Miki,a Minoru Okada,a Hiroshi Mitsuhashi,a and Jian-Guo Chaib

Research Institute for Biology & Chemistry, Tsumura & Co., 3586 Yoshiwara Ami-machi, Inashiki-gun, Ibaraki 300–11, Japan and Institute of Medicine and Pharmacy Shanxi Province, 49 Ping Yang Road, Taiyuan, Shanxi, China. Received November 17, 1989

Two new dibenzocyclooctadiene lignans, benzoylgomisin Q (1) and benzoylgomisin P (2) were isolated from the fruits of *Schisandra sphenanthera* REHD. *et* WILS. (Schisandraceae) together with angeloylgomisin P (8), tigloylgomisin P (9), and (+)-gomisin P (10) which were the components of *Schisandra chinensis* BAILL. The structures of 1 and 2 were determined by spectral studies and chemical correlation with schisantherin P (3) and 8, respectively.

Keywords Schisandra sphenanthera; Schisandraceae; dibenzocyclooctadiene; lignan; benzoylgomisin Q; benzoylgomisin P; angeloylgomisin P; tigloylgomisin P; (+)-gomisin K₃

The fruits of Schisandra sphenanthera REHD. et WILS. (Schisandraceae) are used as an antitussive, tonic and sedative agent under the name of Wuweizi¹⁾ in Chinese traditional medicine together with the fruits of Schisandra chinensis BAILL. Six dibenzocyclooctadiene lignans (deoxyschizandrin and schisantherins A (3), B (4), C (5), D (6), and E (7)), a diarylbutane lignan (dl-wulignan), a 4aryltetralone lignan (schisandrone), and a tetrahydrofuran lignan (d-epigalbacin) have been isolated from this plant by Liu et al., 2,3) Li et al.,4) and Huang et al.5) This paper deals with the structures of two new dibenzocyclooctadiene lignans, benzoylgomisin Q (1) and benzoylgomisin P (2), and the isolation of eight known dibenzocyclooctadiene lignans, 3, 4, 5, 6, 7, angeloylgomisin P (8), tigloylgomisin P (9)⁶⁾ and (+)-gomisin K_3 (10)⁷⁾ from the fruits of Schisandra sphenanthera collected in the province of Shangxi in China.

Compounds 3, 4, 5, 6, and 7 were identified as schisan-

therins A, B, C, D, and E, respectively, isolated by Liu *et al.*³⁾ and the carbon shifts in the ¹³C-nuclear magnetic resonance (¹³C-NMR) spectra of these compounds were assigned as shown in Table II on the basis of ¹³C-NMR spectral studies of dibenzocyclooctadiene lignans.⁸⁾ Compounds **8**, **9**, and **10** were identified as angeloylgomisin P, ⁹⁾ tigloylgomisin P, ¹⁰⁾ and (+)-gomisin K_3 by direct comparison with authentic samples obtained from *Schisandra chinensis*.

Benzoylgomisin Q (1) was isolated as a white amorphous powder, $C_{31}H_{36}O_9$, $[\alpha]_D-118^\circ$ (CHCl₃) and possessed the characteristic ultraviolet (UV) spectrum (λ_{max} 221.7, 255sh, and 289 nm) of a dibenzocyclooctadiene lignan. Its circular dichroism (CD) spectrum ($[\theta]_{216}+60700$, $[\theta]_{235}-138000$, $[\theta]_{250}-67600$ sh) indicated that 1 had an S-biphenyl configuration. H-NMR spectral analyses of it (Table I) showed the presence of six methoxyl groups on the aromatic rings, and a benzoyloxyl group, a secondary methyl

1 :
$$R_1 = R_2 = R_3 = R_4 = Me$$
, $R_5 = -CO - O$
3 : $R_1 = R_2 = Me$, $R_3 + R_4 = CH_2$, $R_5 = -CO - O$
3a: $R_1 = R_2 = Me$, $R_3 = R_4 = H$, $R_5 = -CO - O$
4 : $R_1 = R_2 = Me$, $R_3 + R_4 = CH_2$, $R_5 = -CO - O$
Me H
5 : $R_1 = R_2 = Me$, $R_3 + R_4 = CH_2$, $R_5 = -CO - O$
Me Me 6 : $R_1 + R_2 = CH_2$, $R_3 + R_4 = CH_2$, $R_5 = -CO - O$

