The Infrared Spectrum of C_2N_2 in the Region of the Bending Fundamental ν_5

K. Jolma

Department of Physics, University of Oulu, SF-90570 Oulu 57, Finland

The high resolution infrared spectrum of C_2N_2 in the region 200-270 cm⁻¹ has been studied with a Fourier transform spectrometer. In addition to ν_5 , the "hot" bands $2\nu_5^0 \leftarrow \nu_5^1$, $2\nu_5^2 \leftarrow \nu_5^1$ and $3\nu_5^3 \leftarrow 2\nu_5^2$ have been analysed. Polynomial fits have been applied to obtain the vibrational term values and the rotational constants for the levels involved.

1. INTRODUCTION

Cyanogen (C_2N_2) is a stable, symmetric linear molecule. It has five fundamental vibrations. There are two bending modes, of which one is infrared active $(\nu_5 = 234 \text{ cm}^{-1})$ and the other Raman active $(\nu_4 = 503 \text{ cm}^{-1})$. The three stretching vibrations are the Raman active fundamentals $\nu_1 = 2331 \text{ cm}^{-1}$ and $\nu_2 = 846 \text{ cm}^{-1}$ and the infrared active fundamental $\nu_3 = 2157 \text{ cm}^{-1}$. High-resolution spectroscopic studies of this molecule are relatively few (1-7). The results concerning the lowest fundamental ν_5 are clearly incompatible. Accordingly, this investigation was undertaken to get accurate results for the ν_5 band and, at the same time, to obtain some information on the associated "hot" bands, too.

FIG. 1. The Q-branch region of ν_5 of C_2N_2 with low resolution. Absorption downward. The Q branches of the analyzed bands are marked as follows: (A) $0000^{0}2^{0} \leftarrow 0000^{0}1^{1}$; (B) $0000^{0}1^{1} \leftarrow 0000^{0}0^{\circ}$; (C) $0000^{0}2^{2} \leftarrow 0000^{0}1^{1}$; and (D) $0000^{0}3^{3} \leftarrow 0000^{0}2^{2}$. The Q-branch E was tentatively attributed to $(0000^{0}3^{1} \leftarrow 0000^{0}2^{2})$ and the Q branch F to $(0000^{0}3^{1} \leftarrow 0000^{0}2^{0})$.

TABLE I

Analyzed Bands of C₂N₂

Transition	J _{MAX} P/R or Q	Measured lines	Standard deviation [10 ⁻⁴ cm ⁻¹]
$0000^01^{1c} \neq 0000^00^0$	84/82	81	24
$0000^{0}1^{1d} + 0000^{0}0^{0}$	75	26	22
$0000^{0}2^{0} \neq 0000^{0}1^{1c}$	62/59	52	19
$0000^{0}2^{2c} \neq 0000^{0}1^{1c}$	59/59	48	26
0000 ⁰ 2 ^{2d} ← 0000 ⁰ 1 ^{1d}	61/61	44	28
$0000^{0}3^{3c} \neq 0000^{0}2^{2c}$	57/60	46	26
0000 ⁰ 3 ^{3d} ← 0000 ⁰ 2 ^{2d}	59/57	48	30

2. EXPERIMENTAL DETAILS

The sample gas of cyanogen was prepared by allowing sodium cyanide to act on copper (II) sulfate. The gas pressure in the triple pass cell giving a path of 1

