Synthesis and Characterization of trans-[CoCl₂(N₄x)]⁺ (N₄x = 1,4,7,10-Tetraazacycloheptadecane, -cyclooctadecane, -cyclononadecane, -cycloicosane, -cyclohenicosane, and -cyclodocosane) Masanobu Tsuchimoto and Junnosuke Fujita* Department of Chemistry, Faculty of Science, Nagoya University, Chikusa-ku, Nagoya 464-01 (Received September 4, 1991) New macrocyclic ligands, 1,4,7,10-tetraazacyclooctadecane (N₄11), -cyclononadecane (N₄12), -cycloicosane (N₄13), -cyclohenicosane (N₄14), and -cyclodocosane (N₄15), and the Co(III) complexes, trans-[CoCl₂(N₄x)]⁺ (x = 10—15) were prepared and characterized. While two isomers, one has an RSSR(SRRS) and the other an RSSS(SRRR) configuration for the four chiral nitrogen atoms, were obtained for the N₄x (x = 12—15) complexes, only the RSSR(SRRS) isomer was isolated for the N₄10 and N₄11 complexes. The ligand field strength of N₄x (Δ (N)) decreases largely from x = 6 to 9 or 10, and then shows an increasing tendency with the increasing ring members. The reduction potential for the Co(III)/Co(II) couple ($E_{1/2}$) becomes less negative with the increasing ring members, and the ΔE_p (= $E_{pa} - E_{pc}$) values are very large for the N₄8—N₄11 complexes. The variations of these observed values with the number of ring members indicate that medium-sized chelate rings are unstable compared with other sized ones. Medium-sized chelate rings (8—11 ring members) in metal complexes are known to be unstable owing to the strain arising from repulsions among atoms of the ring, and their complexes are rather limited to those with diphosphines¹⁻⁴⁾ and tetraazamacrocycles.⁵⁻⁹⁾ In our previous papers, 10-12) we have reported the preparation and properties of 1,4,7,10-tetraazacyclotetradecane, -cyclopentadecane and -cyclohexadecane complexes of cobalt(III) which involve a seven-, eight-, and ninemembered chelate ring, respectively. With an increase in ring memberes in these complexes, the ligand field strength of macrocycles is reduced, and the Co(III)/ Co(II) redox potential becomes less negative. Thus it is interesting to investigate how such spectral and electrochemical properties vary with a further increase in ring members. This paper deals with new 1,4,7,10tetraazamacrocyclic ligands and their trans-dichlorocobalt(III) complexes involving a larger-membered chelate ring than nine. The abbreviations, N₄10, N₄11, N₄12, N₄13, N₄14, and N₄15 are used for 1,4,7,10-tetraazacycloheptadecane, -cyclooctadecane, -cyclononadecane, -cycloicosane, -cyclohenicosane, and -cyclodocosane, respectively. ## **Experimental** Measurements. ¹³C NMR spectra were recorded on a Hitachi R-90HS NMR spectrometer, and absorption spectra on a Hitachi U-3400 spectrophotometer. Gaussian curve fitting analyses of absorption spectra were performed with the Fig. 1. Ligands N_4x (x(n)=10(7)-15(12)). modified LGNS program.¹⁰⁾ Cyclic and RDE voltammetric measurements were carried out on acetonitrile solutions (1 mmol dm⁻³ complex, 0.1 mol dm⁻³ $N(C_4H_9)_4BF_4$) at 24 °C. Other experimental details for electrochemical measurements were described in a previous paper.¹⁰⁾ **Materials.** trans-[CoCl₂(N₄6)]BF₄,^{10,13)} trans-[CoCl₂(N₄x)]-(ClO₄ or BF₄) (x=7, 8, 9),¹⁰⁾ and the ligand N₄10·3HBr¹⁴⁾ were prepared by the literature methods. **1,4,7,10-Tetrakis**(*p*-tolylsulfonyl)-1,4,7,10-tetraazacyclooctadecane (1). This compound was prepared by a method similar to those for analogous cyclotetradecane, -cyclopentadecane, and -cyclohexadecane.⁵⁾ Yield: 20.4%. ¹³C NMR (CDCl₃, TMS) δ =21.3₉, 21.4₂ (C-Ts-), 25.1, 27.3, 28.0 (C-C-C), 48.1, 50.1 (N-C-C), 127.2, 127.3, 129.6, 129.7, 135.0, 135.5, 143.2, 143.6 (phenyl). 1,4,7,10-Tetrakis(p-tolylsulfonyl)-1,4,7,10-tetraazacyclononadecane (2), -cycloicosane (3), -cyclohenicosane (4), and -cyclodocosane (5). These compounds were prepared by a method of Vriesema et al.