Synthesis of the *Preininger*-Alkaloid and its Enantioselective Reduction to Macrostomine

Siavosh Mahboobi and Wolfgang Wiegrebe^{*}

Institute of Pharmacy, University, P.O. Box 397, D 8400-Regensburg, Germany

Received February 26, 1990

The *Preininger*-alkaloid, dehydro-normacrostomine (2b, Scheme 1) was synthesized starting from rac. α -acetyl-3,4-dimethoxybenzylcyanide (3) (Scheme 2). The key intermediate 4-acetyl-6,7-dimethoxy-1-(3,4-methylene-dioxybenzyl)isoquinoline (11) is converted via a *Mannich* base to the nitrile 17 (Scheme 7) which in turn is cyclized to the *Preininger*-alkaloid (2b) by careful hydrogenation. - Reduction of 2b with a modified *Iwakuma*-reagent, followed by N-formylation and subsequent LiAlH₄-reduction produced (*R*)-(+)-macrostomine (enantiomer of 1) in 72 % optical purity.

In 1974 Šantavý, Preininger et al.¹⁾ reported upon isolation and structure elucidation of a benzylisoquinoline alkaloid from papaver macrostomum, papaveraceae, named macrostomine (1). For this alkaloid S-configuration at C-2 of the pyrrolidine-increment was established by chiroptical comparison with (S)-(-)-nicotine and (S)-(-)-brevicoline.

Traces of a new alkaloid, dehydro-normacrostomine (2a) were isolated from *papaver macrostomum* by the same group in 1976²⁾. In commemoration of the late V. *Preininger* we have named dehydro-normacrostomine "*Preininger-alkaloid*". Here we describe the synthesis of this alkaloid and a marginal correction of its structural formula (2b instead of 2a, see below).

Scheme 1

Synthese des Preininger-Alkaloids und dessen enantioselektive Reduktion zu Macrostomin

Das Preininger-Alkaloid (Dehydro-normacrostomin, 2b, Scheme 1) wurde ausgehend von rac. α -Acetyl-3,4-dimethoxybenzylcyanid (3) über die Schlüsselverbindung 4-Acetyl-6,7-dimethoxy-1-(3,4-methylendioxybenzyl)isochinolin (11) synthetisiert. Die Umsetzung von 11 über eine Mannich-Base zum Nitril 17 (Scheme 7) und dessen schonende Hydrierung führten zum Preininger-Alkaloid (2b). - Die Reduktion von 2b mit einem modifizierten Iwakuma-Reagenz, N-Formylierung und Alanat-Reduktion lieferten (R)-(+)-Macrostomin (Enantiomer von 1) in 72 proz. optischer Reinheit.

Rac. α -acetyl-3,4-dimethoxybenzylcyanide ³⁾ (3) was converted to 4 which was reduced by B₂H₆ to the β -phenylethylamine 5. Aminolysis of methyl (3,4-methylenedioxyphenyl)acetate (6) with amine 5 afforded the amide 7 which was cylcized to 8 according to *Bischler-Napieralski* ⁴⁾. NaBH₄ led to the tetrahydroisoquinoline 9a. We were not bothered about stereoisomers because the centers of chirality at C-1 and C-4 were abolished in the following steps.

This hydrogenation seems to be a detour because a (dehydrogenated) isoquinoline systems was aspired. On account of the sensitivity of 1-benzyl-3,4-dihydroisoquinoline bases, however, which are easily converted to 1-benzoyl-3,4-dihydroisoquinolines by exposure to air ⁵¹, we could not remove the dithioketal protecting group successfully. This step, however, would have been mandatory in order to avoid disturbances of the Pd/C-catalyzed dehydrogenation by the sulfur-increment.

Various attempts for cleaving the dithioketal in 9a failed ⁶⁾. Meerwein's reagent ⁷⁾, e.g., led to N-ethylation (9b) but did not attack the dithioketal.

According to Fujita⁸⁾ even those S-protecting groups being resistant against Tl(NO₃)₃ can be removed by Hg(ClO₄)₂. This reagent has smoothly liberated the ketone moiety of the β -aminoketone **10**. Dehydrogenation of **10** led to the 4-acetyl-1-benzylisoquinoline **11** in 82 % yield besides 6.5 % of **11a**.

A rationalization for the formation of the by-product **11a** is given in Scheme 4.

Alternatively the dithioketal moiety in amide 7 was removed by $Hg(ClO_4)_2$ producing compound 12 which was cyclized to the 3,4-dihydroisoquinoline 13, but direct dehydrogenation of 13 afforded the 4-acetyl-1-benzylisoquinoline 11 in 18 - 22 % yield only.

^{*)} Dedicated to Prof. Dr. K. Bernauer, Basel, on the occasion of his 65th birthday.

Scheme 3

Our efforts to build up the pyrroline moiety of *Preininger*alkaloid adopting synthetic routes elaborated by *Leete*⁹⁾, *Knott*¹⁰⁾, or *Burckhalter*¹¹⁾ and nicely working in the preparation of 2-(hetero)aryl-pyrrolines¹²⁾ failed: *Böhme* salt (*N*,*N*-dimethyl-methyleneammonium chloride)¹³⁾ or the corresponding acetate¹⁴⁾ did not react with **11** at room temp., whilst at 80°C (chloride form) or 40°C (acetate form) the CH₂-group was attacked leading to the aza-Mannich base 14 (Scheme 6).