7 : $R_1 = R_2 = R_4 = Me$, $R_3 = H$, $R_5 = -CO$

10 : R = H10a : $R = COCH_3$

Chart 1

© 1990 Pharmaceutical Society of Japan

TABLE I. ¹H-NMR Spectral Data for 1, 3, 3a, 2, and 8 (δ in CDCl₃, 200 MHz)

	H-4, s H-11, s	H-6α s	$H-6\beta$ $(J=Hz)$	H-9 α , dd $(J = Hz)$	$H-9\beta$, dd $(J=Hz)$		$_{3)}$ -Me $(J = Hz)$	HO ^{a)} C	ι Υ ⁽⁷⁾ –Me s	OMe s	OCH_2O d $(J = Hz)$	C ₆ H ₅ CO-
1	6.83 6.69	5.96	_	2.43 (14, 9.6)	2.29, d (14)	2.16	1.21 (7)	1.60	1.36	3.17, 3.39, 3.59, 3.89, 3.94, 3.99		7.21—7.51 (5H)
3	6.82 6.56	5.82		2.36 (13, 9, 9.5)	2.22, d (13.9)	2.12	1.18 (7)	1.53	1.38	3.30, 3.57, 3.89, 3.92	5.65 (1.5) 5.78 (1.5)	7.27—7.55 (5H)
3a	6.82 6.87	6.08	-	2.41 (13, 9)	2.26, d (13)	2.13	1.18 (7.1)	2.05	1.35	2.82, 3.48, 3.90 3.96	_	7.14—7.54 (5H)
2	6.97 6.53	-	5.72	2.11 (13.5, 9)	2.23 (13.5, 1)	1.94	1.17 (7)	1.94	1.21	3.62, 3.85 (×2), 3.90	5.99 (2H, s)	7.31—7.57 (3H) 8.02—8.07 (2H)
8 ^{b)}	6.89 6.50		5.59	2.07 (13.7, 9.3)	2.18 (13.7, 1.5)	1.88	1.11 (6.6)		1.10	3.62, 3.82, 3.88, 3.91	5.98 (2H, s)	_

a) Hydroxyl signals were confirmed by addition of D_2O . b) Other signals: $M_{\text{H}} > C = C < CO^-$: 8, 2.00 (6H, m, α - and β -Me), 6.08 (1H, m, β -H). c) Abbreviations: $C = C < CO^-$: 8, 2.00 (6H, m, α - and β -Me), 6.08 (1H, m, β -H).

TABLE II. 13 C-NMR Spectral Data for 1, 3, 3a, 4, 5, 7, 2, and 8 (δ in CDCl₃, 13 C at 50 MHz)

