ORIGINAL PAPER

The Synthesis and Crystal Structure of Cbz-[(1R,2S)-ACPC]₃-OH: A Tripeptide Derived from the β -Amino Acid (1R,2S)-Cispentacin

Stephen G. Davies · Elin Siddall · Amber L. Thompson · James E. Thomson

Received: 17 December 2013/Accepted: 26 February 2014/Published online: 12 March 2014 © Springer Science+Business Media New York 2014

Abstract Crystals of the tripeptide Cbz-[(1*R*,2*S*)-ACPC]₃-OH **4**, derived from the β -amino acid (1*R*,2*S*)-2aminocyclopentanecarboxylic acid, were synthesised and studied by X-ray diffraction. Tripeptide **4** crystallizes in the orthorhombic space group P 2₁2₁2₁ with cell parameters of a = 7.8957(1) Å, b = 12.9289(2) Å, c = 24.7850(4) Å, V = 2530.12(6) Å³ and Z = 4. Adjacent molecules are linked by a series of N–H···O=C and O–H···O=C hydrogen bonds to form a double tape-like arrangement.

Keywords β -Peptide $\cdot \beta$ -Sheet \cdot Cispentacin

Introduction

β-Peptides [1–19] are known to offer improved bioavailability and therapeutic lifetimes when compared to their α-amino acid derived analogues [20–24], whilst still displaying potent biological activity [25–27]. As such, there has been intense interest in the secondary structural characteristics of oligomers of the cyclic β-amino acids cispentacin and transpentacin, the diastereoisomers of 2-aminocyclopentanecarboxylic acid (ACPC) [28–31]. For example, Fülöp et al. have reported that pentamer **3**,

J. E. Thomson

derived from (1*R*,2*S*)-ACPC, forms a non-polar strand and adopts a sheet-like structure in solution [32]. We have also reported crystallographic analyses of dimers **1** and **2** (Fig. 1), derived from (1*R*,2*S*)-ACPC and (1*S*,2*R*,3*S*)-3-Me-ACPC, respectively, which form β -sheet like structures in the solid state resulting from arrays of N–H···O=C hydrogen bonds [33]. Herein we report the synthesis and crystal structure of Cbz-[(1*R*,2*S*)-ACPC]₃-OH **4**, a tripeptide derived from (1*R*,2*S*)-ACPC.

Experimental

Synthesis

All reagents were used as supplied without prior purification. Elemental analyses were recorded by the microanalysis service of the London Metropolitan University, UK. Melting points were recorded on a Gallenkamp Hot Stage apparatus and are uncorrected. IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer as KBr discs. Selected characteristic peaks are reported in cm⁻¹. NMR spectra were recorded on Bruker Avance spectrometers in the deuterated solvent stated. Spectra were recorded at rt. The field was locked by external referencing to the relevant deuteron resonance. Low-resolution mass spectra were recorded on either a VG MassLab 20-250 or a Micromass Platform 1 spectrometer. Accurate mass measurements were run on a Micromass GCT instrument fitted with a Scientific Glass Instruments BPX5 column (15 m × 0.25 mm) using amyl acetate as a lock mass. In each case, product distributions and diastereoisomeric ratios were determined by integration of the 400 MHz ¹H NMR spectra of the crude reaction mixtures and isolated products.

S. G. Davies $(\boxtimes) \cdot E.$ Siddall \cdot A. L. Thompson \cdot

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK e-mail: steve.davies@chem.ox.ac.uk

Fig. 1 Dimer 1, trimer 4 and pentamer 3 [derived from (1*R*,2*S*)-ACPC] and dimer 2 [derived from (1*S*,2*R*,3*S*)-3-Me-ACPC]