We had been aware of this possibility but 1-(3,4-methylenedioxybenzyl)-6,7-dimethoxyisoquinoline $^{15)}$ did not react under these conditions. Probably the 4-acetyl increment in 11 increases the C-H-acidity of the CH₂-

Scheme 5

group. Therefore, the following steps were performed analogously to those described for our modified synthesis of the nicotiana alkaloid myosmine¹⁶.

Our key compound 11 was silvlated according to Simchen¹⁷⁾ affording the enol derivative 15, which was treated with N,N-dimethyl-methyleneammonium iodide (Eschenmoser salt) followed by hydrolysis with dil. HCl, producing the Mannich base 16; both steps are analogous to those reported by Danishefsky ¹⁸⁾. 16-HCl is converted by CN⁻ to the β -cyanoketone 17. This step does not work with 16base, because it decomposes easily by a retro-Mannich-reaction. Careful hydrogenation (cf. Scheme 7) led to 2b, the Preininger-alkaloid.

If the enol derivative 15 is allowed to react with *Böhme-Eschenmoser* salt (iodide form) for 12 h (instead of 90 min only) and the crude mixture is treated with KCN followed by hydrogenation as described above, the C-9-methylated *Preininger*-alkaloid 18 is obtained.

We assume that also in this case the CH_2 -group had reacted with the N,N-dimethyl-methyleneammonium salt to an aza-Mannich base. Loss of dimethylamine from the pertinent enamine tautomere to the C-9-methylene increment und subsequent hydrogenation then affords compound 18 (cf. Scheme 8).

As mentioned in the introductory remarks formula 2a had been attributed to dehydro-normacrostomine ²⁾, whilst on the other side compound 2b fits all the analytical data cited by *Šantav'*, *Preininger* et al. ^{2)*)}. These authors have deduced the enamine-structure from H/D-exchange experiments with "deuterioethanol", giving rise of an (M+1)-peak in the mass spectrum and "to a smaller extent" of (M+2). Obviously the quantity available (7 mg ²⁾) of this alkaloid was too small for ¹H-NMR-experiments at that time. -There are no experimental data for that H/D-exchange experiment. We used CD₃OD and found only 10 % exchange. Because a D⁺-catalyzed reaction is conceivable (traces of CD₃-COOD in the deuterioethanol ?) we have stirred **2b** with CD₃-COOD at 30°C for 3 h. The result (up to 5 H exchanged) is shown in fig. 1.

Obviously not only the aza-allyl system but also the benzylic CH₂-group is prone to H/D-exchange. - The ¹H-NMR-spectrum of **2b** is shown in fig. 2.

We have reported on the enantioselective hydrosilylation of the *Preininger*-alkaloid (2b) affording (S)-(-)-macrostomine (1) with 33 % ee ¹⁹.

Reduction of **2b** with NaBH₄/N-benzyloxycarbonyl-Lproline (cf. *Iwakuma*²⁰⁾) and subsequent *N*-formylation by CH₃-CO-O-CO-H afforded rotamers of (R)-(+)-*N*-formylnormacrostomine (**19**) which were reduced to (R)-(+)-mac-

*) The enamine/imine tautomerism is generally discussed by O. Cervinka in: Enamines, 2 nd ed., p. 460, G.A. Cook, ed., M. Dekker, Inc., New York ...

Scheme 7

Fig. 1: H/D-exchange; Preininger-alkaloid (2b)

Fig. 2: 400 MHz-¹H-NMR-spectrum of Preininger-alkaloid (2b)

Moreover, **19** can be hydrolyzed to the pertinent normacrostomine **20**.

Financial support by Fonds der Chemischen Industrie is gratefully acknowledged.

Experimental Part

General remarks: lit. 16 ; Al₂O₃: activity II-III, Brockmann. - All temp. in *C.

α -(3,4-Dimethoxyphenyl)- α -(2-methyl-1,3-dithiolan-2-yl)acetonitrile (4)

54.8 g (0.25 mole) α -acetyl-3,4-dimethoxybenzylcyanide (3) ³⁾, dissolved in 400 ml of absol. CH₂Cl₂, 24.54 g (0.26 mole) 1,2-dimercaptoethane and 20 ml BF₃-etherate were stirred at room temp. for 16 h. After addition of water (100 ml) and alkalization with 5 % NaOH the mixture was extracted with CH₂Cl₂. The org. layer was washed with water and dried (Na₂SO₄). After evaporation the light yellow oil was purified by kugelrohr-distillation (210°, 0.05 mm Hg): colourless crystals, m.p. 82 - 83° (MeOH), 70.2 g (95 %). - C₁₄H₁₇NO₂S₂ (295.4) Calcd. C 56.4 H 5.70 N 4.7 Found C 56.3 H 5.66 N 4.6. - UV (MeOH): λ max (log ε) = 279 (3.50), 236 nm (3.95). - IR (KBr): 2270 cm⁻¹ (CN). - ¹H-NMR: δ (ppm) = 1.8 (s; 3H, CH₃), 3.2 - 3.48 (m; 4H, S-CH₂-CH₂-S), 3.89 (s; 3H, OCH₃), 3.91 (s; 3H, OCH₃), 4.2 (s; 1H, CH-CN), 6.85 (d; J_{AB} = 9 Hz, 1H, Ar-H-5), 7.5 (dd; J_{1/2} = 9/1.5 Hz, 2H, Ar-H-6 and H-2).