¹⁵⁾ from 1,4,7,10-tetrakis(p-tolylsulfonyl)-1,4,7,10-tetraazadecane (6)5) and 1, ω -dirbomoalkane (ω =9, 10, 11, or 12) in the presence of Cs₂CO₃. The reaction was carried out under a nitrogen atmosphere. To a solution of (6) (76.3 g, 0.1 mol) in dry N,N-dimethylformamide (DMF) (1.5 dm^3) was added Cs₂CO₃ (68.4 g, 0.21 mol). The solution was warmed at 70 °C, and a DMF solution (500 cm³) of 0.1 mol of $1,\omega$ -dibromoalkane (Br(CH₂)₉Br: 28.6 g, Br(CH₂)₁₀Br: 30.0 g, $Br(CH_2)_{11}Br$: 31.4 g, $Br(CH_2)_{12}Br$: 32.8 g) was added dropwise to the solution over 3 h with stirring. The mixture was stirred for a day at 70 °C, and then rotoevaporated to ca. 300 cm³. The concentrate was poured into 1.5 dm³ of water, and the mixture was stirred to give a pale yellow precipitate. It was collected by filtration, washed with water and air-dried. This product was dissolved in CH₂Cl₂ and chromatographed on a silica gel column (φ 7.5 cm×40 cm, eluent: CH₂Cl₂-AcOEt 40:1 v/v). The fractions of the second main band were collected, and the solvent was removed. The crude (often oily) product was recrystallized from CH₂Cl₂ by adding diethyl Yield of (2): 37.8 g (42.7%). 13 C NMR (CDCl₃, TMS) δ =21.3₉, 21.4₂ (\mathbb{C} -Ts-), 25.2, 26.8, 27.4, 28.0 (C- \mathbb{C} -C), 48.6, 50.6 (N- \mathbb{C} -C), 127.2, 127.4, 129.6, 129.7, 134.9, 135.3, 143.1, 143.5 (phenyl). Yield of (3): 32.8 g (36.4%). 13 C NMR (CDCl₃, TMS) δ =21.4 (C-Ts-), 25.3, 27.3, 27.8 (C-C-C), 48.2, 48.3, 50.5 (N-C-C), 127.2, 127.3, 129.5, 129.7, 134.8, 135.4, 143.1, 143.5 (phenyl). Yield of (4): 41.1 g (44.9%). ¹³C NMR (CDCl₃, TMS) δ =21.4 (C-Ts-), 25.7, 27.4, 27.5, 27.8, 28.2 (C-C-C), 48.4, 50.4, 50.6 (N-C-C), 127.2, 127.4, 129.6, 129.8, 134.9, 135.6, 143.1, 143.6 (phenyl). Yield of (5): 14.3 g (15.5%). ¹³C NMR (CDCl₃, TMS) δ =21.4, 21.5 (C-Ts-), 25.7, 27.6, 27.9, 28.1, 28.3 (C-C-C), 48.3, 50.0, 50.4 (N-C-C), 127.2, 127.4, 129.6, 129.8, 135.0, 135.5, 143.1, 143.6 (phenyl). 1,4,7,10-Tetraazacyclooctadecane (N₄11), -cyclononadecane (N₄12), -cycloicosane (N₄13), -cyclohenicosane (N₄14), and -cyclodocosane (N₄15) Trihydrobromide (N₄x·3HBr, x=11), and Tetrahydrobromide (N₄x·4HBr, x=12, 13, 14, and 15). Each product of finely powdered (1)—(5) (12.5 mmol, (1): 10.9 g, (2): 11.1 g, (3): 11.3 g, (4): 11.4 g, (5): 11.6 g) was detosylated by refluxing in a mixture of 47% hydrobromic acid (600 cm³) and acetic acid (340 cm³) for 3 d (1), for 5 d (2 and 3), and for 10 d (4 and 5). The resulting red-black solution was filtered, and the filtrate was concentrated to ca. 100 cm³ under reduced pressure. On addition of 1 dm³ of an ethanol-diethyl ether mixture (3:1) the concentrate gave a yellow precipitate, which was collected by filtration. When the color of product was grayish, it was mixed with hot methanol, insoluble grayish impurities were removed by filtration, and the filtrate was evaporated to dryness. The product was recrystallized from water and ethanol. Yield of N₄11·3HBr·2H₂O: 5.9 g (89%). Found: C, 31.57; H, 7.27; N, 10.41%. Calcd for $C_{14}H_{39}N_4O_2Br_3$: C, 31.42; H, 7.35; N, 10.47%. Yield of N₄12·4HBr: 7.1 g (96%). Found: C, 30.04; H, 6.43; N, 9.19%. Calcd for $C_{15}H_{38}N_4Br_4$: C, 30.33; H, 6.45; N, 9.43%. Yield of N₄13·4HBr·H₂O: 7.1 g (91%). Found: C, 30.84; H, 6.82; N, 8.83%. Calcd for $C_{16}H_{42}N_4OBr_4$: C, 30.69; H, 6.76; N, 8.95%. Yield of N₄14·4HBr: 6.2 g (80%). Found: C, 32.76; H, 6.83; N, 8.86%. Calcd for $C_{17}H_{42}N_4Br_4$: C, 32.82; H, 6.80; N, 9.01%. Yield of N₄15·4HBr: 6.7 g (84%). Found: C, 33.89; H, 7.07; N, 8.78%. Calcd for $C_{18}H_{44}N_4Br_4$: C, 33.98; H, 6.97; N, 8.81%. trans- $[CoCl_2(N_4x)]ClO_4$ (x=10-15). These complexes were prepared by two methods similar to those for the corresponding N_4x (x=7, 8, 9) complexes.¹⁰⁾ Method 1. CoCl₂·6H₂O (0.24 g, 1 mmol) was added to a methanol solution (100 cm³) of 1 mmol of N_4x . The free N_4x ligand was obtained by extracting an aqueous NaOH solution of N₄x·nHBr with CHCl₃, and then by evaporating CHCl₃.