Carbon	1	3	3a	4 ^{a)}	5 ^{a)}	7	2 ^{a)}	8 ^{a)}
1	152.3	152.2	152.1	152.1	152.0	152.2	151.2	151.0
2	142.1	141.8^{b}	142.4	141.8^{b}	141.7^{b}	142.1	$141.1^{b)}$	141.0^{b}
3	152.0	151.9	152.1	151.9	151.8	152.0	152.4	152.3
4	110.2	110.0	110.0	110.0	110.3	110.4	106.2	106.4
5	130.0	130.4	130.2	130.6	131.0	130.1	132.8	132.9
6	84.5	84.8	84.0	84.4	84.2	84.6	78.3	77.3
7	72.5	72.3	72.6	72.2	72.2	72.6	75.2	75.2
8	42.3	42.7	42.4	42.5	42.5	42.4	46.6	46.7
9	36.8	36.4	36.1	36.5	36.4	36.4	36.7	36.7
10	136.3	135.2	133.4	135.2	135.4	137.1	136.7	136.7
11	107.2	102.4	111.1	102.7	102.5	109.8	103.1	103.0
12	153.3	148.8	144.2	148.7	148.6	149.1	149.5	149.3
13	140.0	134.1	134.3	134.3	134.3	137.5	135.7	135.6
14	150.7	140.2 ^{b)}	143.7	$140.6^{b)}$	$140.6^{b)}$	149.3	141.7^{b}	$141.4^{b)}$
15	122:5	122.2°)	$122.2^{b)}$	122.3 ^{c)}	122.1°)	122.4 ^{b)}	123.0°)	122.9^{c}
16	122.5	121.1 ^{c)}	$120.2^{b)}$	121.2 ^{c)}	121.6^{c}	121.5 ^{b)}	119.6 ^{c)}	119.5^{c}
17	19.0	18.9	18.9	18.9	18.9	18.9	18.8	18.8
18	28.1	28.2	28.1	28.2	28.1	28.1	17.7	17.5
OMe 1,14	$60.2,^{b)}$ 59.8 ^{b)}	60.7, ^{d)} 58.6	60.9, 59.2	60.6, 59.0	60.6, 58.9	59.9,°) 58.9°)	60.6, 60.6	60.6, 59.9
2,13	60.9,c) 60.7c)	60.8, ^{d)}	61.1, —	60.8, —	60.8, —	$60.9,^{d)}60.7^{d)}$	60.9,	60.9, —
3,12	56.0, ^{d)} 56.2 ^{d)}	55.9, —	56.1, —	55.9, —	55.7, —	56.0,	56.0, —	55.8, —
OCH ₂ O	,	100.4		100.5	100.5	_	101.1	101.0
Benzoyl 1'		129.3	129.1			129.3	130.3	
2′,6′		129.5	129.6			129.6	129.5	
3',5'		127.9	128.2			128.1	128.5	
4′		132.9	133.3			133.4	133.1	
C=O		164.8	165.1			164.9	165.2	

a) Other signals: Angeloyl: 4, 15.7 (q, β -Me), 19.7 (q, α -Me), 121.7 (s), 139.8 (d) (C=C), 165.8 (s, C=O); **8**, 15.8 (q, β -Me), 20.7 (q, α -Me), 127.5 (s), 138.7 (d) (C=C), 166.4 (s, C=O). Tigloyl: **5**, 11.5 (q, α -Me), 14.2 (q, β -Me), 127.6 (s), 137.5 (d) (C=C), 166.3 (C=O). b-d) Assignments within any vertical column may be reversed.

group and a tertiary methyl group attached to a carbon carrying a hydroxyl group. The mass spectrum (MS) with peaks at m/z 552 (M⁺), 430 (M⁺ – C₆H₅COOH) and 105 (C₆H₅CO⁺) also supported the presence of a benzoyloxyl group in 1. The ¹H-NMR spectrum of 1 is very similar to that of 3 having C-6 β -benzoyloxyl, C-7 β -tertiary methyl and C-8 α -secondary methyl groups and the twist-boat-chair conformation of the cyclooctadiene ring, except for the functional groups on the aromatic rings. By comparisons of its ¹H- and ¹³C-NMR spectra with those of 3 (Tables I and II), it was assumed that the methylenedioxyl moiety at C-12 and -13 positions in 3 was replaced by two methoxyl groups in 1. Finally, the structure of 1 was confirmed by the chemical correlation with 3 as described below.

In a previous paper, 12) we reported on the selective cleavage of methylenedioxyl moiety with lead tetraacetate

[Pb(OAc)₄] in dry benzene. Treatment of 3 with Pb(OAc)₄ in dry benzene afforded a diphenol (3a), $C_{29}H_{32}H_{9}$. Methylation of 3a afforded a dimethyl ether, which was identified as benzoylgomisin Q (1) by direct comparison ([α]_D, infrared (IR), ¹H-NMR, and MS). This fact indicated that the configurations of C-6-benzoyloxyl, C-7-tertiary methyl and C-8-secondary methyl groups in 1 were the same as those in 3.

Thus, the structure of benzoylgomisin Q was determined as (6S,7S,8S,S-biar)-6-benzoyloxy-6,7,8,9-tetrahydro-1,2,3,12,13,14-hexamethoxy-7,8-dimethyl-7-dibenzo[a,c]-cyclooctenol (1).