2-(3,4-Dimethoxyphenyl)-2-(2-methyl-1,3-dithiolan-2-yl)-ethylamine (5)

500 ml B₂H₆-tetrahydrofuran complex (1 mole/l) were added drop by drop to 118 g (0.4 mole) of 4 in 350 ml of absol. THF at room temp. under N₂. After 45 min reflux about 750 ml of THF were distilled off and EtOH (130 ml) was added drop by drop at 0°. After alkalization with aqueous NH₃ amine 5 is extracted with CHCl₃. After drying (Na₂SO₄) and evaporation the remaining oil is purified by kugelrohr-distillation (190°, 0.01 mm Hg): nearly colourless viscous oil, 116.2 g (97 %). 5-base was transformed to 5-HCl by gaseous HCl in Et₂O: colourless crystals, m.p. 233 - 234°. -C₁₄H₂₂NO₂S₂·Cl (335.9) Calcd. C 50.1 H 6.55 N 4.2 Found C 50.0 H 6.65 N 4.0. - UV (MeOH): λ max (log ε) = 275 (3.72), 263 nm (3.71). - IR (KBr): 3200 cm⁻¹ (N-H⁺). - ¹H-NMR: δ (ppm) = 1.04 (s; 2H, NH₂, H/D-exchange), 1.66 (s; 3H, CH₃), 2.84 - 3.6 (m; 3H, Ph-CH-CH₂), 3.26 (s; 4H, S-CH₂-CH₂-S), 3.9 (s; 6H, OCH₃), 6.75 - 7.06 (m; 3H, Ar-H).

N-[2-(3,4-Dimethoxyphenyl)-2-(2-methyl-1,3-dithiolan-2-yl)-ethyl]-(3,4-methylenedioxyphenyl)acetamide (7)

29.9 g (0.1 mole) amine 5 and 21.3 g (0.11 mole) methyl (3,4-methylenedioxyphenyl)acetate (6) are heated together to 150° for 16 h. After cooling 7 is dissolved in ethyl acetate and filtered. After evaporation, amide 7 is purified by cc (Al₂O₃; EtOAc) and kugelrohr-distillation (230 - 240°, 0.01 mm Hg): colourless crystals, m.p. 108 - 109° (CH₃CN), 42.9 (93 %). -C₂₃H₂₇NO₅S₂ (461.6) Calcd. C 59.8 H 5.89 N 3.0 Found C 59.7 H 5.73 N 3.1. - IR (KBr): 3310 (N-H); 1660 cm⁻¹ (NC=O). - ¹H-NMR: δ (ppm) = 1.61 (s; 3H, CH₃) 2.96 - 4.41 (m; 7H, Ph-CH-CH₂ and S-(CH₂)₂-S), 3.3 (s; 2H, Ph-CH₂), 3.84 (s; 3H, OCH₃), 3.92 (s; 3H, OCH₃), 5.1 - 5.41 (m; 1H, NH, H/D-exchange), 5.94 (s; 2H, O-CH₂-O); 6.28 - 6.91 (m; 6H, Ar-H).

6,7-Dimethoxy-4-(2-methyl-1,3-dithiolan-2-yl)-1-(3,4-methylendioxybenzyl)-3,4-dihydroisoquinoline-HCl (8)

18.46 g (0.04 mole) amide 7 were dissolved in 50 ml of absol. CH₃CN under N₂. 14 ml POCl₃ in 10 ml of absol. CH₃CN were added drop by drop at 0^{*}. The mixture was stirred at room temp. for 4 days, then the crystals were filtered. The filtrate is diluted with acetone (100 ml) and NaHCO₃ (10 ml of a saturated solution) was added: the crystals so obtained were combined with the crystals mentioned above and recrystallized from MeOH: colourless crystals, m.p. 241^{*} (decomp.), 17.3 g (90 %). - C₂₃H₂₆NO₄S₂·Cl (480.0) Calcd. C 57.5 H 5.45 N 2.9 Found C 57.3 H 5.45 N 3.0. - UV (MeOH): λ max (log ε) = 305 (sh, 3.78), 286 (4.01), 230 nm (4.43). - IR (KBr): 1670 cm⁻¹ (C=N). - MS: m/z = 443 (M⁺; base, 1 %), 325 (94), 324 (62), 308 (6), 202 (10), 171 (3), 135 (11), 119 (100).