⁵⁾ Air was bubbled through the solution for 2 h to oxidize Co²⁺ to Co3+, and then concd hydrochloric acid (0.3 cm3) was added dropwise. Air was bubbled for another 1 h, and the solution was evaporated to dryness under reduced pressure. residue was dissolved in methanol (ca. 20 cm³), and undissolved materials were removed by filtration. The filtrate was applied on a column (ϕ 6.5 cm \times 35 cm) of Sephadex LH-20. Elution with methanol gave a main green or brown band. The eluate was concentrated to a small volume (ca. 10 cm³) under reduced pressure. On addition of LiClO₄ with stirring, the concentrate yielded a brown (the N₄10 complex) or a green (the N₄11-N₄15) precipitate. It was collected by filtration, washed with ethanol, and recrystallized from CH3CN or CH3NO2 and diethyl ether. The product of the N_410 complex, a mixture of brown and green fine crystals, was shown by the ^{13}C NMR spectrum to contain a small amount of an unknown complex which was supposed to be another isomer of the complex. Attempts to remove it were unsuccessful. The pure N_410 complex was obtained by Method 2 described below. The complex forms green and brown crystals by recrystallization (vide infra). The N_410 complex slowly decomposed in fairly strong hydrochloric acid (>1 mol dm⁻³) to give Co(II) species, while other N_4x complexes were stable under similar conditions. Yield of *trans*-[CoCl₂(N₄11)]ClO₄: 0.17 g (35%). Found: C, 34.38; H, 6.76; N, 11.40%. Calcd for C₁₄H₃₂N₄O₄CoCl₃: C, 34.62; H, 6.64; N, 11.54%. Yield of *trans*-[CoCl₂(N₄12)]ClO₄: 0.19 g (37%). Found: C, 36.15; H, 6.99; N, 11.42%. Calcd for C₁₅H₃₄N₄O₄CoCl₃: C, 36.05; H, 6.86; N, 11.21%. Yield of *trans*-[CoCl₂(N₄13)]ClO₄: 0.21 g (42%). Found: C, 37.55; H, 7.18; N, 10.69%. Calcd for C₁₆H₃₆N₄O₄CoCl₃: C, 37.40; H, 7.06; N, 10.90%. Yield of *trans*-[CoCl₂(N₄14)]ClO₄: 0.15 g (28%). Found: C, 38.86; H, 7.47; N, 10.51%. Calcd for C₁₇H₃₈N₄O₄CoCl₃: C, 38.69; H, 7.26; N, 10.62%. Yield of *trans*-[CoCl₂(N₄15)]ClO₄: 0.27 g (50%). Found: C, 39.90; H, 7.44; N, 10.46%. Calcd for C₁₈H₄₀N₄O₄CoCl₃: C, 39.90; H, 7.44; N, 10.34%. All of the complexes prepared by this method are shown by ${}^{13}\text{C NMR}$ spectra to have C_2 symmetry, and are designated as C_2 isomer in this paper. Method 2. To an aqueous solution of K₃[Co(CO₃)₃] prepared in a 2 mmol scale¹⁶⁾ was added N₄x·nHBr (2 mmol), and the mixture was heated on a water bath until evolution of carbon dioxide ceased. The resulting deep red solution was filtered, the filtrate was evaporated to dryness under reduced pressure, and the residue was mixed with ethanol to extract the complex. The extract was evaporated again to dryness under reduced pressure, giving a red oily product. It was dissolved in water, and the solution was applied on a small column $(\phi 2.5 \text{ cm} \times 10 \text{ cm})$ of SP-Sephadex C-25. The Sephadex adsorbed the product was placed on the top of a column $(\phi 2.5 \text{ cm} \times 60 \text{ cm})$ of SP-Sephadex C-25, and the product was eluted with an aqueous 0.1 mol dm⁻³ LiCl solution (pH ca. 4, HCl) for the N₄10-N₄13 complexes, and with an aqueous 0.1 mol dm⁻³ KCl solution (pH ca. 4, HCl) for the N₄14 and N₄15 complexes. Each column of all the complexes except the N₄11 complex which showed only one band, gave two purplered major bands. Each fraction of the bands was mixed with 0.5 cm³ of concd hydrochloric acid and evaporated to dryness under reduced pressure. The residue was mixed with a minimum amount of ethanol added a drop of hydrochloric acid to dissolve the complex, and undissolved materials were removed by filtration. To the ethanol solution was added LiClO₄ with stirring. For the N_410 complex, the C_2 isomer was precipitated from the eluate of the second band, but a mixture of unknown complexes was obtained from the eluate of the first band. The N₄11 complex which gave only one band on column chromatography yielded the C_2 isomer. For each of the N₄12, N₄14, and N₄15 complexes, the C₂ isomer was obtained from the eluate of the first band, while another isomer was precipitated from the eluate of the second band. new isomers are designated as C_1 isomer, since they are shown to have no symmetry axis or plane by ¹³C NMR spectra. the N₄13 complex, the complex in the eluate of the first band was decomposed during the course of isolation to give a mixture of unknown complexes, but the C_1 isomer was obtained from the eluate of the second band. All the products were recrystallized from CH3CN or CH3NO2 (acidified with HCl or $HClO_4$) and diethyl ether. The C_1 isomers of the