Benzoylgomisin P (2) was isolated as a white amorphous powder, $C_{30}H_{32}O_9$, $[\alpha]_D-22.1^\circ$ (CHCl₃). Its UV, IR, ¹H-NMR (Table I) spectral analyses indicated that 2 was a dibenzocyclooctadiene lignan possessing a methylenedioxyl

moiety and four methoxyl groups on the aromatic rings. and a secondary methyl group, a tertiary methyl group attached to a carbon carrying a hydroxyl group and a benzoyloxyl group on the cyclooctadiene ring. The CD spectrum $([\theta]_{211} + 89800, [\theta]_{252} - 652000)$ indicated that 2 had an Sbiphenyl configuration. In the ¹H-NMR spectra of 2 and 3, the tertiary methyl group (δ 1.21) of 2 appeared at higher field than that of 3 (δ 1.36), indicating that it was shielded by the aromatic ring. This suggested the C-7-tertiary methyl group in 2 was α-configuration (axial orientation), different from that in 3 (equatorial orientation). The C-8-secondary methyl group in 2 appeared at the same region as that in 3, suggesting that the C-8-secondary methyl group in 2 was the same α -configuration as that in 3. Comparison of the ¹H- and ¹³C-NMR data of 2 and angeloylgomisin P (8) having C-6α-angeloxyl, C-7α-tertiary methyl and C-8secondary methyl groups, suggested that these compounds differed by acid moiety at the C-6 position.

On hydrolysis with 3% ethanolic potassium hydroxide, 2 gave benzoic acid and a diol (2a), $C_{23}H_{28}O_8$. Compound 2a was identified as gomisin P^6) which had been obtained by hydrolysis of 8 and had two hydroxyl groups at the C-6 α and C-7 β positions. The singlet at δ 4.34 in the ¹H-NMR spectrum of 2a, which appeared at δ 5.72 in 2, was assigned to a benzylic methine, indicating that the benzoyl group in 2 was linked to a C-6 α hydroxyl group of 2a. Thus, the structure of benzoylgomisin P was determined as (6R,7R, 8S,S-biar)-6-benzoyloxy-6,7,8,9-tetrahydro-1,2,3,14-tetramethoxy-7,8-dimethyl-12,13-methylenedioxy-7-dibenzo-[a,c]cyclooctenol (2).

Experimental

Details of the instruments and chromatographic conditions used throughout this work are the same as described in the previous paper, ¹³⁾ except for the following. Gas liquid chromatography (GLC) was carried out on a Shimadzu gas chromatograph GC-9A with hydrogen flame ionization detecter.

Extraction Dried fruits (475 g) of Schisandra sphenanthera Rehd. et Wils. collected in October 1987, were pulverized and extracted with hexane $(1.51\times3, 3\text{ h})$ each) under reflux. The hexane extracts were concentrated to give a brown mass (79.50 g). This residue was chromatographed on silica gel (6 cm i.d. \times 20 cm), developing with hexane–EtOAc to give twelve fractions; I (0.08 g), II (9.20 g), III (24.51 g), IV (19.37 g), V (1.14 g), VI (5.54 g), VII (4.31 g), VIII (2.87 g), IX (0.31 g), X (0.81 g), XI (2.98 g) and XII (0.17 g).

