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Abstract: The regioselectivity of the Pseudomonas fluorescens (P. cepacia) lipase (PFL)-catalyzed 
irreversible transesterification of 2-substituted-l,4-butanediols la-3~a has been studied and, in the 
case of 3a, it has been shown that (R)- and (S)-diols are acylated with opposite regioselectivity. 

The lipase-catalyzed transesterification of a great variety of hydroxylated compounds is now a well 

established biocatalytic methodology for the synthesis of enantiomerically pure molecules. 1 A few reports on 

the regioselectivity of this reaction on dissymetric diols are also available in the recent literature. 2 We have 

been specially intrigued by the regioselectivity shown by the Pseudomonas fluorescens (P. cepacia) lipase 

(PFL) when the irreversible transesterification 3 of a few 2-substituted-l,4-butanediols was carried out with 

vinyl acetate in organic solvents. 4 Independently from the group present at position 2, the 1-hydroxy terminus 

was preferentially acylated and the stereochemical outcome of the reaction was the same as for other 2- 

substituted alkanols. 5 However, the small size substituents examined by us were properly chosen in view of 

some considerations on the expected stereochemical feature of the hydrophobic locus of the active site of 

PFL. 6 We now report on our studies on the same reaction catalyzed by PFL, using as substrates compounds 

bearing an aromatic moiety at the position 2. We considered this interesting because it has been already 

observed that, due to the probable presence of aromatic aminoacids at the active site, special electronic factors 

can influence the enantioselectivity of the enzymatic reaction.6, 7 We prepared the diols la-3a 8 and subjected 

them to the lipase-catalyzed transesterification in chloroform, that we constantly have used as the organic 

solvent of the reaction. 9 
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2-Phenyl-l,4-butanediol l a  was preferentially acylated at the 4-hydroxy group with a slow reaction (10 

days to reach a 83% conversion 10 to l b  and le  in a 3:7 ratioll).  The hydrolysis of the diacetate ld  was 

much faster, but less regioselective (40 hours to reach a 63% conversion to a 4:6 ratio of lb/ lc) ,  thus 

affording preferentially the 4-acetate le. 12 

Ph Ph Ph 

~"oAc 
la lb lc 
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Changing the phenyl into a benzyl group, the enzymatic reaction on the diol 2a was faster but virtually 

not regioselective (52 hours to a 50% of conversion into a 2b/2e ratio 46 to 54). The regioselectivity of the 

reaction is opposite to that shown by previously examined diols 4-64 and apparently the presence of the 

previous aromatic groups at the position 2 in the 1,4-butanediol framework renders the transesterification slow 

and the resulting regioselectivity profoundly altered. 13 

la, 2a 4 5 6 

On the contrary, for the 2-benzyloxy diol 3a the preferential formation of the 1-acetate 3h is observed 

(in 27 hours, 90% of the diol was converted into a 75:25 ratio of 3h/3c) 14 and the aqueous hydrolysis of the 

diacetate 3(! afforded a 2:8 ratio of 3h and 3c (4 h for 60% conversion). Thus, the enzymatic processes on the 

diol 3a proceed as for the above mentioned compounds 4-6. 4 

OBn OBn OBn 

HC.__/ f_~H P FL, CHCI3 H O ~ ~  OAc + AcO__/_~O H 
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(R,S)-3a 3b 3c 

75 : 25 

The enantioselectivity of the transesterification was relatively moderate, since for the unreacted diols 

l a  and 3a the ee was 50 and 70%, respectively. 15 Finally, in order to get a deeper insight into the reaction 

that had been performed on 3a as a racemic mixture, we decided to investigate the transesterification of the 
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single enantiomers, namely (R)- and (S)-3a. Within the same time (24 h), (S)-3a was converted almost 

completely (95%) to diacetate 3d (24%) and a 9:1 mixture of monoacetates 3b and 3e (71%), whereas (R)- 

3a reached a 40% conversion to the diacetate 3d (4%) and a 35:65 mixture of 3b and 3e (36%). 16 

$,,OBn ~ O A c  ,OBn ,,,OBn 

H O . ~ , " ' ~ O H  " H O ' ~ ' / ' ~ O A c  + A c ~ O H  PFL, CHCI 3 
(S)-3a 24h (71%) (S)-3b (S)-3c 

9:1 

.OBn _OBn .OBn 

H£). , ~ . ~ O H  ~ O A c  • H C ) . ~ / ~ O A c  + AcO / ~ O  H 
PFL. CHCI 3 

(R)-3a 24h (36%) (R)-3b (R)-3c 

35 : 65 

This result shows that the two enantiomers of 3a are acylated with opposite regioselectivity and 

explains the figures obtained using (R,S)-3a as substrate. It is also worth of mention that the transesterification 

of (S)-3a preferentially proceeds at C-1 and this result matches with the fact that also (S)-2-methyl alkanols 

are preferentially acylated by the same enzymatic reaction.5, 6 
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