6,7-Dimethoxy-4-(2-methyl-1,3-dithiolan-2-yl)-1-(3,4-methylenedioxybenzyl)-1,2,3,4-tetrahydroisoquinoline (9a)

To 14.4 g (0.03 mole) 8-HCl, dissolved in 130 ml of absol. MeOH, were added under N₂ 2.7 g (71.3 mmole) of NaBH₄ in portions at 0°. The mixture was stirred for 1 h at 0°. Then excess of NaBH₄ was destroyed by 2N HCl, MeOH was distilled off *in vacuo* and the remaining mixture was extracted with CH₂Cl₂. The org. phase is washed with saturated NaHCO₃-solution and dried (Na₂SO₄). Evaporation yielded 13 g of an amorphous powder (97 %). 9- picrate: m.p. 182 - 183° (EtOH). - C₂₃H₂₇NO₄S₂ (base) (445.6) Calcd. C 51.7 H 4.45 N 8.30 Found C 51.9 H 4.46 N 8.3. - UV (MeOH): λ max (log ε) = 285 (3.89), 225 nm (4.16). - IR (KBr): 3400 cm⁻¹ (broad, N-H). - ¹H-NMR: δ (ppm) = 1.85 (s; 3H, CH₃), 1.29 (s; 1H, NH, H/D-exchange), 2.65 - 4.39 (m; 6H, Ph-CH-CH₂ and NH-C<u>H-CH₂</u>), 3.28 (s; 4H, S-(CH₂)₂-S), 3.85 (s; 3H, OCH₃), 3.9 (s; 3H, OCH₃), 5.94 (s; 2H, O-CH₂-O), 6.65 - 6.92 (m; 4H, Ar-H), 7.35 (s; 1H, Ar-H). - MS: m/z = 444 ((M - H)⁺, 1%), 326 (8), 325 (20), 310 (100), 192 (24), 191 (25), 190 (65), 135 (16), 119 (98).

6,7-Dimethoxy-4-(2-methyl-1,3-dithiolan-2-yl)-N-ethyl-1-(3,4-methylenedioxybenzyl)-1,2,3,4-tetrahydroisoquinoline (9b)

200 mg (0.45 mmol) of **9a** were dissolved in 5 ml of absol. CH₂Cl₂ and stirred under N₂ with 170 mg (0.9 mmol) of Et₃O·BF₄ in 2 ml of absol. CH₂Cl₂ at 0° for 1 h, then for 4 h at room temp. After alkalization with 2N NaOH the org. layer was separated, washed with water, and dried (Na₂SO₄). The resulting oil is purified by cc (SiO₂: ethyl acetate): light yellow oil, 175 mg (82 %). - C₂₅H₃₁NO₄S₂ (473.7). - ¹H-NMR: δ (ppm) = 1.15 (t; J = 7.4 Hz, 3H, CH₂-CH₃), 1.7 (s; 3H, CH₃), 2.37 - 3.83 (m; 12H, S-(CH₂)₂-S, Ph-CH-CH₂-N-CH-CH₂, and CH₂-CH₃), 3.57 (s; 3H, OCH₃), 3.86 (s; 3H, OCH₃), 5.9 (s; 2H, O-CH₂-O), 6.07 (s; 1H, Ar-H), 6.5 - 6.8 (m; 3H, Ar-H), 7.47 (s; 1H, Ar-H). - MS: m/z = 471 ((M-H)⁺, 3 %), 352 (3), 338 (97), 218 (100), 119 (51).

4-Acetyl-6,7-dimethoxy-1-(3,4-methylenedioxybenzyl)-1,2,3,4tetrahydroisoquinoline (10)

To 7.1 g (16 mmole) dithiolane 9a, dissolved in 250 ml of CHCl₃ and 50 ml of MeOH, were added 5.28 g Hg(ClO₄)₂ trihydrate in 180 ml of MeOH. After 1 h stirring at room temp. the precipitate was filtered off and the filtrate was basified by 2N Na₂CO₃. After evaporation of the solvents addition of 30 ml of 2N HCl afforded a Hg-containing crystalline precipitate. The pertinent oily base 10 (5.3 g; 90 %) was liberated by 2N NaOH: 10-HCl: m.p. 185 - 187° (precipitated from Et₂O). - C₂₁H₂₄NO₅·Cl (405.9). Calcd. C 62.1 H 5.96 N 3.5 Found C 62.3 H 5.81 N 3.5. - UV (MeOH): λ max (log ε) = 285 (3.85), 231 nm (4.04). - IR (film): 3335 (sharp, N-H); 1710 cm⁻¹ (C=O). - ¹H-NMR: δ (ppm) = 1.82 (s; 1H, NH), 2.15 (s; 3H,

CH₃), 2.65 - 4.28 (m; 6H, Ph-CH-CH₂-N-CH-CH₂-Ph), 3.85 (s; 6H, OCH₃), 5.9 (s; 2H, O-CH₂-O), 6.5 - 6.85 (m; 5H, Ar-H).

4-Acetyl-6,7-dimethoxy-1-(3,4-methylenedioxybenzyl)isoquinoline (11) and 6,7-dimethoxy-3,4-dimethyl-1-(3,4-methylenedioxybenzyl)isoquinoline (11a)

3 g (8 mmole) of compound **10** were treated with 500 mg Pd/C 10 % in 8 ml of tetraline at 180° for 40 min. After cooling and filtration the solvent was distilled off *in vacuo*, the residue was dissolved in CH_2Cl_2 , the solution was dried over Na_2SO_4 and evaporated. The remaining oil was purified by cc (SiO₂, ethyl acetate): 2.7 g of a mixture of **11** and **11a** which was separated at an analytical scale by HPLC (lichroprepsibo, 30 - 40 nm, 20 bar, 22 ml/min; solvent: $CH_2Cl_2/CH_3CN 8 + 2$). The CH_2Cl_2 used contains 1 % of the following mixture: 134 ml $CH_2Cl_2 + 31$ g glacial acetic acid + 35.4 g NEt₃. - Retention time for **11**: 2.8 min, for **11a** 6.2 min.