Fractions IX and XII were repeatedly chromatographed on silica gel with various solvent systems to give 8 (40 mg) and 7 (17 mg, yield 0.0046%). Fraction XI was rechromatographed on silica gel using benzene-ether. The fraction eluted with benzene-ether (85:15) was concentrated to give a residue (1.736 g). This residue was repeatedly chromatographed on silica gel with various solvent systems to give 1 (23 mg, yield 0.0048%), 3 (1.332 g, yield 0.29%), 4 (32 mg, yield 0.0069%), and 5 (199 mg, yield 0.042%). Fraction X was repeatedly chromatographed on silica gel with various solvent systems to give 2 (17.5 mg, yield 0.0037%), 6 (4.1 mg, yield 0.0009%), 8 (82 mg, total 122 mg, yield 0.026%), 9 (12 mg, yield 0.0025%), and crude 10 (80 mg). Crude 10 (80 mg) was acetylated with a mixture of Ac₂O (0.3 ml) and pyridine (0.5 ml) at room temperature overnight to give a monoacetate (10a, 54 mg) as colorless needles (from ether-hexane), mp 159—160.5 °C, $[\alpha]_D^{24}$ +54° (c=1.81, CHCl₃). Anal. Calcd for C₂₅H₃₂O₇: C, 67.55; H, 7.26. Found: C, 67.63; H, 7.26. ¹H-NMR δ in CDCl₃: 0.78 (3H, d, J=7 Hz), 0.99 (3H, d, J=7 Hz), 1.72—2.00 (2H, m, 2×CH), 1.94 (3H, s, COCH₃), 3.62, 3.85, 3.86, 3.89, 3.90 (each 3H, s, $5 \times OMe$), 6.51, 6.70 (each 1H, s, $2 \times aromatic H$). Compound 10a (50 mg) was dissolved in 3% KOH-EtOH (2 ml) and the reaction mixture was kept at 50 °C for 1 h, then diluted with ether. The ethereal solution was washed with H₂O, dried over Na₂SO₄ and concentrated to give 10 (37 mg, yield

Benzoylgomisin Q (1) A white amorphous powder, $[\alpha]_D^{23}$ -118°

 $(c\!=\!0.890,\, \text{CHCl}_3).\, \text{IR}\,\, v_{\text{max}}^{\text{KBr}}\, \text{cm}^{-1}\!:\, 3520\,\, (\text{OH}),\, 1720,\, 1700\,\, (\text{C}\!=\!\text{O}),\, 1598,\, 712\,\, (\text{aromatic ring}).\,\, \text{UV}\,\, \lambda_{\text{max}}^{\text{EtOH}}\, \text{nm}\,\, (\log \epsilon);\, 221.7\,\, (4.70),\, 255\,\, (\text{sh}\,\, 4.10),\, 289\,\, (\text{sh}\,\, 3.36).\,\, \text{CD}\,\, (c\!=\!0.0115,\, \text{MeOH})\,\, [\theta]^{26}\,\, (\text{nm});\, +60700\,\, (216),\, 0\,\, (223),\, -138000\,\, (235),\, -67600\,\, (\text{sh}\,\, 250).\,\, \text{MS}\,\, m/z\,\, (\%);\, 552\,\, (\text{M}^+,\, 66),\, 430\,\, (\text{M}^+-\text{C}_6\text{H}_5\text{COOH},\, 44),\, 360\,\, (13),\, 105\,\, (\text{C}_6\text{H}_5\text{CO}^+,\, 100),\, 77\,\, (26).\,\, \text{High-resolution}\,\, \text{MS},\, \text{Calcd for}\,\, \text{C}_{31}\text{H}_{36}\text{O}_9(\text{M}^+);\, 552.2359.\,\, \text{Found};\, 552.2356.}$

Benzoylgomisin P (2) A white amorphous powder, $[\alpha]_D^{24}$ – 22.1° (c=0.453, CHCl₃). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3524 (OH), 1724 (C=O), 1622, 1600, 710 (aromatic ring). UV $\lambda_{\text{max}}^{\text{EtoH}}$ nm (log ε): 222.8 (4.71), 280.6 (3.63), 289.8 (3.56). CD (c=0.0112, MeOH) [θ]²⁸ (nm): +89800 (211), 0 (236), -65200 (252). MS m/z (%): 536 (M⁺, 13), 414 (M⁺ - C₆H₅COOH, 24), 343 (32), 342 (24), 105 (C₆H₅CO⁺, 100), 77 (46). High-resolution MS, Calcd for C₃₀H₃₂O₉(M⁺): 536.2046. Found: 536.2049.