N_413 and N₄15 complexes yielded a mixture of green and brown crystals, while other C_1 isomers were brown crystals. Yield of trans- $[CoCl_2(N_410)]ClO_4$ (C_2): 0.25 g (27%). Found: C, 33.10; H, 6.45; N, 11.93%. Calcd for C₁₃H₃₀N₄O₄-CoCl₃: C, 33.10; H, 6.41; N, 11.88%. Yield of trans- $[CoCl_2(N_411)]ClO_4$ (C₂): 0.76 g (78%). Yield of trans- $[CoCl_2(N_412)]ClO_4 \cdot CH_3NO_2$ (C₁): 0.21 g (19%). Found: C, 34.27; H, 6.56; N, 12.18%. Calcd for C₁₆H₃₇N₅O₆CoCl₃: C, 34.27; H, 6.65; N, 12.49%. The presence of CH₃NO₂ of crystallization was confirmed by the 13 C NMR spectrum in d^{6} -DMSO solution. Yield of trans- $[CoCl_2(N_412)]ClO_4$ (C2): 0.24 g (24%). Yield of trans-[CoCl₂(N₄13)]ClO₄ (C_1): 0.55 g (53%). Found: C, 37.02; H, 7.10; N, 10.69%. Calcd for C₁₆H₃₆N₄O₄CoCl₃: C, 37.40; H, 7.06; N, 10.90%. Yield of trans- $[CoCl_2(N_414)]ClO_4(C_1)$: 0.10 g (9.9%). Found: C, 38.23; H, 7.38; N, 10.33%. Calcd for $C_{17}H_{38}N_4O_4CoCl_3$: C, 38.69; H, 7.26; N, 10.62%. Yield of trans- $[CoCl_2(N_414)]ClO_4(C_2)$: 0.32 g (30%). Yield of trans- $[CoCl_2(N_415)]ClO_4$ (C_1): 0.23 g (21%). Found: C, 39.35; H, 7.61; N, 10.52%. Calcd for C₁₈H₄₀-N₄O₄CoCl₃: C, 39.90; H, 7.44; N, 10.34%. Yield of trans- $[CoCl_2(N_415)]ClO_4$ (C_2): 0.19 g (17%). ## **Results and Discussion** Synthesis and Characterization of Ligands and Complexes. New tetraaza macrocyclic ligands N_4x (x=11-15) were prepared in moderate yields. Cyclization reactions were carried out with disodium salt of (6) and octamethylene bis(p-toluenesulfonate)⁵⁾ for N_411 , and with dicaesium salt of (6) and $1,\omega$ -dibromoalkane¹⁵⁾ for N_412-N_415 . In these reactions the high dilution method was not employed. The cyclization products were detosylated by refluxing in a mixture of hydrobromic acid and acetic acid for a long time, 3-10 days, the reaction taking longer time with the increasing number of ring members. The ligands were isolated as tri- or tetrahydrobromides. Green or brown complexes, $[CoCl_2(N_4x)]ClO_4$ (x= 10—15) were obtained by two methods; one is oxidation of a methanol solution containing CoCl₂·6H₂O and N₄x with air (Method 1), and the other is reaction of hydrochloric acid and $[Co(CO_3)(N_4x)]^+$ which was prepared from $K_3[Co(CO_3)_3]$ and $N_4x \cdot nHBr$ (Method 2). The former method gave only one isomer for all the N_4x complexes, while two isomers were isolated for the N_4x (x=12, 14, 15) complexes by the latter method, although only one isomer was obtained for the N₄10, N₄11, and N_413 complexes. All of these dichloro complexes show electronic spectra similar to those of trans- $[CoCl_2(N_4x)]^+$ (x=7, 8, 9), 10) and can be assigned to a trans-dichloro isomer (Table 1). For trans- $[CoCl_2(N_4x)]^+$, there are six geometrical isomers arising from the combination of four chiral secondary nitrogen atoms (R or S); four pairs of enantiomers, RRRR(SSSS) (C_2 symmetry), RRRS-(SSSR) (=RSSS(SRRR)) (C₁ symmetry), RSRR-(SRSS) (=RRSR(SSRS)) (C_1 symmetry), and RSSR-(SRRS) (C_2 symmetry), and two meso isomers (C_s symmetry), RRSS(SSRR) and RSRS(SRSR), where symbols R and S are given in the order of N(1)N(4)-N(7)N(10). All of the isomers obtained by Method 1 are indicated by ${}^{13}C$ NMR spectra to have either C_2 or C_s symmetry (Table 2). For each pair of two isomers of trans- $[CoCl_2(N_4x)]^+$ (x=12, 14, 15) prepared by Method 2, one is the same as the isomer (C_2 or C_s symmetry) obtained by Method 1, and the other is shown to have C_1 symmetry by ¹³C NMR spectra. The N₄13 complex obtained by Method 2 has C_1 symmetry. Molecular models indicate that possible isomers of $[Co(CO_3)(N_4x)]^+$ are only two, RSSR(SRRS) and RSSS(SRRR) as shown Table 1. Electronic Spectral Data^{a)} | Complex | | $\tilde{\nu}/10^3~{ m cm}^{-1}~(\log{(\epsilon/{ m mol}^{-1}~{ m dm}^3~{ m cm}^{-1})})$ | | | | | | |--|-------------|---|-------------|----------------------------|--|--|--| | Complex | 1st | band | 2nd band | CT | | | | | trans-[CoCl ₂ (N ₄ 10)]ClO ₄ (C ₂) | 15.8 (1.65) | 20.5 (2.26) | 22.9 (2.25) | 31.8 (sh)