Preparative yields: 2.4 g (82 %) 11 and 0.183 g (6.5 %) 11a. The isoquinoline 11 was recrystallized from diisopropylether, m.p. 165 - 166°. 11a was recrystallized from diisopropyl ether/CH₂Cl₂, m.p. 168 - 169°.

Compound 11: $C_{21}H_{19}NO_5$ (365.4) Calcd. C 69.0 H 5.20 N 3.8 Found C 69.1 H 5.37 N 3.6. - UV (MeOH): λ max (log ε) = 335 (3.68), 322 (3.62), 286 (3.89), 240 (sh, 3.96), 226 (sh, 4.70), 214 (4.76). - IR (KBr): 1680 cm⁻¹ (C=O). - ¹H-NMR: δ (ppm) = 2.75 (s; 3H, CH₃), 3.9 (s; 3H, OCH₃), 4.04 (s; 3H, OCH₃), 4.57 (s; 2H, Ph-CH₂), 5.89 (s; 2H, O-CH₂-O), 6.72 (broad s; 3H, Ar-H), 7.39 (s; 1H, H-5), 8.54 (s; 1H, H-8), 9.0 (s; 1H, H-3). - MS: m/z = 365 (M⁺, 76 %), 364 (100), 350 (40), 334 (26), 322 (11), 307 (9), 306 (16), 135 (16).

11a: $C_{21}H_{21}NO_4$ (351.4) Calcd. C 71.7 H 6.02 N 3.98 Found C 72.3 H 6.18 N 4.18 - ¹H-NMR: δ (ppm) = 2.48 (s; 3H, C-3-CH₃), 2.68 (s; 3H, C-4-CH₃), 3.83 (s; 3H, OCH₃), 3.89 (s; 3H, OCH₃), 4.45 (s; 2H, Ph-CH₂), 5.83 (s; 2H, O-CH₂-O), 6.7 (broad s; 3H, Ar-H), 7.1 (s; 1H, H-5), 7.25 (s; 1H, H-8). - MS: m/z = 351 (M⁺, 58 %), 336 (100), 320 (21), 308 (10), 305 (9), 292 (20), 276 (11), 248 (8), 235 (7), 160 (9).

N-[2-Acetyl-2-(3,4-dimethoxyphenyl)ethyl]-(3,4-methylenedioxyphenyl)-acetamide (12)

To 2.3 g (5 mmole) 7, dissolved in 100 ml of MeOH and 50 ml of Et₂O, were added drop by drop 2.1 g (5.93 mmole) Hg(ClO₄)₂ trihydrate in 50 ml of MeOH. The suspension was stirred for 1 h at room temp. The precipitate was filtered off, washed with CH₂Cl₂ and discarded. The combined org. phases were washed with 30 ml of 2N NaOH and with saturated NaCl-solution. After drying (Na₂SO₄) and evaporation, compound 12 was purified by cc (Al₂O₃; CH₂Cl₂/CH₃N 9 + 1) and kugelrohr-distillation (200°, 0.05 mm Hg): colourless crystals, mp. 117 - 118°, 1.8 g (93 %). - C₂₁H₂₃NO₆ (385.4) Calcd. C 65.4 H 6.01 N 3.6 Found C 65.2 H 6.18 N 3.7. - UV (MeOH): λ max (log ε) = 283 (3.81), 235 nm (4.00). - IR (KBr): 3330 (sharp, N-H); 1720 (C=O); 1655 cm⁻¹ (NC=O). - ¹H-NMR: δ (ppm) = 2.02 (s; 3H, CH₃), 3.3 - 4.3 (m; 3H, Ph-CH-CH₂-N), 3.39 (s; 2H, NCO-CH₂-Ph), 3.81 (s; 3H, OCH₃), 3.84 (s; 3H, OCH₃), 5.7 - 6.03 (m; 1H, NH), 5.92 (s; 2H, O-CH₂-O), 6.49-6.92 (m; 6H, Ar-H).

4-Acetyl-6,7-dimethoxy-1-(3,4-methylenedioxybenzyl)-3,4-dihydroisoquinoline (13) and its dehydrogenation to 11

1.3 g (3.4 mmole) 12 were heated under reflux for 4 h with 3 ml of POCl₃ in 30 ml of absol. CH₃CN under N₂. The solvent was evaporated, the residue was dissolved in ice/water and basified with Na₂CO₃ under N₂. Extraction with Et₂O, drying of the org. phase (Na₂SO₄) and evaporation *in vacuo* afforded the dihydroisoquinoline 13, which was dissolved in 10 ml of tetraline and dehydrogenated by heating this solution to 190 - 200° with 300 mg Pd/C 10 % for 3 h. Then the solvent was distilled off, the residue was suspended in CH₂Cl₂ and the catalyst war removed by filtration. The org. phase was dried (Na₂SO₄) and evaporated. The oily residue was purified by cc (SiO₂; ethyl acetate). - Yield (both steps): 250 mg (20 %) 11.