TABLE II

Observed Line Positions (cm⁻¹ in Vacuum) in the Fundamental ν_5 of C_2N_2

0000 ⁰ 1 ¹ < 0000 ⁰ 0 ⁰											
J	P _{cc} (J)	R _{cc} (J)	۹ _{dc} (J)	J	P _{cc} (J)	R _{cc} (J)	Qdc (J)	J	P _{cc} (J)	R _{cc} (J)	g ^{qc} (1)
5	232 1663	-	-	31	-	-	-	57	-	253.3905	-
~	-	-	-	32	-	244.5711	234.4116	58	216.9283	253.7567	-
7	231 5461	-	-	33	-	244.9143	-	59	216.6701	254.1148	-
Ŕ		-	-	34	223.5238	-	234.4994	60	216.4038	-	263.0733
ŏ	230.9312	-	-	35		-	-	61	-	-	-
10	230 6261	237 2383	-	36	-	-	-	62	-	255,2132	-
11	230 3192	-	-	37	222.6739	246.2949	-	63	-	-	-
12	-	237 8922	-	38	222.3916	246.6472	-	64	-	-	-
13	-	238 2178	-	39	-	246.9868	-	65	215,1017	-	-
14	-	238.5468	-	40	-	-	234.7892	66	-	256.6867	-
15	229.1025	238.8714	-	41	-	-	-	67	-	-	-
16	_	239 2016	233,9040	47	221.2700	248.0410	234.8961	68	-	257.4189	236.7292
17	_	239.5312	-	43	-	248.3916	-	69	-	-	236.8135
18	228 2023	239 8580	-	44	-	248,7398	235.0098	70	213.8114	-	236.9056
19	227.9017	-	-	45	-	249.0934	235.0697	71	-	-	-
20	227 6051	240.5222	234.0010	46	-	-	235.1283	72	213.3098	· -	237.0784
21	-	240.8568	_	47	-	-	-	73	-	-	-
22	-	241.1902	-	48	-	250.1598	-	74	212.8081	259.6631	-
23	226.7161	241.5252	234.0888	49	219.3413	-	-	75	-	260.9434	237.3604
24	776.4255	-	_	50	219.0727	-	235.3756	76	212.3015	260.4225	-
25	-	-	234.1510	51	-	251.2263	-	77	-	-	-
26	225.8361	242.5287	234.1825	52	218.5281	251.5874	235.5039	78	211.8113	261.1726	-
27	-	242.8715	234.2184	53	218.2637	251.9468	-	79	-	-	-
28	-	243.2051	234.2586	54	217.9958	252.3075	235.6427	80	211.3145	261.9366	-
29	224,9629	243.5497	234.2923	55	217.7294	252.6670	235.7085	82	210.8258	262.6972	-
30	224,6729	243.8901	-	56	-	253.0286	235.7824	84	210.3398	-	-

m was about 300 Pa. The measurements were performed on the Fourier spectrometer at the University of Oulu (8, 9). The resolution attained was better than 0.02 cm⁻¹. The wavenumber scale was calibrated with the aid of water vapor lines (10), which were simultaneously recorded.

3. RESULTS AND ANALYSIS

The term values of a linear molecule may be written as

$$T_{v} = G_{v} + B_{v}[J(J+1) - l^{2}] \\ \pm (1/2)q_{v}J(J+1) - D_{v}[J(J+1) - l^{2}]^{2} \pm (1/2)\mu_{v}J^{2}(J+1)^{2}, \quad (1)$$

where G_v is the vibrational term value, B_v is the rotational constant, D_v is the centrifugal distortion constant, and the *l*-doubling constants q_v and μ_v are the differences of the *B* and *D* constants for the component levels of the *l*-doublets. The upper sign in Eq. (1) applies to the *d* levels and the lower sign to the *c* levels. The polynomial expressions applied to the lines in the *P* and *R* branches as well as in the *Q* branch of rovibrational transitions can be derived from Eq. (1) (11).