$H-[(1R,2S)-ACPC]_2-O^tBu 6$

Pd(OH)₂/C (25 % by wt, 488 mg) was added to a stirred, degassed solution of 5 (1.95 g, 4.50 mmol, >99:1 dr) [33] in MeOH/AcOH (40:1 mL). The resultant suspension was stirred under H₂ (1 atm) for 16 h. The reaction mixture was then filtered through Celite[®] (eluent MeOH) and concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (50 mL) and the resultant solution was washed with satd aq NaHCO₃ (3 \times 50 mL) and brine (50 mL), then dried over MgSO₄ and concentrated *in vacuo* to give **6** as a white solid (1.24 g, 92 %, >99:1 dr); mp 74 °C; $[\alpha]_D^{22}$ -42.7 (c 1.0 in CHCl₃); v_{max} (KBr) 3319 (br, N–H), 1699 (br, C=O); δ_{H} (400 MHz, CDCl₃) 1.44 (9H, s, CMe₃), 1.46–2.03 (14H, m, $2 \times C(3)H_2$, $2 \times C(4)H_2$, $2 \times C(5)H_2$, NH_2), 2.45–2.54 (1H, m, C(1)H), 2.83-2.91 (1H, m, C(1)H), 3.46-3.56 (1H, m, C(2)H), 4.47–4.56 (1H, m, C(2)H), 7.05 (1H, d, J 7.2 NH); $\delta_{\rm C}$ (100 MHz, CDCl₃) 22.1, 22.2, 26.8, 28.0, 32.5, 35.1 $(2 \times C(3), 2 \times C(4), 2 \times C(5)), 28.1$ (CMe₃), 47.5, 50.9 $(2 \times C(1))$, 51.9, 54.7 $(2 \times C(2))$, 80.7 (CMe_3) , 173.2, 174.0 (NCO, CO_2^tBu); m/z (ESI⁺) 297 ([M+H]⁺, 100 %); HRMS (ESI⁺) $C_{16}H_{29}N_2O_3^+$ ([M+H]⁺) requires 297.2173; found 297.2173.

Cbz-[(1*R*,2*S*)-ACPC]₃-O^tBu 7

A stirred solution of **6** (415 mg, 1.40 mmol, >99:1 dr) in CHCl₃ (10 mL) was successively treated with Et_3N (1.00 mL, 7.00 mmol), HOBt (227 mg, 1.68 mmol), **8**

(368 mg, 1.40 mmol, >99:1 dr) [34] and EDC·HCl (322 mg, 1.68 mmol) under anhydrous conditions. After 16 h, the reaction mixture was washed with 1.0 M aq HCl (20 mL), satd aq NaHCO₃ (20 mL) and brine (20 mL), then dried over MgSO₄ and concentrated in vacuo. Purification via recrystallisation (CHCl₃/heptane) gave 7 as a white solid (443 mg, 58 %, >99:1 dr); $C_{30}H_{43}N_3O_6$ requires C, 66.5; H, 8.0; N, 7.8 %; found C, 66.5; H, 8.1; N, 7.7 %; mp 144–146 °C (CHCl₃/heptane); $[\alpha]_{D}^{23}$ –85.0 (c 1.0 in CHCl₃); v_{max} (KBr) 3327 (N-H), 1714, 1694, 1650, 1542 (C=O); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.37–2.02 (18H, m, $3 \times C(3)H_2$, $3 \times C(4)H_2$, $3 \times C(5)H_2$), 1.43 (9H, s, CMe₃), 2.67 (1H, obsc m, C(1)H), 2.73 (1H, obsc m, C(1)H), 2.80–2.90 (1H, m, C(1)H), 4.17 (1H, app t, J 7.5, C(2)H), 4.38 (1H, obsc m, C(2)H), 4.41 (1H, obsc m, C(2)H), 5.04 (1H, d, J 12.3, CH_AH_BPh), 5.10 (1H, d, J 12.3, CH_AH_BPh), 5.50 (1H, d, J 7.9, NH), 6.26 (1H, d, J 8.5, NH), 6.43 (1H, d, J 7.9, NH), 7.26–7.40 (5H, m, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 22.2, 22.7, 22.8, 28.1, 28.3, 28.7, 32.4, 32.8, 32.9 $(3 \times C(3), 3 \times C(4), 3 \times C(5)),$ 28.1 (CMe_3) , 47.3, 47.7, 47.7 $(3 \times C(1))$, 52.0, 52.5, 54.5 $(3 \times C(2))$, 66.5 (CH₂Ph), 80.9 (CMe₃), 128.0, 128.4 (o,m,p-Ph), 136.6 (i-Ph), 156.1 (NCO, carbamate), 173.2, 173.3, 173.7 (2 × NCO, amide; CO_2^tBu); m/z (ESI⁺) 542 $([M+H]^+, 100 \%);$ HRMS (ESI^+) $C_{30}H_{43}N_3NaO_6^+$ ([M+Na]⁺) requires 564.3044; found 564.3045.