Schisantherin A (3) Colorless prisms (from MeOH), mp 122—124 °C, $[\alpha]_D^{23}$ – 187° (c=1.74, CHCl₃). IR ν_{max}^{KBr} cm⁻¹: 3388 (OH), 1728 (C=O), 1620, 1598, 712 (aromatic ring). MS m/z (%): 536 (M⁺, 44), 414 (M⁺ – C₆H₅COOH, 47), 343 (63), 342 (45), 105 (C₅H₅CO⁺, 100), 77 (36). Anal. Calcd for C₃₀H₃₂O₉·1/2CH₃OH: C, 69.29; H, 6.20. Found: C, 69.29; H, 6.21.

Schisantherin B (4) Colorless prisms (from MeOH), mp 90—91 °C, $[\alpha]_D^{24}$ –25.8° (c=0.31, CHCl₃). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3548 (OH), 1696 (C=O), 1644 (C=C), 1620, 1600 (aromatic ring). MS m/z (%): 514 (M⁺, 42), 414 (75), 371 (32), 343 (93), 83 [CH₃CH=C(CH₃)CO⁺, 87], 55 (100). High-resolution MS, Calcd for $C_{28}H_{34}O_9(M^+)$: 514.2203. Found: 514.2205. Anal. Calcd for $C_{28}H_{34}O_9\cdot 1/2$ CH₃OH: C, 64.52; H, 6.84. Found: C, 64.77; H, 6.76.

Schisantherin C (5) Colorless prisms (from MeOH), mp 99—101 °C, $[\alpha]_D^{25}$ –150.3° (c=2.88, CHCl₃). IR $\nu_{\rm Max}^{\rm RB}$ cm⁻¹: 3524 (OH), 1710, 1692 (C=O), 1648 (C=C), 1622, 1598 (aromatic ring). MS m/z (%): 514 (M⁺, 46), 414 (72), 371 (20), 343 (100), 83 [CH₃CH=C(CH₃)CO⁺, 77], 55 (89). High-resolution MS, Calcd for $C_{28}H_{34}O_9(M^+)$: 514.2203. Found: 514.2200. *Anal.* Calcd for $C_{28}H_{34}O_9\cdot 1/2$ CH₃OH: C, 64.52; H, 6.84. Found: C, 64.80; H, 6.77.

Schisantherin D (6) Colorless prisms (from MeOH), mp 122—125 °C, $[\alpha]_D^{24}$ – 150° (c = 0.978, CHCl₃). IR v_{max}^{KBr} cm⁻¹: 3408 (OH), 1722 (C=O), 1622, 712 (aromatic ring). MS m/z (%): 520 (M⁺, 32), 398 (42), 326 (74), 277 (35), 105 (C₆H₃CO⁺, 100), 77 (48). High-resolution MS, Calcd for C₂₉H₂₈O₉(M⁺): 520.1733. Found: 520.1743.

Schisantherin E (7) Colorless needles (from CH_2Cl_2 -benzene), mp 219—220.5 °C, [α] $_D^{24}$ – 186° (c=0.526, CHCl $_3$): IR $\nu_{\rm max}^{\rm KBr}$ cm $^{-1}$: 3488, 3392 (OH), 1704 (C=O), 1584, 712 (aromatic ring). UV $\lambda_{\rm max}^{\rm EIOH}$ nm (log ε): 220 (4.67), 257 (sh 4.05), 285 (sh 3.55). MS m/z (%): 538 (M $^+$, 42), 416 (M $^+$ -C $_6H_5COOH$, 49), 345 (36), 105 (C $_6H_5CO^+$, 100), 77 (34). Highresolution MS, Calcd for $C_{30}H_{34}O_9(M^+)$: 538.2203. Found: 538.2204. Anal. Calcd for $C_{30}H_{34}O_9$: C, 66.90; H, 6.36. Found: C, 66.77; H, 6.40.

Angeloylgomisin P (8) A white amorphous powder, $[\alpha]_0^{24} - 93.5^{\circ}$ (c = 1.68, CHCl₃). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3528 (OH), 1720 (C=O), 1646 (C=C), 1622, 1598 (aromatic ring). MS m/z (%): 514 (M⁺, 25), 414 (54), 343 (76), 300 (54), 83 [CH₃CH=C(CH₃)CO⁺, 74], 55 (100). High-resolution MS, Calcd for C₂₈H₃₄O₉(M⁺): 514.2203. Found: 514.2198.