			This	work		
_		Р	and R branch	Q branch	Literatur	е
vв	с	[cm ⁻¹] 2	33.7271(5)	233.7279(12)		
Bʻʻ	= B _o	[cm ⁻¹]	0.157124(7)		0.157124(12) 0.15712 0.157115(50) 0.157135(10)	[1] [4] [6] [7]
B'	- B**	[10 ⁻³ cm ⁻¹]	0.42855(46)	0.65205(109)		
B'	$= B^{c}(v_{5}^{1})$	[cm ⁻¹]	0.157553(7)			
B'	$= B^{d}(v_{5}^{1})$	[cm ⁻¹]		0.157776(8)*		
D''	= D 0	[10 ⁻⁸ cm ⁻¹]	2.63(8)		3.01(20) 2.7(5) 2.50(8)	[1] [6] [7]
D'	- D''	[10 ⁻⁸ cm ⁻¹]	0.085(7)	0.268(19)		
D'	$= D^{c}(v_{5}^{1})$	[10 ⁻⁸ cm ⁻¹]	2.72(8)			
D'	$= D^{d}(v_{5}^{1})$	[10 ⁻⁸ cm ⁻¹]		2.90(9)**		
۹ ₅		[10 ⁻⁵ cm ⁻¹]	22.59	9(9)	22.43(18)	[5]
^μ 5		[10 ⁻⁹ cm ⁻¹]	-2.2	(3)		
*	Calculated	with the aid o	$f B_0 = 0.15712$	24(7) cm ⁻¹ .		
**	Calculated	with the aid o	$f D_0 = 2.63(8)$	10^{-8} cm ⁻¹ .		

TABLE III

Results from the Analysis of the Fundamental ν_5

K. JOLMA

The central part of the spectrum with low resolution is shown in Fig. 1. This spectrum has been transformed from a small part of the interferogram points only to visualize better the Q branches.

Table I presents an overall summary of the different bands analyzed. For each of these, the observed maximum J value, the number of measured lines, and the standard deviation of the data for the whole band are given.