Cbz-[(1R,2S)-ACPC]₃-OH 4

TFA (0.70 mL) was added to a stirred solution of 7 (250 mg, 0.46 mmol, >99:1 dr) in CH₂Cl₂ (2.10 mL) at 0 °C. The resultant mixture was allowed to warm to rt and stirred for 3 h before being concentrated in vacuo and dried under high vacuum. Purification via recrystallisation (CHCl₃/heptane) gave 4 as a white solid (157 mg, 70 %, >99:1 dr); mp 170–172 °C (CHCl₃/heptane); $[\alpha]_D^{20}$ –101.7 (c 0.6 in MeOH); v_{max} (KBr) 3340 (br, N-H, O-H), 1701, 1662, 1542 (C=O); $\delta_{\rm H}$ (400 MHz, CDCl₃, 26 mM) 1.39–2.11 (18H, m, $3 \times C(3)H_2$, $3 \times C(4)H_2$, $3 \times C(5)H_2$, 2.70–2.90 (2H, m, $2 \times C(1)H$), 2.98–3.10 (1H, m, C(1)H), 4.22 (1H, obsc m, C(2)H), 4.33 (1H, obsc m, C(2)H), 4.46 (1H, obsc m, C(2)H), 5.04 (1H, d, J 12.4, CH_AH_BPh), 5.11 (1H, d, J 12.4, CH_AH_BPh), 5.42 (1H, d, J 8.6, NH), 6.61 (1H, d, J 8.1, NH), 6.89 (1H, d, J 8.3, NH), 7.22–7.39 (5H, m, Ph); $\delta_{\rm C}$ (100 MHz, MeOH- d_4) 22.2, 22.9, 27.9, 28.2, 28.5, 31.6, 32.4, 32.9 $(3 \times C(3),$ $3 \times C(4), 3 \times C(5)), 46.1, 47.7, 47.8 (3 \times C(1)), 52.0,$ 52.7, 54.6 (3 \times C(2)), 66.7 (CH₂Ph), 128.0, 128.1, 128.5 (o,m,p-Ph), 136.4 (i-Ph), 156.2 (NCO, carbamate), 173.6, 173.9, 176.8 (2 × NCO, amide; CO_2H); m/z (ESI⁺) 508 $([M+Na]^+, 100 \%);$ HRMS (ESI^+) $C_{26}H_{36}N_3O_6^+$ ([M+H]⁺) requires 486.2599; found 486.2598.

Table 1 Crystallographic data and refinement details for tripeptide 4

Compound	4
Empirical formula	C ₂₆ H ₃₅ N ₃ O ₆
Formula weight	485.58
Crystal habit, colour	Plate, colourless
Crystal system	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a (Å)	7.8957(1)
b (Å)	12.9289(2)
<i>c</i> (Å)	24.7850(4)
α (°)	90
β (°)	90
γ (°)	90
Volume (Å ³)	2530.12(6)
Ζ	4
Density (calc. $g cm^{-3}$)	1.275
Temperature (K)	190
Radiation type/λ (Å)	Μο Κα/0.71073
Absorption coeff. (mm^{-1})	0.091
F(000)	1,040
Crystal size (mm)	$0.05\times0.20\times0.20$
Reflections measured	5,776
Independent reflections	3,277
Observed reflues. $[I > 2.0\sigma(I)]$	2,139
Number of parameters	316
Goodness-of-fit on F^2	0.9978
Final <i>R</i> indices $[I > 2.0\sigma(I)]$	$R_1 = 0.042, wR_2 = 0.094$
R indices [all data]	$R_1 = 0.073, wR_2 = 0.103$
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \; ({ m e} \; { m \AA}^{-3})$	0.37, -0.34
CCDC deposition no.	977339

Single Crystal X-ray Diffraction

Single crystal diffraction data for tripeptide 4 were collected using a Nonius ĸ-CCD diffractometer (Mo-Ka radiation, $\lambda = 0.71073$ Å) at 150(2) K with an Oxford Cryosystems Cryostream N₂ open-flow cooling device [35]. Raw frame data were processed using the DENZO-SMN package [36], including unit cell parameter refinement and inter-frame scaling (which were carried out using SCALEPACK within DENZO-SMN). The structure was solved using SIR92 [37] and refinement was carried out using full-matrix least-squares within the CRYSTALS suite [38], on F^2 . All non-hydrogen atoms were refined with anisotropic displacement parameters. The positions and isotropic displacement parameters of hydrogen atoms were refined using restraints prior to inclusion into the model with riding constraints [39]. In the absence of a significant anomalous signal, the Friedel pairs were merged for the final refinement.