Tigloylgomisin P (9) A white amorphous powder, $[α]_{2}^{12}$ -56.1° $(c=0.980, \text{CHCl}_3)$. IR $ν_{\text{max}}^{\text{Km}} \text{cm}^{-1}$: 3524 (OH), 1714 (C=O), 1648 (C=C), 1622, 1598 (aromatic ring). MS m/z (%): 514 (M+, 30), 414 (82), 371 (18), 343 (100), 300 (47), 83 [CH₃CH=C(CH₃)CO+, 74], 55 (66). High-resolution MS, Calcd for $C_{28}H_{34}O_{9}(M^+)$: 514.2203. Found: 514.2212.

(+)-Gomisin K₃ (10) Colorless needles (from ether-hexane), mp 99— $100\,^{\circ}$ C, $[\alpha]_{D}^{24}$ +56.5° (c=1.70, CHCl₃). IR v_{\max}^{KBr} cm⁻¹: 3546 (OH), 1614, 1598, 1582 (aromatic ring). MS m/z (%): 402 (M⁺, 100), 370 (4.5), 356 (10), 345 (7.7), 221 (7.7). High-resolution MS, Calcd for $C_{23}H_{28}O_6(M^+)$: 402.2042. Found: 402.2046.

Treatment of 3 with Pb(OAc)₄ in Benzene A solution of 3 (84 mg) and Pb(OAc)₄ (126 mg) in dry benzene (4 ml) was stirred at 50 °C for 8 h, then diluted with ether. The total mixture was washed with $\rm H_2O$, dried over $\rm Na_2SO_4$ and concentrated. The residue was purified by preparative thin layer chromatography (prep. TLC) [hexane-acetone (7:3)] to give an oxidative product (Rf 0.22, 19 mg) and unchanged 3 (Rf 0.25, 27 mg). A solution of the oxidative product in 80% AcOH (1 ml) was stirred at room temperature for 1 h. The reaction mixture was purified by prep. TLC [hexane-acetone (3:2)] to give 3a (12 mg) as a white amorphous powder (from ether-hexane), mp 185—186 °C, [α] $_{DS}^{25}$ – 182° (c=0.466, CHCl₃). IR ν_{max}^{KBr} cm⁻¹: 3476 (OH), 1720 (C=O), 1600, 712 (aromatic ring). MS m/z (%): 524 (M⁺, 11), 402 (22), 330 (8.0), 105 ($C_6H_5CO^+$, 100), 77 (59). Highresolution MS, Calcd for $C_{29}H_{32}O_9(M^+)$: 524.2046. Found: 524.2043.

Methylation of 3a Me_2SO_4 (0.1 ml) and K_2CO_3 (50 mg) were added to a solution of 3a (10 mg) in dry acetone (1 ml). The reaction mixture was

stirred at 45 °C for 4 h, then diluted with ether. The ethereal solution was washed with $\rm H_2O$, dried over $\rm Na_2SO_4$ and concentrated. The residue was purified by prep. TLC [hexane-acetone (7:3)] to give a dimethyl ether (6.7 mg) as a white amorphous powder, $[\alpha]_D^{24}-115^\circ$ (c=0.285, CHCl₃). High-resolution MS, Calcd for $\rm C_{31}H_{36}O_9$ (M⁺): 552.2359. Found: 552.2368. This compound was identified as benzoylgomisin Q (1) by direct comparison with an authentic sample ([α]_D, IR, MS, and 1H -NMR).