	0000 ⁰ z ⁰ +	0000 ⁰ 1 ¹		0000 ⁰ 2 ² ↔	0000 ⁰ 1 ¹			0000 ⁰ 3 ³ +	0000 ⁰ 2 ²		
J	P _{cc} (J)	R _{cc} (J)	P _{cc} (J)	R _{cc} (J)	P _{dd} (J)	R _{dd} (J)	P(J)	R _{cc} (J)	P _{dd} (J)	R _{dd} (J)	ť
4	229.8999	-	-	-	-	-	-	-	-	-	4
5	229.5890	-	232.6328	-	-	-	-	236.5850	233.0942	236.5850	5
6	229.2808	-	-	-	-	236.4243	232.7816	236.9053	232.7787	236.9053	6
7	228.9734	-	-	236.7607	-	-	-	-	-	-	7
8	-	-			-	-	232.1570		-	-	8
.9	-	234.3760	231.4068	237.4180		-	-	237.8819		237.8819	. ?
10	-	-	-	-	231.0796	-	251.5465	-	231.5465	-	10
11	-	235.0315	250.8014	238.0700	370 / 437	-	370 0713	370 971/	-	779 074/	11
17	-	-	230 19/0	238 7/07	230.4023	238 7027	230.9312	230.0/14	-	230.0/14	12
17	_	_	220 8000	239 0767	220 8531	-	-	237.2010	_	237.2010	14
15	_	-	229 6030	-	229 5454	-	-	-	_	-	15
16	-	236 7091	229.3064	239 7489	-	239.6832	-	-	-	-	16
17	225 9705	-	229.0101	240.0831	-	240.0129	-	-	-	-	17
18	-	237.3862	-	240.4282	-	-	-	-	-	240 8749	18
19	-	-	228.4268	240.7667	228,3412	240.6783	-	241.2109	228.8369	241.2109	19
20	-	-	-	241.1054	-	-	228.5347	241.5436	228.5347	-	20
21	224.8008	238.4044	-	-	-	241.3517	228.2386	-	228.2386	241.8924	21
22	-	-	-	241.7980	227.4521	241.6891	227.9419	-	-	-	22
23	224.2310	239.0936	227.2764	-	-	-	227.6482	242.5651	-	-	23
24	-	-	-	-	-	-	-	242.9075	227.3643	-	24
25	-	239.7865	-	-	226.5663	242.6952	227.0585	-	227.0746	-	25
26	-		226.4255	-	-	243.0358	-	243.5900	22 6 .7805	243.6084	26
27	223.0935	240.4877	-	-	-	-	-	-	226.4923	243.9457	27
28	-	-	-	-	-	-	226.1945	-	226.2105		28
29	222.5294	-	225.5918				-		225.9248	244.6517	29
30	-	241.5436	-	244.6077	225.0963	244.3979	-	244.9788	-	-	30
31	-	-	-	-	-	244.7576	-	-	-	-	- 51
32	-	-	224.7074	-	-		225.0524	-	-	-	32
33	221 1/74	2/2 0470	224.4932	-	-	242.4202	224.1014	2/ 4 770/	-	-	33
J4 75	221.1411	242.7030	-	314 1143	-	2/4 1124		240.3194		2/4 7479	74
32	220.0/1/	243.3230	-	240.4102	-	240.1120		240.7327	224.2310	240.7030	36
37	220 3327	244 0440	-	247 1449	223 0935	-	-	-	_	247 4752	37
38	220.0592	-	-	247.5112	222 8027	247.1582	-	-	-	_	38
39	219.7891	244.7641	-	-	-	_	-	-	223,1266	248,1953	39
40	219.5247	-	222.6320	248.2457	-	247.8615	-	248.5022	_	248.5560	40
41	219.2570	-	-	248.6180	-	-	222.5294	248.8606	-	248.9097	41
42	-	-	-	-	-	248.5560	-	-	-	-	42
43	218.7281	246.2236	-	-	221.3965	248.9097	221.9796	249.5811	222.0461	249.6449	43
44	218,4630	-	-	-	-	249.2583	221.7042	-	221.7714	-	44
45	218.2001	246.9557	221.3452		-			-	221.5147	250.3815	45
46	217.9386	-	221.0916	250.5063	-	249.9652	221.1672	-	-	-	46
47	217.0794	2/9 0445	-	-	170 0474	-	220.8927	254 7047	-	-	4(
40	217.4134	248.0000	220.3819	251 4/72	220.0131	-	-	201.0002	-	251 05/2	40
49 50	217.1392	240.4300	-	251.04/2	219,7303	-	320 0793	251.7520	220 1009	257 2296	50
51	210.7020	2/0 1821	210 8577	252 /271	219 1920	_	219 8163	2221122	219 9404	252 6045	51
52	-	249 5555	219 6090	-	218 9221	-	-	252 8434	219 6801	-	52
53	-	249.9325	_	-	218 6543	-	219.2869	-	219.4280	253 3612	53
54	-	250.3053	-	-	-	-	219.0230	-	219.1655	_	54
55	-	-	-	253.9807	218,1140	253.1888	-	-	-	-	55
56	-	-	218.6543	-	-	253.5509	218.4963	-	-	-	56
57	-	251.4321	218.4212	254.7758	-	-	218.2293	-	-	254.8803	57
58	-	251.8110	-	-	-	254.2761	-	255.0665	218.1624	-	58
59	214.6105	252.1879	217.9580	255.5764	-	-	-	-	217.9170	-	59
60		-	-	-	216.7792	255.0015	-	255.8044	-	-	60
61	214.1116	-	-	-	216.5127	255.3689	-	-	-	-	61
	215 8596	-	-	-	-	-	-	-	-	-	62

TABLE IV Observed Line Positions of the "Hot" Bands

3.1. The Fundamental v_5

The observed line positions of the fundamental ν_5 are listed in Table II. The molecular constants from unconstrained polynomial fits are given in Table III. The error limits quoted in this table as well as in all the others are standard deviations in the units of the last digits given. The *l*-doubling constants q_5 and μ_5 were determined from the relation