Scheme 1 Reagents and conditions: (i) $Pd(OH)_2/C$, H_2 (1 atm), MeOH/AcOH (40:1), 16 h; (ii) 8, EDC·HCl, HOBt, NEt₃, CHCl₃, rt, 16 h; (iii) TFA/CH₂Cl₂ (1:3), 0 °C to rt, 3 h

Selected structural details for tripeptide **4** are included in Table 1 and full crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 977339. Copies of these data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. uk/data_request/cif.

Results and Discussion

Tripeptide **4** was prepared in accordance with our previously optimised procedures [30, 31]: first, hydrogenolytic *N*-deprotection of dipeptide **5** [33] in the presence of Pearlman's catalyst [Pd(OH)₂/C] under an atmosphere of H₂ gave dimer amine **6** in 92 % isolated yield. Coupling of **6** with monomer acid **8** (>99:1 dr) [34] was achieved with HOBt/EDC·HCl to give trimer **7** as a single diastereoisomer (>99:1 dr) in 58 % yield after purification of the crude reaction mixture via recrystallisation (CHCl₃/heptane). Subsequent treatment of trimer **7** with TFA gave Cbz-[(1*R*,2*S*)-ACPC]₃-OH **4** in 70 % yield and >99:1 dr (Scheme 1). Recrystallisation of **4** from CHCl₃/heptane gave colourless plates which were subjected to X-ray diffraction analysis.

The molecular structure of **4** is illustrated below (Fig. 2). Adjacent molecules are linked by a series of intermolecular N–H \cdots O=C and O–H \cdots O=C hydrogen bonds to form a double tape-like arrangement in the crystal

Fig. 3 H-bonding within the crystal structure of **4**, viewed along the *a* axis; selected H atoms are omitted for clarity. Hydrogen bonding interactions are shown as grey dotted lines, forming R2,2(14) intermolecular rings [40] that connect molecules together to give hydrogen bonded peptide chains $[N-H\cdots O=2.998(4), 3.240(4), 2.869(4) \text{ Å}; O-H\cdots O=2.579(4) \text{ Å}]$

structure consisting of R2,2(10) and R2,2(14) intermolecular rings (Figs. 3 and 4) [40]. Whilst it was not possible to produce crystals of the corresponding tetramers or

pentamers which were suitable for X-ray crystallographic analyses, a combination of IR, ¹H NMR and CD spectroscopic analyses confirmed that these oligomers display traits indicative of *intermolecular* hydrogen bonding [32] and are therefore consistent with a similar conformation in solution.

Conclusion

In conclusion, the crystal structure of the β -peptide Cbz-[(1*R*,2*S*)-ACPC]₃-OH, which is derived from (1*R*,2*S*)cispentacin, was studied by X-ray diffraction. Adjacent molecules are linked by a series of N–H…O=C and O–H…O=C hydrogen bonds to form a double tape-like arrangement in the solid state.

Supporting Information

Full crystallographic data for **4** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 977339. Copies of these data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. uk/data_request/cif. Fig. 4 H-bonding within the crystal structure of 4, viewed perpendicular to the *a* axis; selected H atoms are omitted for clarity. Hydrogen bonding interactions are shown as grey dotted lines, forming R2,2(10) intermolecular rings [40] that connect together to give hydrogen bonded peptide chains [N–H···O=2.998(4), 3.240(4), 2.869(4) Å; O–H···O=2.579(4) Å]