4-Acetyl-6.7-dimethoxy-9-(N,N-dimethylaminomethyl)-1-(3,4methylenedioxybenzyl)isoquinoline (14)

28 mg (0.3 mmole) N,N-dimethyl-methyleneammoniumchloride and 100 mg (0.27 mmole) 11 in 3 ml of absol. CH₃CN were heated to 80° for 3 h. After evaporation of the solvent *in vacuo* the residue was treated with 2N Na₂CO₃-solution and extracted with CH₂Cl₂. Drying (Na₂SO₄) and evaporation *in vacuo* afforded an oil which was purified by cc (SiO₂; MeOH): light yellow crystals, m.p. 138 - 141° (Et₂O/hexane), yield 90 mg (71%). - C₂₄H₂₆N₂O₅ (422.5). - UV (MeOH): λ max (log ε) = 333 (3.87), 2.91 (3.81), 251 (sh, 4.46), 2.35 nm (4.51). - IR (KBr): 1690 cm⁻¹ (C=O). - ¹H-NMR (400 MHz): δ (ppm) = 2.35 (s; 6H, N(CH₃)₂), 2.76 (s; 3H, COCH₃); 3.03 - 3.08 (AA'B, dd, J_{1/2} = 12.4/6.95 Hz, 1H, Ph-CH-CH₂), 3.64 - 3.77 (AA'B, dd, J_{1/2} = 12.4/6.95 Hz, 1H, Ph-CH-CH₂), 5.85 (d, J = 1.4 Hz, 1H, O-CH₂-O), 5.88 (d; J = 1.4 Hz, 1H, O-CH₂-O), 6.69 - 6.90 (m; 3H, Ar-H), 7.51 (s; 1H, Ar-H), 8.50 (s; 1H, Ar-H), 9.04 (s; 1H, H-3). - MS: m/z = 422 (M⁺, 6%), 389 (25), 307 (100), 292 (98).

3-Cyano-1-[6,7-dimethoxy-1-(3,4-methylenedioxybenzyl)isoquinolin-4yl]-propan-1-one (17)

3.65 g (10 mmole) 11 were dissolved in 70 ml of absol. benzene under N₂ and stirred with 1.2 g Et₃N and 2.16 ml of F₃C-SO₂-O-Si(CH₃)₃ at 0° for 30 min and for 3 h at reflux temp. After cooling the benzene phase was separated and evaporated; viscous orange oil of 15 (4.4 g) which was not purified but directly dissolved in 30 ml of absol. CH2Cl2 under N2 at 0° and stirred with 2 g of N,N-dimethyl-methyleneammonium iodide first at 0° for 1 h than for 3 h at room temp.. After evaporation of CH2Cl2 the colourless oil was dissolved in 12 ml of 2N HCl at 0° under N2, then the solution was stirred for 2 h at room temp. After evaporation the Mannich base 16-HCl was obtained (colourless oil). - This oil and 0.7 g KCN were dissolved in 80 ml of water of 90° and refluxed for 2 h under N2. After cooling extraction with CH₂Cl₂, drying (Na₂SO₄), and evaporation led to the nitrile 17 which was purified by cc (Al₂O₃; CHCl₃): colourless crystals from EtOH, m.p. 172 - 173°, total yield (4 steps): 2.06 g (51 %). - C₂₃H₂₀N₂O₅ (404.4) Calcd. C 68.3 H 4.98 N 6.6 Found C 68.2 H 4.98 N 6.6 - UV (MeOH): λ max (log ε) = 333 (3.88), 291 (3.81), 246 (sh, 4.47), 231 nm (4.54). - IR (KBr): 2260 (C=N); 1675 cm⁻¹ (C=O). - ¹H-NMR: δ (ppm) = 2.87 (t; J = 7.5 Hz, 2H, CH₂-CH₂CN), 3.56 (t; J = 7.5 Hz, 2H, CH₂-CH₂-CN), 3.94 (s; 3H, OCH₃), 4.08 (s; 3H, OCH₃), 4.58 (s; 2H, Ar-CH₂-Ph), 5.9 (s; 2H, O-CH2-O), 6.69 - 6.8 (m; 3H, Ar-H), 7.4 (s; 1H, Ar-H-5), 8.54 (s; 1H, Ar-H-8), 9.0 (s; 2H, Ar-H-3). - MS: $m/z = 404 (M^{++}, 80 \%)$, 403 (100), 389 (35), 373 (23).

6,7-Dimethoxy-1-(3,4-methylenedioxybenzyl)-4-(1-pyrrolin-2-yl)isoquinoline (2b), Preininger-alkaloid