Hydrolysis of 2 A solution of 2 (12 mg) in 3% KOH–EtOH (1.5 ml) was kept at 65 °C for 3 h, then diluted with $\rm H_2O$ (15 ml) and extracted with ether (15 ml × 3). The combined ethereal extract was washed with $\rm H_2O$, dried over $\rm Na_2SO_4$ and concentrated to give a residue. This residue was purified by prep. TLC [benzene–ether (3:2)] to give a diol (2a), colorless needles (from ether–hexane), mp 113–115 °C, [α]₂²⁴ –97.4° (c=0.390, CHCl₃). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3504, 3388 (OH), 1614, 1600 (aromatic ring). MS m/z (%): 432 (M⁺, 79), 414 (69), 360 (20), 343 (100), 342 (68), 312 (47). High-resolution MS, Calcd for $\rm C_{23}H_{28}O_8(M^+)$: 432.1784. Found: 432.1780. ¹H-NMR δ in CDCl₃: 1.10 (3H, s), 1.10 (3H, d, J=7.1 Hz), 1.80 (1H, m), 1.99 (2H, br s, D₂O exchangeable), 2.07 (1H, dd, J=13.9, 9.6 Hz), 2.14 (1H, dd, J=13.9, 1 Hz), 3.58, 3.83, 3.91, 3.92 (each 3H, s), 4.34 (1H, s), 5.94 (1H, d, J=1.5 Hz), 5.95 (1H, d, J=1.5 Hz), 6.17 (1H, s), 7.10 (1H, s). This compound was identified as gomisin P (2a)⁶ by direct comparison with an authentic sample (mixed melting point, [α]_D, IR and ¹H-NMR).

The aqueous solution was acidified with 1 N HCl and extracted with ether. The ethereal extract was washed with H_2O , dried over Na_2SO_4 and concentrated to give a residue (1 mg). This compound was identified as benzoic acid by direct comparison (GLC) with an authentic sample [GLC conditions: column, 20% FFAP on Chromosorb WAW (80—100 mesh) 3 mm i.d. $\times 2$ m; column temperature, 70 °C; injection temperature, 180 °C; carrier gas, He, 50 ml/min; benzoic acid, t_R (min), 6.8].

Acknowledgements The authors thank Mr. K. Kano and Mrs. N.

Kobayashi, Research Institute for Biology & Chemistry, Tsumura & Co. for measurements of the CD and mass spectra and the elemental analysis.

References and Notes

- 1) W.-Z. Song and Y.-Y. Tong, "Zhong Yao Zhi," Vol. 3, The People's Health Publishing House, Beijing, 1984, p. 227.
- J.-S. Liu, S.-D. Fang, M.-D. Huang, Y.-L. Kao, and J.-S. Hsu, Acta Chimica Sinica, 34, 229 (1976).
- 3) J.-S. Liu and M.-F. Huang, Acta Chimica Sinica, 42, 264 (1984).
- 4) L.-N. Li and H. Xue, Planta Med., 51, 217 (1985).
- M.-F. Huang, S.-D. Fang, and Y.-L. Kao, Acta Botanica Sinica, 24, 451 (1982).
- Y. Ikeya, H. Taguchi, I. Yosioka, and H. Kobayashi, Chem. Pharm. Bull., 28, 3357 (1980).
- Y. Ikeya, H. Taguchi, and I. Yosioka, Chem. Pharm. Bull., 28, 2422 (1980).
- 8) Y. Ikeya, H. Taguchi, H. Sasaki, K. Nakajima, and I. Yosioka, Chem. Pharm. Bull., 28, 2414 (1980).
- The spectral data of angeloylgomisin P correspond to those of schisanhenrin isolated from Schisandra henryi Clarker (J.-S. Liu, M.-F. Huang, and Y.-L. Gao, Acta Chimica Sinica, 38, 361 (1980)).
- 10) Tigloylgomisin P was also isolated from Kadsura longipedunculata FINET et CAGNEP (L.-N. Li and Y. Chen, Planta Med., 52, 410 (1986)).
- Y. Ikeya, H. Taguchi, I. Yosioka, and H. Kobayashi, Chem. Pharm. Bull., 27, 1383 (1979).
- Y. Ikeya, H. Taguchi, and I. Yosioka, Chem. Pharm. Bull., 29, 2893 (1981).
- Y. Ikeya, H. Mitsuhashi, H. Sasaki, Y. Matsuzaki, T. Matsuzaki, and E. Hosoya, Chem. Pharm. Bull., 38, 136 (1990).