References

- 1. Hintermann T, Seebach D (1997) Synlett 437
- Seebach D, Abele S, Gademann K, Guichard G, Hintermann T, Jaun B, Matthews JL, Schreiber JV (1998) Helv Chim Acta 81:932
- 3. Gung BW, Zou D (1999) J Org Chem 64:2176
- Raguse L, Lai JR, Gellman SH (2002) Helv Chim Acta 85:4154
 Glättli A, Seebach D, van Gunsteren WF (2004) Helv Chim Acta
- 87:248726. Luppi G, Galeazzi R, Garavelli M, Formaggio F, Tomasini C (2004) Org Biomol Chem 2:2187
- Izquierdo S, Kogan MJ, Parella T, Moglioni AG, Branchadell V, Giralt E, Ortuño RM (2004) J Org Chem 69:5093
- Appella DH, Christianson LA, Karle IL, Powell DR, Gellman SH (1996) J Am Chem Soc 118:13071
- 9. Barchi JJ Jr, Huang X, Appella DH, Christianson LA, Durell SR, Gellman SH (2000) J Am Chem Soc 122:2711
- Applequist J, Bode KA, Appella DH, Christianson LA, Gellman SH (1998) J Am Chem Soc 120:4891
- 11. Wang X, Espinosa JF, Gellman SH (2000) J Am Chem Soc 122:4821
- 12. Lee H-S, Syud FA, Wang X, Gellman SH (2001) J Am Chem Soc 123:7721
- Winkler JD, Piatnitski EL, Mehlmann J, Kasparec J, Axelsen PH (2001) Angew Chem Int Ed 40:743
- Woll MG, Fisk JD, LePlae PR, Gellman SH (2002) J Am Chem Soc 124:12447
- 15. Raguse L, Lai JR, Gellman SH (2003) J Am Chem Soc 125:5592
- Park J-S, Lee H-S, Lai JR, Kim BM, Gellman SH (2003) J Am Chem Soc 125:8539
- 17. Peelen TJ, Chi Y, English EP, Gellman SH (2004) Org Lett 6:4411
- Simpson GL, Gordon AH, Lindsay DM, Promsawan N, Crump MP, Mulholland K, Hayter BR, Gallagher T (2006) J Am Chem Soc 128:10638
- Martinek TA, Mándity IM, Fülöp L, Tóth GK, Vaas E, Hollósi M, Forró E, Fülöp F (2006) J Am Chem Soc 128:13539
- Seebach D, Overhand M, Kuhnle FNM, Martinoni B, Oberer L, Hommel U, Widmer H (1996) Helv Chim Acta 79:913
- 21. Hintermann T, Seebach D (1997) Chimia 50:244

- Seebach D, Abele S, Schreiber JV, Martinoni B, Nussbaum AK, Schild H, Schulz H, Hennecke H, Woessner R, Bitsch F (1998) Chimia 52:734
- 23. Seebach D, Hook DF, Glätti A (2006) Biopolymers (Peptide Science) 84:23
- Aguilar M-I, Purcell AW, Devi R, Lew R, Rossjohn J, Smith I, Perlmutter P (2007) Org Biomol Chem 5:2884
- 25. Werder M, Hauser H, Abele S, Seebach D (1999) Helv Chim Acta 82:1774
- 26. Hamuro Y, Schneider JP, DeGrado WF (1999) J Am Chem Soc 121:12200
- 27. Liu D, DeGrado WF (2001) J Am Chem Soc 123:7553
- Appella DH, Christianson LA, Klein DA, Powell DR, Huang X, Barchi JJ Jr, Gellman SH (1997) Nature 387:381
- 29. For a review, see: Fülop F (2001) Chem Rev 101:2181
- Abraham E, Bailey CW, Claridge TDW, Davies SG, Ling KB, Odell B, Rees TL, Roberts PM, Russell AJ, Smith AD, Smith LJ, Storr HR, Sweet MJ, Thompson AL, Thomson JE, Tranter GE, Watkin DJ (2010) Tetrahedron: Asymmetry 21:1797
- Abraham E, Claridge TDW, Davies SG, Odell B, Roberts PM, Russell AJ, Smith AD, Smith LJ, Storr HR, Sweet MJ, Thomson JE, Thompson AL, Tranter GE, Watkin DJ (2011) Tetrahedron: Asymmetry 22:69
- 32. Martinek TA, Tóth GK, Vaas E, Hollósi M, Fülöp F (2002) Angew Chem Int Ed 41:1718
- Abraham E, Davies SG, Roberts PM, Thompson AL, Thomson JE (2011) J Chem Crystallogr 41:1722
- Davies SG, Russell AJ, Sheppard RL, Smith AD, Thomson JE (2007) Org Biomol Chem 5:3190
- 35. Cosier J, Glazer AM (1986) J Appl Crystallogr 19:105
- Otwinowski Z, Minor W (1997) Methods Enzymol. Academic Press, New York, pp 307–326
- Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla MC, Polidori G, Camalli M (1994) J Appl Crystallogr 27:435
- Betteridge PW, Carruthers JR, Cooper GI, Prout CK, Watkin DJ (2003) J Appl Crystallogr 36:1487
- Cooper RI, Thompson AL, Watkin DJ (2010) J Appl Cryst 43:1100
- Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed 34:1555