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Abstract: a-Fucosylation with the reactive trichloroacetimidate 1 as donor 
and disaccharides 2 and 4 as acceptors led to a remarkable increase in yield 
under “inverse conditions”, i.e. addition of the donor to an acceptor/catalyst 
solution. Thus, acceptor/catalyst complex formation enforcing the enera- 
tion of the 1 

%y 
cosylating species in the vicinity of the acceptor is avored B 

yielding bui mg blocks for antigen determinant synthesis 

The biological importance of glycosphingolipids2-5 has recently evoked great endeavours in che- 

mical sphingosine and glycosphingolipid synthesis lr4-9. Of special interest is their function as cell-sur- 

face antigens, as for instance the Lewis antigen A-D (Lea-Led) determinants or the well known H,A,B 

blood group determinants (see Scheme 1 for the Lea and the H-determinant). Also glycosphingolipids 

which accumulate in the surface of cancer cell membranes being referred to as “tumor associated anti- 

gens” have gained great concern 5~~0). Prominent tumor associated antigens are the Lewis antigen X 

(LeX) and Y (LeY) determinants (Scheme 1). Because most of the tumor associated blood-group glyco- 

sphingolipids were found to contain a-connected L-fucose 5, a-fucosylation constitutes an important 

task in glycosphingolipid synthesis. 
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Glycosylation and also fucosylation is generally carried out as formally termolecular reaction of 

donor (D), acceptor (A) and promotor or catalyst (C), respectively (depending on the amount re- 

quired)zJ. Due to differences in the affinities, the reaction course is expected to be first DC interaction 

and then interaction of the DC-complex with A (Scheme 2, reaction course I). Obviously, for this se- 

quence of interactions donors and acceptors are required with matching reactivities. Therefore, ac- 

ceptor and donor reactivities are often varied by changing the protective group pattern and, in addi- 

tion, the donor reactivity by the selection of leaving groups and catalyst&. However, this strategy is 

less successful for very reactive glycosyl donors which may decompose in the presence of the catalyst 

before awaiting reaction with the acceptor. Therefore, acceptor A complexation with the catalyst C 

prior to interaction with the donor D (Scheme 2, reaction course II) should overcome this problemll. 
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The efficiency of this approach could be proven in a-fucosylation with the highly reactive donor 

112 and the GalP(l-3)GlcN and the Galp(l-4)GlcN disaccharides 2 and 4, respectively, as acceptors 

(Schemes 3 and 4). The 4a-O-unprotected disaccharide acceptor 2 was readily obtained from O-(tetra- 

O-acetyl-a-D-galactopyranosyl)trichloroacetimidate13 and tert-butyldimethylsilyl 2-azido-6-O-benzyl- 

2-deoxy+D-glucopyranoside 14. Attempts to carry out the fucosylation of 2 (1 eq) with donor l(l.5 eq) 

applying the normal procedure (NP), i.e. adding the catalyst trimethylsilyl trifluoromethanesulfonate 

(TMSOTf; 0.01 eq) to a solution of 1 and 2 in diethyl ether led to modest yields of the desired trisaccha- 

ride 3 (43 %). However, applying an inverse procedure (IP), i.e. dissolving firstly acceptor 2 (1 eq) and 

catalytic amounts of TMSOTf (0.01 eq) and then adding a solution of donor 1 (1.5 eq), thus enforcing 

reaction course II, yielded 78 % of 3 which is an important building block in Lea synthesis14! The struc- 

Et20, TMSOTf (0.01 eq), RT (NP: 43 %) 
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ture of 3 was confirmed by the IH-NMR data 15. Similarly, from a 3a-O-unprotected 2-azido-2-deoxy- 
lactose as acceptor and 1 as donor under NP-conditions a 35 % yield, however under I&conditions an 

89 % yield of an Lex trlsaccharide building block was obtainedlfl6. 

The 3a,2b-O-unprotected 2-azidolactose acceptor 4 exhibited even more striking results; 4 was 

readily obtained from tert-butyldimethylsilyl 2-azido-2-deoxy-p-lactoside17 via selective 3b,4b-@iso- 

propylidenation and subsequent selective 6a,6bGbenzoylation l*! Treatment of a dichloromethane so- 
lution of acceptor 4 (1 eq) and donor 1 (4 eq) with TMSOTf (0.01 eq) under NP conditions resulted in 
selective formation of the H-trisaccharide precursor 5. Neither the isomer from 3a-0 attack (providing 

an LeX building block) nor the LeY derived tetrasaccharide 7 were found in appreciable amounts. Thus, 

by far the major part of fucosyl donor 1 was decomposed under the reaction conditions. However, car- 

rying out the reaction under IP-conditions furnished a 71 % yield of 7 and only a small amount (10 %) 

of 5. With lower amounts of donor 1 (1.5 eq) under IP-conditions highly selective formation of trisac- 

charide 5 (72 %) could be accomplished; unexpectedly, fucosylation in 2b-O-position of acceptor 4 is 

much faster than 3a-0 attack. The structures of compounds 5 and 7 and the 3a-0 acetylation product 6, 

required for determining the regioselectivities, were assigned through their ‘H-NMR datal5. 

Scheme 4 

From these observations it is concluded that under I&conditions AC-complex (or, due to the re- 

quirement of only catalytic amounts of C, AC-cluster formation) takes place first which then reacts 

with donor D to generate the glycosylating species in the vicinity of acceptor A (Scheme 2, II). Thus, 

higher product yields are obtained because the competing donor decomposition is not as effective as in 

reaction course I. 
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