39.0 (4.40) | | | | | Green ^{b)} | 15.8 | 20.7 | 22.6 | | | | | | $\mathrm{Brown^{b)}}$ | 15.7 | 20.3 | 23.2 | | | | | | trans-[$CoCl_2(N_411)$] $ClO_4(C_2)$ | 15.8 (1.78) | 21.4 (2.29) | 22.5 (2.30) | 32.4 (sh)
39.1 (4.43) | | | | | trans-[$CoCl_2(N_412)$] $ClO_4(C_2)$ | 15.9 (1.75) | 21.4 (2.28) | 22.5 (2.29) | 31.8 (sh)
39.2 (4.43) | | | | | trans-[CoCl ₂ (N ₄ 12)]ClO ₄ ·CH ₃ NO ₂ (C_1) ^{c)} | 15.6 (1.79) | 20.2 (2.37) | 22.8 (2.34) | 31.7 (sh)
38.9 (4.45) | | | | | trans-[$CoCl_2(N_413)$] $ClO_4(C_2)$ | 15.9 (1.75) | 21.3 (2.30) | 22.8 (2.29) | 31.8 (sh)
39.1 (4.44) | | | | | trans-[CoCl ₂ (N ₄ 13)]ClO ₄ (C_1) ^{c)} | 15.6 (1.78) | 20.5 (2.33) | 22.7 (2.30) | 31.7 (3.30)
39.0 (4.42) | | | | | trans-[$CoCl_2(N_414)$] $ClO_4(C_2)$ | 15.9 (1.78) | 21.4 (2.31) | 22.9 (2.31) | 32.2 (sh)
39.1 (4.43) | | | | | trans-[CoCl ₂ (N ₄ 14)]ClO ₄ (C_1) ^{c)} | 15.6 (1.75) | 20.3 (2.31) | 22.7 (2.27) | 32.0 (sh)
38.9 (4.39) | | | | | trans-[$CoCl_2(N_415)$] $ClO_4(C_2)$ | 15.9 (1.76) | 21.3 (2.29) | 22.7 (2.29) | 32.1 (3.30)
39.1 (4.42) | | | | | trans-[CoCl ₂ (N ₄ 15)]ClO ₄ (C_1) ^{c)} | 15.6 (1.79) | 20.4 (2.34) | 22.7 (2.31) | 31.7 (sh)
38.9 (4.42) | | | | a) In CH₃CN. b) By a Nujol mull method. c) In CH₃CN weakly acidified with HClO₄. Table 2. 13C{1H} NMR Spectral Data | Compound | δ (C-Ç-C) | δ (C-Ç-N) | | | |--|--|--|--|--| | N ₄ 11·3HBr·2H ₂ O ^{a)} | 24.8, 25.4, 26.9 | 44.5, 45.5, 46.1, 48.8 | | | | N ₄ 12·4HBr ^{a)} | 25.5, 26.1, 27.2, 27.4 | 45.4, 47.2, 47.9, 48.4 | | | | $N_413.4HBr\cdot H_2O^{a)}$ | 25.6, 25.8, 27.9, 28.0 | 43.7, 44.1, 44.2, 48.8 | | | | $N_414.4HBr^{a)}$ | 26.0, 26.1, 28.4, 28.7 | 44.1, 44.4, 49.1 | | | | N ₄ 15·4HBr ^{a)} | 26.0, 26.1, 28.5, 28.8, 29.0 | 43.8, 44.2, 44.3, 49.0 | | | | trans- $[CoCl_2(N_410)]ClO_4 (C_2)^{b)}$ | 24.2, 28.1, 28.9 | 50.3, 53.8, 56.8, 58.5 | | | | trans- $[CoCl_2(N_411)]ClO_4(C_2)^{b)}$ | 21.2, 24.0, 26.7 | 50.1, 53.4, 53.8, 57.9 | | | | trans- $[CoCl_2(N_412)]ClO_4(C_2)^{b)}$ | 25.4, 26.1, 26.8, 27.4 | 50.1, 53.8, 55.7, 57.4 | | | | trans-[CoCl ₂ (N ₄ 12)]ClO ₄ ·CH ₃ NO ₂ (C_1) ^{c)} | 23.7, 23.8, 24.3, 24.5, 25.8, 26.3, 26.8 | 50.2, 50.4, 53.1, 54.0, 54.3, 54.5, 56.4, 57.4 | | | | trans- $[CoCl_2(N_413)]ClO_4 (C_2)^{b)}$ | 24.6, 26.6, 26.7, 26.8 | 50.1, 53.7, 54.6, 56.4 | | | | trans- $[CoCl_2(N_413)]ClO_4(C_1)^d$ | 25.1, 25.6, 25.8, 26.1, 26.3, 26.7, 26.8 | 50.1, 50.6, 53.8, 54.0, 54.1, 54.5, 56.1, 56.4 | | | | trans- $[CoCl_2(N_414)]ClO_4(C_2)^{c)}$ | 25.2, 26.4, 28.4 | 50.7, 54.3, 54.8, 56.9 | | | | trans- $[CoCl_2(N_414)]ClO_4(C_1)^{c}$ | 25.3, 25.5, 25.8, 26.0, 26.5, 26.6, 26.9 | 50.3, 50.7, 53.4, 53.6, 54.0, 54.5, 55.4, 56.0 | | | | trans- $[CoCl_2(N_415)]ClO_4(C_2)^{b)}$ | 25.7, 26.3, 27.2, 27.4 | 50.1, 53.7, 55.2, 56.4 | | | | trans- $[CoCl_2(N_415)]ClO_4(C_1)^{d}$ | 26.5, 27.3, 27.5, 28.1 | 50.2, 50.7, 54.0, 54.2, 54.5, 54.9,
56.0 | | | a) In D_2O , dioxane (67.4 ppm) reference. b) In CD_3CN , CD_3CN (1.3 ppm) reference. c) In CD_3NO_2 . d) In CD_3NO_2 weakly acidified with $HClO_4$. Fig. 2. Possible structures of $[Co(CO_3)(N_4x)]^+$. The signs+and -represent amine protons disposed above and below from the CoN_4 plane, respectively. in Fig. 2, although there are $16(=2^4)$ different combinations for the chiral nitrogen atoms. If it is assumed that the chirality of nitrogen in the carbonato complexes is retained in the reaction with hydrochloric acid, the resulting trans-dichloro complex is the RSSR(SRRS) (C_2 symmetry) or RSSS(SRRR) (C_1 symmetry) isomer. Thus the complexes formed by Method 1 can be assigned to the RSSR(SRRS) (C_2) isomer, while the other isomers of the N_4x (x=12-15) complexes derived by Method 2 to the RSSS(SRRR) (C_1) isomer. The RSSR(SRRS) (C_2) structure in analogous trans-[MX₂(N₄x)]ⁿ⁺-type complexes has been found by X-ray analysis on trans-[NiCl₂(N₄7)],⁶⁾ trans-[CoCl₂(N₄8)]⁺,¹¹⁾ trans-[NiCl₂-(N₄9)],⁶⁾ and trans-[Co(NO₂)₂(N₄10)]BF₄.