600 mg (1.5 mmole) 17, dissolved in 100 ml of absol. EtOH, were heated to 40 - 45' for 5 h with 2 g Raney-Ni in 6 ml of absol. EtOH, previously saturated with NH3 at 0°. Efficient cooling in order to prevent escaping of NH3 is mandatory. In addition the reflux condenser has to be closed by a stopper plug. After cooling the catalyst was filtered off and the solvent was evaporated in vacuo. 2b is purified by cc (Al2O3; CHCl3): colourless crystals from acetone, m.p. 192 - 193* (lit.: 193* - 195* 2), 540 mg (92 %). - UV (EtOH): $\lambda \max (\log \epsilon) = 332$ (sh, 3.45), 317 (3.47), 293 (3.52), 247 nm (4.26). - UV (EtOH + HCl): λ max (log ε) = 340 (3.95), 262 (4.49), 235 nm (4.44). - IR (KBr): 1620 cm⁻¹ (C=N). - ¹H-NMR: δ (ppm) = 2.02 - 2.10 (m; 2H, pyrr.-H-4"), 3.12 - 3.16 (m; 2H, pyrr.-H-3"), 3.92 (s; 3H, OCH₃ (C-7)), 4.03 (s; 3H, OCH3 (C-6)), 4.21 - 4.25 (m; 2H, pyrr.-5''-H), 4.56 (s; 2H, Ph-CH₂), 5.88 (s; 2H, O-CH₂-O), 6.7 - 6.72 (m; 2H, H-2' and H-5'), 6.77 (dd; $J_0 = 7 Hz$, $J_m = 1 Hz$, H-6'), 7.37 (s; 1H, H-8), 8.61 (s; 1H, H-5), 9.02 (s; 1H, H-3). - MS: $m/z = 390 (M^+, 99 \%)$, 389 (100), 375 (49), 359 (19), 135 (24).

6,7-Dimethoxy-9-methyl-1-(3,4-methylenedioxybenzyl)-4-(1-pyrrolin-2-yl)-isoquinoline (18)

Compound **18** is formed, if the silylated enol derivative **15** reacts for 12 h with N,N-dimethyl-methyleneammonium iodide. For the following steps, leading to nitril **17**, the mixture was not separated. Compound **18** is easily separated from *Preininger*-alkaloid (**2b**) by cc (SiO₂; CH₂Cl₂/CH₃CN 8 + 2) and recrystallization from EtOH: colourless crystals m.p. 142.5 - 143⁺, 7 - 9 % yield. - C₂₄H₂₄N₂O₄ (404.5) Calcd. C 71.3 H 5.98 N 6.9 Found C 71.4 H 6.11 N 6.8. - UV (EtOH): λ max (log ε) = 328 (sh, 3.87), 314 (3.89), 292 (3.94), 246 nm (4.52). - IR (KBr): 1625 cm⁻¹ (C=N). - ¹H-NMR: δ (ppm) = 1.84 (d; J = 6 Hz, 3H, Ph-CH-CH₃), 1.85 - 2.25 (m; 2H, pyrr.-H-4), 2.98 - 3.31 (m; 2H, pyrr.-H-3), 3.90 (s; 3H, OCH₃), 4.1 (s; 3H, OCH₃), 4.1 - 4.37 (m; 2H, pyrr.-H-5), 4.89 (q; J = 6 Hz, 1H, Ph-CH-CH₃), 5.84 (s; 2H, O-CH₂-O), 6.63 - 6.93 (m; 3H, Ar-H), 7.44 (s; 1H, Ar-H), 8.75 (s; 1H, Ar-H), 9.16 (s; 1H, H-3). - MS: m/z = 404 (M⁺⁺, 100 %), 403 (86), 389 (35), 373 (8), 149 (8), 135 (12).

(R)-(+)-N-Formylnormacrostomine (19)

The reducing reagent was prepared by adding 750 mg of L-Z-proline to 35 mg of NaBH₄ in 5 ml absol. THF. This mixture was stirred for 1 h at 0° and 3 h at room temp.. After evaporation of THF the reducing complex is used as such. - 70 mg (0.18 mmole) **2b**, dissolved in 4 ml of absol. CH₂Cl₂, were added to the proline-complex mentioned above; the mixture was stirred for 2 h at 0° and 60 h at room temp.. After evaporation the residue was dissolved in 2 ml of H-CO-O-CO-CH₃ at 0° and stirred for 15 min at 0° and 15 min at room temp.. After 40 min heating at 70° excessive anhydride was distilled off *in vacuo*. The residue was dissolved in CH₂Cl₂, the solution was dried (Na₂SO₄) and evaporated, the remaining oil was purified by cc (Al₂O₃, CHCl₃): colourless crystals, m.p. 140°. - IR- and mass-spectrum are identical with those reported for the (S)-(-)-enantiomer ²⁰⁾. - Optical rotation: (+), qual.

(R)-(+)-normacrostomine (20)

17 mg (0.04 mmole) **19** were heated to reflux in 2.5 ml of 3N HCl for 2.5 h. After cooling and neutralization with NaHCO₃ **20** was extracted with CH₂Cl₂. The org. phase was dried (Na₂SO₄) and evaporated: 13 mg (84 %) light yellow amorphous powder. - C₂₃H₂₄N₂O₄ (392.5). - UV (MeOH, qual.): λ max = 329; 315; 284; 245 (sh); 240 nm. - IR (KBr): 3400 cm⁻¹ (N-H, broad). - ¹H-NMR (250 MHz): δ (ppm) = 1.85 - 4.71 (m; 8H, CH-(CH₂)₃-NH: pyrr.-H), 3.89 (s; 3H, OCH₃), 4.02 (s; 3H, OCH₃), 4.46 (s; 2H, Ph-CH₂), 5.86 (s; 2H, O-CH₂-O), 6.68 - 6.76 (m; 3H, Ar-H), 7.31 (s; 1H, Ar-H), 7.46 (s; 1H, Ar-H), 8.46 (s; 1H, Ar-H-3). - MS (12 eV): m/z = 392 (M⁺⁻¹, 100 %). - Optical rotation: (+), qual.