$$F_{5d}(J) - F_{5c}(J) = q_5 J(J+1) + \mu_5 J^2 (J+1)^2.$$
⁽²⁾

The values of F(J) were calculated from the line positions given in Table II, and from the results for B_0 and D_0 obtained in this work. The results have been compared with selected literature data. The ground-state rotational constants B_0 and D_0 and the *l*-doubling constant q_5 are in good agreement with the literature values. The result for ν_5 is greater than the calculated literature values 233.0722(15) cm⁻¹ (5) and 233.15(15) cm⁻¹ (1, 4). The calculated value 233.7 cm⁻¹ reported by Jones (12), however, is consistent with the present result. Wang *et al.* (7) observed (1000⁰0⁰ \leftarrow 0000⁰0⁰) at 2330.512(2) cm⁻¹ and Picard (6) measured 2096.765(1) cm⁻¹ for the difference transition (1000⁰0⁰ \leftarrow 0000⁰1¹). These values yield ν_5 = 233.747(3) cm⁻¹, which is reasonably near to the present result, although the difference is larger than the error limits would allow.

3.2. The "Hot" Bands

All the "hot" bands analyzed are listed in Table I. The observed line positions are presented in Table IV. Table V shows the results obtained from the fits where the B'' and D'' constants were constrained to the values given by the present findings. In the error limits for the B and D of the upper state, the uncertainty of the constrained value has been added to the standard error (one standard deviation) given by the fit. The rotational constants B of the levels $0000^{\circ}v'_{5}$ (with $l = v_{5}$ and $v_{5} = 0, 1, 2, 3$) grow regularly as v_{5} increases. The values were fitted according to the expression

the second s						
^V BC [cm ⁻¹]	B' [cm ⁻¹]	B'' [cm ⁻¹]	B' - B'' [10 ⁻³ cm ⁻¹]	D' [10 ⁻⁸ cm ⁻¹]	D'' [10 ⁻⁸ cm ⁻¹]	D' - D'' [10 ⁻⁸ cm ⁻¹]
231.1524(7)	0.158198(8)	0.157553	0.6455(9)	4.27(10)	2.72	1.555(23)
234.1926(8)	0.158201(8)	0.157553	0.6480(14)	1.75(12)	2.72	-0.967(40)
234.1923(11)	0.158205(10)	0.157776	0.4288(15)	3.12(13)	2.90	0.220(39)
234.6628(9)	0.158721(10)	0.158201	0.5199(14)	2.48(16)	1.75	0.728(40)
234.6626(10)	0.158731(11)	0.158205	0.5256(16)	2.32(18)	3.12	-0.801(49)
	^V BC [cm ⁻¹] 231.1524(7) 234.1926(8) 234.1923(11) 234.6628(9) 234.6626(10)	$\begin{array}{ccc} & B^{1} \\ \hline & & \\ 231.1524(7) & 0.158198(8) \\ 234.1926(8) & 0.158201(8) \\ 234.1923(11) & 0.158205(10) \\ 234.6628(9) & 0.158721(10) \\ 234.6626(10) & 0.158731(11) \\ \end{array}$	VBC B' B'' [cm ⁻¹] [cm ⁻¹] [cm ⁻¹] 231.1524(7) 0.158198(8) 0.157553 234.1926(8) 0.158201(8) 0.1577553 234.1923(11) 0.158205(10) 0.157776 234.6628(9) 0.158721(10) 0.158201 234.6626(10) 0.158731(11) 0.158205	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE V

Results from the "Hot" Bands of C2N2

 $B^{\prime\prime}$ and $D^{\prime\prime}$ constrained (this work).

K. JOLMA

TABLE VI

Some Vibrational Term Values (cm⁻¹) of C₂N₂

Level	G ₀ (v) [cm ⁻¹]
0000 ⁰ 1 ¹	233.8849(7)
0000 ⁰ 2 ⁰	464.8796(13)
0000 ⁰ 2 ²	468.5526(15)
0000 ⁰ 3 ³	704.0110(23)
	· · · · · · · · · · · · · · · · · · ·

$$B(0000^{0}v_{5}^{\prime}) = B_{0} - \alpha_{5}^{0}v_{5} + (\gamma_{55}^{0} + \gamma_{11})v_{5}^{2}.$$
(3)

The fit resulted in $\alpha_5^0 = -0.548(5) \times 10^{-3} \text{ cm}^{-1}$ and $\gamma_{55}^0 + \gamma_{11} = -0.45(15) \times 10^{-5} \text{ cm}^{-1}$.