¹⁴⁾ No structure analysis has been reported for the RSSS(SRRR) (C_1) isomer. The *trans*-[CoCl₂(N₄x)]⁺ complexes seem to be more stable in the C_2 isomer than the C_1 one. The complexes yielded only the C_2 isomer by Method 1. The C_1 isomers of N₄13 and N₄15 complexes isomerize rapidly in CD₃CN with a color change from brown to green, unless the solutions are acidic. The ¹³C NMR spectra of the green solutions are identical with those of the C_2 isomers. The C_1 isomers of the N₄12 and N₄14 complexes are stable in neutral CD₃CN. Attempts to isomerize them by adding a base such as N(C₂H₅)₃ resulted in decomposition of the complexes. Relative stability of the C_1 isomer to the C_2 one seems to depend on the number of members of large chelate rings. As stated in Experimental section, the C_2 isomer of the N_410 complex gives a mixture of green and brown crystals, but all of the other C_2 isomers are green in the solid state. For the C_1 isomers in the solid state, the N_412 and N_414 complexes are brown, while the N_413 and N_415 complexes are a mixture of green and brown fine crystals. Green and brown crystals of the N_410 complex formed by growing slowly in CH_3NO_2 solution can be separated by hand picking. Electronic spectra in Nujol mulls show a little difference between the green and brown products (Table 1). However, these products in CD_3CN solutions give the same spectra in both absorption and $^{13}CNMR$. The green and brown crystals afford again a mixture of green and brown crystals by recrystallization. The C_1 isomers of the N_413 and N_415 complexes have very similar properties to the C_2 isomer of the N_410 complex. Thus the C_2 isomer of N_410 and the C_1 isomers of N_413 and N_415 complexes crystallize in two forms with different colors. The C_2 isomer of trans-[CoCl₂(N_48)]BF₄ also forms green and brown crystals. X-Ray analysis has revealed that the green crystals consist of a mixture of enantiomers formed by spontaneous resolution with the eight-membered chelate ring in a distroted boat-boat conformation, while the brown crystals are a racemate and have the ring conformation disordered in boat-boat (40%) and twist-boat-chair (60%) forms. 11 Electronic Spectra. All of the dichloro complexes Fig. 3. Electronic spectra of the C_2 isomer (—) and the C_1 isomer (····) of *trans*-[CoCl₂(N₄14)]⁺ in acetonitrile. show absorption spectra characteristic of a trans-[CoCl₂N₄]⁺-type complex in the ligand field region (Fig. 3). Under D_{4h} approximation the band around 16000 cm^{-1} can be assigned to the $Ia(^{1}E_{g} \leftarrow ^{1}A_{1g})$, and broad bands around 20000—25000 cm⁻¹ to the Ib(${}^{1}A_{2g} \leftarrow {}^{1}A_{1g}$), and IIa(${}^{1}B_{2g} \leftarrow {}^{1}A_{1g}$) transitions. (2) For all the complexes, the C_1 isomer shows the bands at a little smaller energy than the corresponding bands of the C_2 isomer. To estimate ligand field parameters of nitrogen $(\Delta(N)=3e\sigma(N), e\pi(N))$ is assumed to be zero) and chloride donors ($\Delta(Cl)=3e\sigma(Cl)-4e\pi(Cl)$) based on the AOM model, 17,18) maximum positions of the Ia(= $1/2[\Delta(N)+\Delta(C1)]-C$, C: Racah's parameter) and the Ib($=\Delta(N)-C$) bands were determined by Gaussian curve fitting analysis (Table 3). With these data and the assumption of $C=2000 \text{ cm}^{-1}$, 12) the estimated values are given in Table 3 together with those for the N₄6-N₄9 complexes. In Fig. 4 the parameter values are plotted vs. the number of members of large chelate rings (x in N_4x). Figure 4 shows two features; 1) the $\Delta(N)$ value decreases sharply from x=6 to 7,8,9, and then increases slowly with the increasing x showing some irregularity, and 2) the Δ (Cl) value increases from x=6 to 9 or 10, and then shows a decreasing tendency, the variation being complementary with the $\Delta(N)$ values. The reduction of $\Delta(N)$ from x=7 to 9 or 10 in feature 1) would indicate that medium-sized chelate rings are unstable owing to the strain arising from repulsions among atoms of the ring to form larger N-Co-N bite angles than 90° and longer Co-N bonds. The N-Co-N bite angle and the average Co-N distance are 104.0(1)° and 2.017(4) Å in the green isomer of trans-[CoCl₂(N₄8)]BF₄, 107.2(3)° and 2.040(8) Å in it's brown isomer, 11) and 105.4(1)° and 2.023(3) Å in trans- $[Co(NO_2)_2(N_410)]BF_4$, ¹⁴⁾ whereas the Co-N distances for the five-membered chelate rings in Table 3. Band Positions Obtained by Gaussian Curve Fitting Analysis and Ligand Field Parameters for *trans*- $[CoCl_2(N_4x)]^+$ | Complex | $ ilde{ u}/10^3\mathrm{cm}^{-1}(\log{(arepsilon/\mathrm{mol}^{-1}\mathrm{dm}^3\mathrm{cm}^{-1})})$ | | | | | | |---|--|----------------------------|--|-------|-------|--| | | 1st b | and | 2nd band | ΔN | ∆Cl | | | trans-[CoCl ₂ (N ₄ 6)] ⁺ | 16.67 (1.52) | 23.70 (2.16) ^{a)} | | 25.70 | 11.64 | | | trans- $[CoCl_2(N_47)]^+$ (C ₂) | 15.9 (1.80) | 21.2 (2.10) | 23.5 (2.08) ^{b)}
