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ABSTRACT: Concise, efficient total syntheses of three cytotoxic marine alkaloids are described. Key phases of the 
synthesis are a useful pyridine-forming reaction and a triplet-sensitized tbermophotolysis of an aryl azide that established a 
C-N bond to an unactivated benzylic site. 

Marine organisms have recently yielded a multitude of bioactive compounds, notable among which are the 
pyridoacridine alkaloids. 2 Many of these substances display desirable pharmacological properties, e.g., 
antitumor activity. To illustrate, diplamine, 1, 3 a pigment produced by a tunicate of the D i p l o s o m a  species, is 
highly cytotoxic, with a reported potency against L1210 leukemia corresponding to an IC50 of 20 ng / mL (~- 54 
nM). By contrast, shermilamine B, 2, and related compounds 4 obtained from a poorly characterized 
Trid idemnun tunicate, are weakly bioactive (IC50 ~ 5 ~tg / mL against KB cells). 5 Pyridoacridine alkaloids are 
excellent targets for synthetic work, 6 not only because their architecture offers much opportunity for the 
development of new reactions, but also because their scarcity severely hampers further pharmacological 
evaluation. In the latter respect, provocative results are beginning to accumulate, 7 and the family as a whole may 
soon become of interest as a source of new lead structures for the development of future generations of 
therapeutic agents. 
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A very interesting total synthesis of diplamine has been described, 8 but, to our knowledge, the shermilamine 
problem has remained heretofore unresolved. 1 and 2 formally arise through oxidative condensation of a 
mercaptan with the quinoninimine 9 unit of a cystodytin-like intermediate, e.g. cystodytin J, 3,1° followed by 
further metabolism. We wish to describe the total synthesis of 1 and 2 by an application of this general 
principle. 

The synthesis of 1 commenced with the known dienone 4.11 Mesylation and combination of the resulting 
sulfonate ester with ethyl vinyl ether under Yb(ffI) catalysis 12 provided pyran 6, which emerged as a 1:1 mixture 
of diastereomeric rotamers. These inseparable products displayed substantially only the c i s  relative 
stereochemistry of the aryl- and ethoxy groups, suggestive of erMo-like addition of the vinyl ether to the 
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dienone. Displacement of the mesylate occurred smoothly upon exposure to N-sodioacetamide in DMF, and the 
resulting 7 furnished 8, m.p. 61-62 ° C ,under the conditions of our pyridine-forming reaction6,12 (Scheme 1). It 
should be noted that compound 8, and indeed all of the later azidopbenyl intermediates, were obtained as a 1:1 
mixture of inseparable diastereomeric rotamers. 

S c h e m e  1 a 

4 a,b N 3 ~  ~ O H O E t  - ' ' ~  ~ T ~ ' ~ "  e " ~  

o ,  

a(a) MsCI, CH2CI 2, Et3N, 0 ° C to RT, 99 %; (b) EtO-CH=CH 2, cat. Yb(fod)3, DCE, reflux, 99 %; (c) AcNH 2, Nail, DMF, 0 ° 
C to RT, 97 %; (d) moist HO-NH2.HCI, MeCN, reflux, 62 %; (e) 03, 4:1 CH2CI2/MeOH, -78 ° C, then Me2S, -78 ° C to RT, 67 
% chromatogaphed. 

Ozonolysis of 8 smoothly yielded ketone 9, m.p. 188-189 ° C. Thermophotolysis (chlorobenzene, 110 ° C, 
Sylvania sunlamp, pyrex, argon) of 9 d la Meth-Cohn, 13 but without an external triplet sensitizer, 14 delivered 
tetracyclic intermediate 10. This sensitive compound, a deep purple substance, was oxidized in situ with DDQ 
to bright yellow cystodytin J, 3, m.p. 196-197 ° C (dec.).15 When MeSH was bubbled at room temperature into 
a 4:1 CH2C12/AcOH solution of this material, an immediate color change from bright yellow to deep purple 
occurred, signaling formation of adduct 11. This substance was obtained as an intensely purple, air-sensitive 
solid, upon thorough removal of the volatiles. We attribute its color to equilibration with tautomer 12. 6 
Redissolution of 11/12 in CH2C12 and titration of the purple solution with a solution of DDQ in CH2CI 2 caused 
rapid color change to a dull orange, suggesting formation of the diplamine chromophore. The orange solution 
was directly applied to a column of silica gel, and fully synthetic 1, m.p. 200-201 ° C (dec.) (lit. 202-204 ° C, 
dec.) 3 was eluted with 10 % MeOH in CHC13 (94 % yield, Scheme 2). 
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a(a) he, PhCI, 110 ° C, then cool to RT and titrate with DDQ, 30 % chromatographed; (b) MESH, 4:1 CH2CI2/AcOH, RT, then 
remove volatiles, take up in CH2CI 2 and titrate with DDQ, 94 %. 

For reasons that remain unclear at this time, the reaction of 3 with 2-mercaptoacetate derivatives did not 
proceed in the same fashion as observed for MESH. This forced us to resort to an alternative strategy in order to 

reach sbermilamine B. Bromoketone 13, readily available from 511 (pyridinium tribromide), 16 reacted rapidly 
with methyl 2-mereaptoacetate in the presence of Htinig's base. Exposure of the resultant 14 to methanolic 
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ammonia in the presence of K2CO 3 induced amide formation and loss of the side-chain acetate. The emerging 
compound 15 cyclized readily to 16, yellow prisms, m.p. 101-103 ° C, upon brief reaction with BFyOEt 2. The 
correct side chain substitution was expeditiously installed through mesylation of 16 and mesylate displacement 
with N-sodioaeetamide. This potentially troublesome sequence proved to be free from complications, and 
afforded 18 in 59 % yield. 17 Not unexpectedly, 16 thermophotolysis of 18 in a true Meth-Cohn fashion (triplet 
sensitizer: acetophenone) proceeded with in situ oxidation of a presumed dihydroaromatic intermediate, and 
yielded fully synthetic shermilamine B, dec. 252-254 ° C without melting (lit. dec. 254 ° C w/o melting), in 67 % 
chromatographed yield (Scheme 3).18 

Scheme 3 a 
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a(a) HSCH2COOM¢, iPr2NEt, EtOH, RT, 10 rain, 66 % chromatographed from 5; (b) NH 3, MeOH, RT, 12 hrs, then add 
K2CO 3, 91%; (c) BF3'OEt 2, CHCI 3, RT, 90 %; (d) MsCI, CH2CI 2, Et3N, 0 ° C to RT, 100 %; (e) AcNH 2, Nail, DMF, RT, 59 
%; (~0 hv, 10% PhCOMe in PhCI, 110 ° C, 67 % chromatographed. 

The work described here and elsewhere 6 provides a coherent paradigm for the chemical synthesis of the 
major classes of bioactive pyridoacddine alkaloids, which are now readily available despite their natural paucity. 
Surely, the newly established supplies of these substances will contribute to their evolution from exciting 
structural curiosities to subjects of detailed pharmacological scrutiny. 
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