The levels $2\nu_5^0$ and $2\nu_5^{2c}$ perturb each other through *l*-type resonance, while the $2\nu_5^{2d}$ state is unperturbed (13). The effect of the resonance appears in the (D' - D'') values obtained from the fits in the $2\nu_5 \leftarrow \nu_5$ bands. The values of (D' - D'') in the resonance diad are roughly equal in absolute value, but have opposite signs, as shown in Table V.

The absorption at 228.7 cm⁻¹, (E) in Fig. 1, was tentatively attributed to $(0000^{0}3^{1} \leftarrow 0000^{0}2^{2})$ and, respectively, the absorption (F) at 231.7 cm⁻¹ to $(0000^{0}3^{1} \leftarrow 0000^{0}2^{0})$. Some rotational lines could be assigned in accordance with these assumptions, but the results remained so dubious that they will not be reported.

3.3. Vibrational Term Values

The determined term values, as listed in Table VI, were obtained by combining the band centers, B values and q values and by employing the following expression (14) for a band center:

$$v_{BC} = G_0(v') - G_0(v'') - B'l'^2 + B''l''^2 \pm (1/2)(q'l'^2 - q''l''^2), \tag{4}$$

where the different ν_{BC} values were weighted with the inverses of their estimated errors squared. The uncertainties in Table VI are the sums of the uncertainties of the various components included in the determinations.

ACKNOWLEDGMENTS

I am deeply grateful to Dr. H. Ruotsalainen, Department of Chemistry, University of Oulu, for the preparation of the sample, to Dr. E. Kyrö for the measurement of the spectrum, and to Associate Professor R. Anttila for reading the manuscript.

RECEIVED: September 3, 1981

REFERENCES

- 1. A. G. MAKI, J. Chem. Phys. 43, 3193-3199 (1965).
- 2. A. BERSELLINI AND C. MEYER, C. R. Acad. Sci. Ser. B 270, 1672-1675 (1970).
- 3. A. PICARD-BERSELLINI, C. R. Acad. Sci. Ser. B 273, 353-356 (1971).
- 4. G. B. FISH, G. J. CARTWRIGHT, A. D. WALSH, AND P. A. WARSOP, J. Mol. Spectrosc. 41, 20-32 (1972).
- 5. A. PICARD, Spectrochim. Acta Part A 29, 423-426 (1973).
- 6. A. PICARD, Spectrochim. Acta Part A 30, 691-701 (1974).
- 7. I-YAN WANG AND A. WEBER, J. Chem. Phys. 67, 3084-3096 (1977).
- 8. J. KAUPPINEN, Appl. Opt. 14, 1987-1990 (1975); Acta Univ. Ouluensis Ser. A 38, 1-30 (1975).
- 9. J. KAUPPINEN, Appl. Opt. 18, 1788-1796 (1979).
- 10. J. KAUPPINEN, T. KÄRKKÄINEN, AND E. KYRÖ, J. Mol. Spectrosc. 71, 15-45 (1978).
- 11. K. JOLMA AND J. KAUPPINEN, J. Mol. Spectrosc. 82, 214-219 (1980).
- 12. L. H. JONES, J. Mol. Spectrosc. 45, 55-64 (1973).
- 13. G. AMAT AND H. H. NIELSEN, J. Mol. Spectrosc. 2, 163-172 (1958).
- 14. A. BALDACCI, S. GHERSETTI, S. C. HURLOCK, AND K. NARAHARI RAO, J. Mol. Spectrosc. 42, 327-334 (1972).