26.8 (1.94) | 23.2 | 12.6 | | | trans- $[CoCl_2(N_47)]^+(C_1)$ | 16.0 (1.70) | 21.2 (2.11) | 23.7 (2.14)°) | 23.2 | 12.8 | | | trans- $[CoCl_2(N_48)]^+(C_2)$ | 15.9 (1.64) | 20.6 (2.22) | 23.7 (2.12) ^{c)} | 22.6 | 13.2 | | | trans- $[CoCl_2(N_49)]^+$ (C ₂) | 15.7 (1.71) | 20.1 (2.23) | 23.4 (2.18) ^{c)} | 22.1 | 13.3 | | | trans- $[CoCl_2(N_410)]^+(C_2)$ | 15.8 (1.61) | 20.2 (2.20) | 23.5 (2.15) | 22.2 | 13.4 | | | trans- $[CoCl_2(N_411)]^+(C_2)$ | 15.9 (1.77) | 20.7 (2.17) | 23.7 (2.18) | 22.7 | 13.1 | | | trans- $[CoCl_2(N_412)]^+(C_2)$ | 15.9 (1.74) | 20.7 (2.17) | 23.7 (2.17) | 22.7 | 13.1 | | | trans- $[CoCl_2(N_412)]^+(C_1)$ | 15.6 (1.78) | 19.9 (2.32) | 23.3 (2.28) | 21.9 | 13.3 | | | trans- $[CoCl_2(N_413)]^+(C_2)$ | 15.9 (1.75) | 20.3 (2.12) | 23.4 (2.24) | 22.3 | 13.5 | | | trans- $[CoCl_2(N_413)]^+(C_1)$ | 15.7 (1.77) | 20.1 (2.28) | 23.5 (2.22) | 22.1 | 13.3 | | | trans- $[CoCl_2(N_414)]^+(C_2)$ | 15.9 (1.77) | 20.7 (2.23) | 23.8 (2.21) | 22.7 | 13.1 | | | trans- $[CoCl_2(N_414)]^+(C_1)$ | 15.6 (1.74) | 20.1 (2.28) | 23.5 (2.21) | 22.1 | 13.1 | | | trans- $[CoCl_2(N_415)]^+$ (C_2) | 15.9 (1.76) | 20.6 (2.18) | 23.7 (2.19) | 22.6 | 13.2 | | | trans- $[CoCl_2(N_415)]^+(C_1)$ | 15.7 (1.77) | 20.0 (2.28) | 23.4 (2.24) | 22.0 | 13.4 | | a) From Ref. 13. b) From Ref. 12. Splitting of the 2nd d-d band is observed in the spectra of this complex. c) From Ref. 10. these complexes are in the range 1.930-1.952 Å. Feature 2) that shows a complementary relation between the $\Delta(Cl)$ and $\Delta(N)$ values; the smaller the $\Delta(N)$ value, the larger the $\Delta(Cl)$ value, would correspond to the cis effect of N_4x ligands on coordinate bonds of chloride ligands in the cis positions. A nearly constant position of the Ia bands should be related with this cis effect. Such a clear cis effect was not observed when compared with one another for many dichloro complexes of other amines such as ammonia or diamines. 12 Fig. 4. The variations of the ligand field parameters of $\Delta(N)$ (a) and $\Delta(Cl)$ (b) with the chelate ring size of C_2 ($-\bigcirc-\bigcirc$) and C_1 ($\cdots\bigcirc\cdots\bigcirc\cdots$) isomers of *trans*- $[CoCl_2(N_4x)]^{+}$. Electrochemistry. Table 4 lists the data of redox potentials for the Co(III)/Co(II) couples of the N₄x complexes. Figure 5 shows the variation of potentials $(E_{1/2}/V)$ obtained by the RDE method as the ring size of N_4x increases. The $E_{1/2}$ value shows a positive shift from x=6 to 9, and then becomes nearly constant, although the values of the larger N_4x complexes (x>13) fluctuate to some extent. The variation of $E_{1/2}$ values indicates that the stability (free energy) difference between the Co(II) and Co(III) complexes decreases with an increase in the ring member of N_4x . The larger N_4x ligand would favor the complex formation with a larger Co(II) ion than Co(III). In Fig. 5 is also plotted the ΔE_p $(=[E_{pa}-E_{pc}]/mV)$ values obtained by the CV method under a given condition. The cathodic and anodic peaks are well defined, but the peak values depend on the scan rate. In addition, the i_{pa}/i_{pc} ratio is always less than unity (0.69—0.87). These results indicate that the redox reactions may involve a slow electron transfer process and/or a following chemical reaction of the reduced Co(II) species. To make clear the mechanism of these reactions, further studies will be needed.