.^{\.}Сн₃

AZETIDINE-2,4-DIONES VIA PHOTOCYCLIZATION OF N-FORMYL-N-METHYL α , β -UNSATURATED AMIDES

Kazuhiro MARUYAMA, Takeshi ISHITOKU, and Yasuo KUBO Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606

Upon irradiation N-formyl-N-methylcyclohexene-l-carboxamide (2a) cyclized to give N-methylcyclohexane-l,l-dicarboximide (3a) in a high yield. The reaction proceeds via intramolecular hydrogen abstraction. Similarly, several other alkyl-substituted azetidine-2,4-diones were synthesized.

Recently we reported that N-methylcyclohexane-1,2-dicarboximide (1) photochemically isomerized to N-methylcyclohexane-1,1-dicarboximide (3a), and pointed out that N-formyl-N-methylcyclohexene-1-carboxamide (2a) could be the intermediate in this reaction.¹⁾ Now we extended the photocyclization of N-formyl-N-methyl α,β unsaturated amides for the synthesis of alkyl-substituted azetidine-2,4-diones.

Typically, N-formyl-N-methylcyclohexene-l-carboxamide (2a, 2.5 mmol) in 25 ml of acetonitrile was externally irradiated with a 120 W low-pressure Hg lamp through quartz after bubbling N₂ gas. After 6 h (conversion ~70%), chromatography of the reaction mixture on silica gel gave N-methylcyclohexane-l,l-dicarboximide (3a, mp 96-97 °C; ¹H-NMR δ 1.2-2.0 (m, 10 H), 2.89 (s, 3 H); IR (KBr) 1822, 1710, 945 cm⁻¹), a cyclized product, in a yield of 85%.²) Other examples are summarized in Table.³)

Intermediacy of 1,4-biradical $\frac{4}{\sim}$ which is produced via hydrogen abstraction by enone moiety from formyl group could be reasonably postulated. Similar hydrogen abstraction reaction of N,N-dibenzyl acrylamide has been published.⁴⁾ Table. Azetidine-2,4-diones from N-Formyl-N-methyl α,β -Unsaturated Amides*

	$\mathbb{R}^{2} \xrightarrow[]{\text{CHO}}_{\mathbb{R}^{2}} \mathbb{N}^{\mathbb{CHO}}_{\mathbb{R}^{3}}$			hu CH ₃ CN	$\rightarrow \qquad \begin{array}{c} R^{1}CH_{2} \\ R^{2} \\ R^{2} \\ R^{2} \\ R^{3} \\ R^{3}$				
2	Rl	R^2	3	Yield(%)**	2~	R^1	R ²	3~	Yield(%)
2a	– (CH ₂	$(2)_{4}^{-}$	3a	85	2e ~	Н	n-C ₃ H ₇	3e ≈	55
2b	– (CH ₂	2) ₃ -	3b	81	2f ∼	Н	$iso-C_{3}H_{7}$	3£	50
2c ≫	Н	CH3	3℃	25	2g ∼	Н	n-C4 ^H 9	3g	70***
2d	CH3	CH ₃	3e	29	2h	Н	\frown	3h	54

*Conversions are 70-80%. **Isolated yield and based on the amount of 2 consumed. ***NMR yield.

As seen from Table, 2a and 2b whose substituents (R^1, R^2) are ring component result in the better yields than the others (2c-2h). This result may be attributed to their different tendency towards trans-cis

their different tendency towards trans-cis isomerization. That is to say, since the trans-cis isomerization could compete with the intramolecular hydrogen abstraction, the yields in the reactions of 2c-2h would be lowered. In fact, 2d isomerized to its cis isomer 2d' upon irradiation, and 2c-2h needed about two-fold irradiation time compared to 2a and 2b.

Previously some synthetic methods for azetidine-2,4-diones have been reported,⁵⁾ but generally those involve sluggish reactions giving poor yields. The present synthetic approach to azetidine-2,4-diones simply consists of photolysis of N-formyl-N-methyl α , β -unsaturated amides which can be readily prepared from N-methylformamide and α , β -unsaturated carboxylic acid chlorides, and hence will provide a convenient synthetic method for alkyl-substituted azetidine-2,4-diones.

References and Notes

- K. Maruyama, T. Ishitoku, and Y. Kubo, J. Am. Chem. Soc., <u>101</u>, 3670 (1979).
 Kanaoka et al. independently reported α-cleavage reaction of cyclic imides.
 Y. Kanaoka, H. Okajima, and Y. Hatanaka, J. Org. Chem., <u>44</u>, 1749 (1979).
- 2) Quantum yield of formation of 3a was 0.3_1 .
- 3) All products gave satisfactory elemental analyses and reasonable spectral data.
- 4) T. Hasegawa, M. Watabe, H. Aoyama, and Y. Omote, Tetrahedron, 485 (1977).
- 5) A. C. Poshkus and J. E. Herveh, J. Org. Chem., <u>30</u>, 2466 (1965), and references are cited therein.