(R)-(+)-macrostomine ((+)-1)

50 mg (0.12 mmole) 19, dissolved in 4 ml of absol. THF, were added drop by drop under N_2 to 70 mg LiAlH₄ in 5 ml of absol. THF at 0°C. This mixture was stirred for 15 min at 0°, 15 min at room temp. and 40 min under reflux. After cooling to 0°, excessive LiAlH₄ was destroyed by as

little as possible water and the mixture was extracted with Et₂O (3 x 10 ml) and 10 ml of CH₂Cl₂. The combined org. phases were dried (Na₂SO₄) and evaporated. (+)-1 was purified by cc (Al₂O₃; CH₂Cl₂/CH₃CN 9 + 1): light yellow powder, 44 mg (90 %). - m.p. 95 - 100°C (lit. ²⁾: 107 - 110° for optically pure (-)-1). - $[\alpha]_D^{25} = 37^*$ (c = 0.9, CHCl₃; lit. ²⁾: 51°): optical purity = 72 %. - ¹H-NMR (400 MHz): δ (ppm) = 1.9 - 2.08 (m; 3H, H-3'', H-4'', H-5''), 2.25 (s; 3H, N-CH₃), 2.29 - 2.37 (m; 2H, H-3'', H-4''), 3.28 - 3.33 (m; 1H, H-5''), 3.5 - 3.56 (m; 1H, H-2''), 3.89 (s; 3H, OCH₃), 3.99 (s; 3H, OCH₃), 4.49 (s; 2H, Ph-CH₂), 5.87 (s; 2H, O-CH₂-O), 6.7 - 6.72 (m; 1H, H-6'), 6.77 - 6.79 (m; 2H, H-2' and H-5'), 7.32 (s; 1H, H-8), 7.79 (s; 1H, H-5), 8.40 (s; 1H, H-3).

References

- V.A. Mnatsakanyan, V. Preininger, V. Šimánek, A. Klásek, L. Dolejš, and F. Šantavý, Tetrahedron Lett. 1974, 851.
- 2 V.A. Mnatsakanyan, V. Preininger, V. Šimánek, J. Jurina, A. Klásek, L. Dolejs, and F. Šantavý, Collect. Czech. Chem. Commun. 42, 1421 (1977).
- 3 E. Wenkert and R.D. Haugwitz, Can. J. Chem. 46, 1160 (1968); G.A. Stein, H.A. Bronner, and K. Pfister, J. Am. Chem. Soc. 77, 700 (1955).
- 4 J. March, Advanced Organic Chemistry, 3rd ed., p. 495, J. Wiley & Sons, New York ... 1985.
- J.S. Buck, R.D. Haworth, and W.H. Perkin, jun., J. Chem. Soc. (London) 125, 2176 (1924). W. Wiegrebe, Arch. Pharm. (Weinheim) 297, 362 (1964).
 N.H. Martin, S.L. Champion, and Ph.B. Belt, Tetrahedron Lett. 21, 2613 (1980) got best results with ¹O₂, whilst A. Jossang, M. Leboeuf,
 - 2613 (1960) got best results with O_2 , whilst A. Jossang, M. Lebbell, and A. Cavé, Heterocycles 26, 2193 (1987), describe a radical reaction with ${}^{3}O_2$, explaining their rusults in the field of noraporphines. S. Mahashi Thegin p. 67. Descenture 1989.
- 6 S. Mahboobi, Thesis, p. 67, Regensburg 1988.
- T. Oishi, K. Kamemoto, and Y. Ban, Tetrahedron Lett. 1972, 1085.
- 8 E. Fujita, Y. Nagao, and K. Kaneko, Chem. Pharm. Bull. 26, 3743 (1978).
- 9 E. Leete, M.R. Chedekel, and G.B. Bodem, J. Org. Chem. 37, 4465 (1972).
- 10 E.B. Knott, J. Chem. Soc. 1948, 186.
- 11 J.H. Burckhalter and J.H. Short, J. Org. Chem. 23, 1281 (1958).
- 12 R. Becker, H. Brunner, S. Mahboobi, and W. Wiegrebe, Angew. Chem. 97, 969 (1985).
- 13 J. March, Advanced Organic Chemistry, 3rd ed., p. 802, J. Wiley & Sons, New York ... 1985.
- 14 A. Ahond, A. Cavé, C. Kan-Fan, and P. Potier, Bull. Soc. Chim. Fr. 1970, 2707.
- 15 C. Mannich and O. Walther, Arch. Pharm. 265, 1 (1927). W. Wiegrebe, Arch. Pharm. (Weinheim) 300, 708 (1967).
- 16 S. Mahboobi and W. Wiegrebe, Arch. Pharm. (Weinheim) 321, 175 (1988).
- 17 G. Simchen and W. Kober, Synthesis 1976, 259.
- 18 S. Danishefsky, T. Kitahara, R. McKee, and P.F. Schuda, J. Am. Chem. Soc. 98, 6715 (1976).
- 19 H. Brunner, A. Kürzinger, S. Mahboobi, and W. Wiegrebe, Arch. Pharm (Weinheim) 321, 73 (1988).
- 20 K. Yamada, M. Takeda, and T. Iwakuma, J. Chem. Soc. Perkin Trans. 1 1983, 265. [Ph793]