¹³⁾ However, the ΔE_p values, which can be a measure of reversibility, show an interesting variation as the number of ring members is changed. The values are fairly large from x=8 to 11, at x=9 the reaction is irreversible (the anodic peak disappears), and then become small gradually with a further increase in ring members. The N₄14 and N₄15 complexes recover reversibility to show a ΔE_p value similar to those of the N₄6 and N₄7 complexes, although the $E_{1/2}$ values of the complexes with larger ring members than 9 do not change largely. The variations of the $E_{1/2}$ and $\Delta E_{\rm p}$ values seem to be in accord with those of the ligand field parameters, $\Delta(N)$ and $\Delta(Cl)$ shown Fig. 4, and it can be concluded that medium-sized (8 to 10 or 11) chelate rings are less stable than other sized ones. Table 4. Electrochemical Data of the Redox Potential of Co(III)/Co(II)^{a)} | Complex | Cyclic voltammetry | | | RDE Voltammetryb) | | | |---|--------------------|--------------------|--------------------------------|------------------------------------|------------------|-----------------------------| | | $E_{ m pc}/{ m V}$ | $E_{ m pa}/{ m V}$ | $\Delta E_{ m p}/{ m mV^{c)}}$ | $(E_{\rm pc}+E_{\rm pa})/2/{ m V}$ | $E_{1/2}/{ m V}$ | $E_{1/4}-E_{3/4}/\text{mV}$ | | trans-[CoCl ₂ (N ₄ 6)]BF ₄ | -0.68 | -0.59 | 90 | -0.64 | -0.63 | 90 | | trans- $[CoCl_2(N_47)]ClO_4(C_2)$ | -0.52 | -0.43 | 90 | -0.48 | -0.48 | 90 | | trans- $[CoCl_2(N_47)]ClO_4(C_1)$ | -0.50 | -0.34 | 155 | -0.42 | -0.47 | 100 | | trans- $[CoCl_2(N_48)]ClO_4(C_2)$ | -0.42 | -0.19 | 230 | -0.31 | -0.42 | 115 | | trans- $[CoCl_2(N_49)]BF_4(C_2)$ | -0.37 | | _ | d) | -0.39 | 135 | | trans- $[CoCl_2(N_410)]ClO_4(C_2)$ | -0.40 | -0.15 | 245 | -0.28 | -0.39 | 115 | | trans- $[CoCl_2(N_411)]ClO_4(C_2)$ | -0.38 | -0.15 | 230 | -0.27 | -0.39 | 125 | | trans- $[CoCl_2(N_412)]ClO_4(C_2)$ | -0.39 | -0.25 | 140 | -0.32 | -0.40 | 110 | | trans- $[CoCl_2(N_412)]ClO_4 \cdot CH_3NO_2(C_1)$ | -0.42 | -0.24 | 155 | -0.32 | -0.35 | 105 | | trans- $[CoCl_2(N_413)]ClO_4(C_2)$ | -0.39 | -0.23 | 135 | -0.31 | -0.38 | 110 | | trans- $[CoCl_2(N_414)]ClO_4(C_2)$ | -0.42 | -0.31 | 110 | -0.37 | -0.44 | 115 | | trans- $[CoCl_2(N_414)]ClO_4(C_1)$ | -0.42 | -0.32 | 100 | -0.37 | -0.39 | 100 | | trans- $[CoCl_2(N_415)]ClO_4(C_2)$ | -0.39 | -0.29 | 105 | -0.34 | -0.38 | 100 | a) The data for 1 mmol dm⁻³ ferrocene: $(E_{pc}+E_{pa})/2=0.09 \text{ V}$, $E_{1/2}=0.10 \text{ V}$. b) 1500 rpm, scan rate: 10 mV s⁻¹. c) $\Delta E_p=E_{pa}-E_{pc}$. d) Irreversible. Fig. 5. The variations of the $E_{1/2}$ value ($-\bigcirc$) and the ΔE_p value ($-\bigcirc$) with the chelate ring size of *trans*-[CoCl₂(N₄x)]⁺. ## References - 1) O. Stelzer and E. Unger, Chem. Ber., 108, 2232 (1975). - 2) W. E. Hill, D. M. A. Minahan, J. G. Tayler, and C. A. McAuliffe, *J. Am. Chem. Soc.*, **104**, 6001 (1982). - 3) W. E. Hill, J. G. Taylor, C. P. Falshaw, T. J. King, B. Beagley, D. M. Tonge, R. G. Pritchard, and C. A. McAuliffe, *J. Chem. Soc., Dalton Trans.*, **1986**, 2289. - 4) H. -P. Klein, U. Thewalt, H. Zettlmeissl, and H. A. Brune, Z. Naturforsch., B, 36, 1125 (1981). - 5) M. Sugimoto, M. Nonoyama, T. Ito, and J. Fujita, Inorg. Chem., 22, 950 (1983). - 6) M. Sugimoto, J. Fujita, H. Ito, K. Toriumi, and T. Ito, *Inorg. Chem.*, **22**, 955 (1983). - 7) R. D. Hancock and M. P. Ngwenya, J. Chem. Soc., Dalton Trans., 1987, 2911. - 8) R. Bembi, V. K. Bhardwarj, R. Singh, R. Singh, K. Taneja, and S. Aftab, *Inorg. Chem.*, 23, 4153 (1984). - 9) R. Bembi, R. Singh, S. Aftab, T. G. Roy, and A. K. Jhanjee, J. Coord. Chem., 14, 119 (1985). - 10) M. Tsuchimoto, M. Kita, M. Nonoyama, and J. Fujita, Bull. Chem. Soc. Jpn., 63, 227 (1990). - 11) M. Tsuchimoto, H. Takazawa, M. Kita, M. Nonoyama, S. Ohba, Y. Saito, and J. Fujita, *Bull. Chem. Soc. Jpn.*, **63**, 785 (1990). - 12) M. Tsuchimoto, M. Kita, and J. Fujita, *Bull. Chem. Soc. Jpn.*, **63**, 3410 (1990). - 13) Y. Hung, L. Y. Martin, S. C. Jackels, A. M. Tait, and D. H. Busch, *J. Am. Chem. Soc.*, **99**, 4029 (1977). - 14) M. Tsuchimoto, M. Kita, and J. Fujita, *Bull. Chem. Soc. Jpn.*, **64**, 2554 (1991). - 15) B. K. Vriesema, J. Buter, and R. M. Kellog, J. Org. Chem., 49, 110 (1984). - 16) M. Mori, M. Shibata, E. Kyuno, and T. Adachi, *Bull. Chem. Soc. Jpn.*, **29**, 883 (1956). - 17) C. E. Schäffer and C. K. Jørgensen, *Mol. Phys.*, 9, 401 (1965). - 18) H. Yamatera, Bull. Chem. Soc. Jpn., 31, 95 (1958).