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A diastereoselective synthesis of a new chiral diphosphine
with planar chirality is performed in 2 steps from (S)-p-
tolylferrocenyl sulfoxide with 60% overall yield. The ligand
gives enantioselectivities up to 98% ee in Pd(0)-catalyzed
allylic substitution reactions.

Molecules having axial chirality have found important applica-
tions as ligands in asymmetric catalysis.1 The enantioselective
synthesis of axially chiral compounds can be troublesome,2
however, an elegant approach for the synthesis of axially chiral
binaphthyls has been recently reported by Lipshutz3 and
Bringmann.4 Herein, we report the synthesis of a new class of
planar chiral diphosphines such as 1 using the chiral building
block 2.5 The diphosphine 1 forms, upon complexation to a
metallic salt, axially chiral complexes such as 3. Due to steric
hindrance, the complexation of a metal with ligand 1 will only
occur on the upper face away from the bulky ferrocenyl moiety.
Furthermore, the diphenylphosphinyl group attached to the
upper Cp-ring (see complex 3) will allow a further right–left
differentiation, so that the metallic moiety (L2M) will be in a
well defined steric environment (see Fig. 1).

The complexation to the metal center locks the conformation
of the aryl ring attached to the ferrocene and thus creates a
chirality axis.

The ferrocenyl sulfoxide 2 can be readily prepared in
optically pure form according to Kagan.5 Its ortho-lithiation
using LDA (278 °C to room temp., 1 h) followed by
transmetallation with ZnBr2 furnishes the corresponding zinc
reagent. Negishi cross-coupling6 of this intermediate ferroce-
nylzinc derivative with (2-iodophenyl)diphenylphosphine (4) in
the presence of Pd(dba)2 (5 mol%), tris-o-furylphosphine (tpf,
10 mol%) in THF (65 °C, 16 h) afforded the chiral sulfoxide 5
in 74% yield. Sulfoxide–lithium exchange of 5 with t-BuLi in
THF (278 °C, 5 min) and trapping of the lithium intermediate
with ClPPh2 provides the diphosphine 1 in 81% yield. Thus, the
diphosphine 1 was obtained in 2 steps from the sulfoxide 2 in ca.
60% overall yield (Scheme 1).

The mode of complexation of the new ligand 1 was verified
by forming complex 6 with [Pd(C3H5)Cl]2 (0.5 equiv) and
LiClO4. The X-ray structure7 of 6 indicates that only the
predicted diastereomeric complex is formed. Therefore, the
ferrocenyl moiety efficiently shields the bottom side and the
back side (Fig. 2).

The diphosphine 1 was tested in several reactions.8 Allylic
substitution9 of 1,3-diphenylallyl acetate (7) with dimethyl
malonate in the presence of [Pd(C3H5)Cl]2 (1 mol%) and the
chiral ligand 1 (2 mol%) provides the expected allylic

substitution product (8) in high yield and 92–98% ee depending
on the temperature. The highest enantiomeric excess is obtained
at 220 °C (98% ee) (Scheme 2).

Similarly, the substitution of 1,3,3-triphenylprop-2-enyl
acetate (9)10 with dimethyl malonate furnishes with complete
regioselectivity the triphenyl derivative 10 in 94% yield and
85% ee (Scheme 2). Pd(0)-catalyzed substitution reactions with
amine derivatives have also been examined. Thus, the reaction
of the potassium salt of benzoylhydrazine leads to the product
12b in 86% ee at 20 °C and in 95% ee at 220 °C in 96–98%
yield. Finally, benzylamine furnishes at 20 °C the allylic amine
12c under the standard conditions in 71% yield and 82% ee.
Only very little conversion was observed, when the same
reaction was attempted at 220 °C (Scheme 3).

In summary, we have developed a new simple synthesis of
axially chiral diphosphine complexes. The presence of the
planar chiral ferrocenyl unit avoids the need of resolution since

Fig. 1 Structures of the diphosphine 1 and complexes 2 and 3.

Scheme 1 Synthesis of ligand 1. Reagents and conditions: (a) LDA (1.1
equiv), THF, 278 °C, 30 min; (b) ZnBr2 (1.3 equiv), THF, 278 °C to room
temp., 1 h; (c) Pd(dba)2 (5 mol%), tfp (10 mol%), THF, 65 °C, 16 h,
(2-iodophenyl)diphenylphosphine (4; 0.7 equiv); (d) t-BuLi (2.0 equiv),
THF, 278 °C, 5 min; (e) ClPPh2 (3.5 equiv), 278 °C to room temp.

Fig. 2 ORTEP-Plot of the molecular structure of Pd-complex 6 (anion and
H-atoms were omitted for clarity). The thermal ellipsoids represent a 50%
probability.
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only one diastereomer is formed in a metal complexation. From
central chirality (sulfoxide) we were able to generate ster-
eoselectively a chirality plan and a chirality axis. The new
ligand is useful for asymmetric allylic substitutions with
malonates and amino derivatives.10–12 Further applications in
asymmetric catalysis are currently underway.

We thank Degussa AG for financial support and for the
generous gift of chemicals.
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Scheme 2 Pd-catalyzed allylic substitution of acetates 7 and 9 using ligand
1.

Scheme 3 Pd-catalyzed allylic amination of acetate 7 using ligand 1.
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