# Alkyne Insertion into the Ru-C Bond of a Four-Membered Metallacycle. Insertion Rate and **Reaction Pathway**

Kaushik Ghosh, Swarup Chattopadhyay, Sujay Pattanayak, and Animesh Chakravorty\*

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta 700032, India

# Received July 28, 2000

The insertion of HOCH<sub>2</sub>C $\equiv$ CH (ha) into the Ru–C bond of Ru<sup>II</sup>(RL<sup>1</sup>)(PPh<sub>3</sub>)<sub>2</sub>(CO)Cl, **1**, has afforded  $Ru^{II}(RL^3)(PPh_3)_2(CO)Cl, 3$ , which has been structurally characterized. Insertion rates in  $CH_2Cl_2$ –MeOH for ha as well as for PhC=CH (pa), which inserts similarly into **1** affording Ru<sup>II</sup>(RL<sup>2</sup>)(PPh<sub>3</sub>)<sub>2</sub>(CO)Cl, 2, are proportional to the product of the concentrations of alkyne and methanol. The insertion rate of ha is nearly 5 times faster than that of pa, and for a given alkyne the rate increases as R becomes more electron-withdrawing (OMe  $\leq$  Me  $\leq$  Cl). A reaction model implicating the adduct 1·MeOH, which binds and activates the alkyne via displacement of MeOH, is proposed.

#### Introduction

A few instances of insertion of alkynes into the Ru-C  $\sigma\text{-bond}$  have been documented in the literature,  $^{1-6}$  but rarely have mechanistic proposals been authenticated by rate studies.<sup>6</sup> The concern of the present work is the two-carbon metallacycle expansion via insertion of alkynes generally abbreviated as xa, eq 1. The reaction



was recently authenticated by us via isolation and structure determination of the expanded cycle in the case of phenylacetylene, pa (as well as unsubstituted acetylene).<sup>1</sup>

Further scrutiny has revealed that the reaction is suitable for facile rate determination by spectrophotometric methods in the cases of pa and hydroxymethylacetylene, ha. This has provided an opportunity for probing the reaction pathway. Rates have been measured in CH<sub>2</sub>Cl<sub>2</sub>–MeOH mixtures, revealing that the four-membered metallacycle itself is not reactive but its methanol adduct present in equilibrium is. The observed rate law has been rationalized on this basis, and a

L.; Pfeffer, M.; Ryabov, A. D. Organometallics 1997, 16, 411.

mechanistic model is proposed. The substituents in the alkyne and the reactive metallacycle have notable effects on reaction rates. The insertion of hydroxymethylacetylene, ha according to eq 1, is being reported here for the first time, necessitating product characterization, which forms a part of the present work.

## **Results and Discussion**

Substrates and Products. The concerned metallacycles, their abbreviations, and numberings are set out in Figure 1. Three substrates<sup>7</sup> of type **1** have been used. The pa-inserted products of type  $\mathbf{2}$  are already known.<sup>1</sup> The reaction of ha with 1 proceeds smoothly in CH<sub>2</sub>-Cl<sub>2</sub>–MeOH mixtures under mild conditions, affording the type **3** species in virtually quantitative yield. To our knowledge, this reaction represents the first authentic example of insertion of ha into the Ru-C bond.

Characterization of Ru(RL<sup>3</sup>)(PPh<sub>3</sub>)<sub>2</sub>(CO)Cl, 3. Spectral and other physical features of 3 are listed in the Experimental Section. The N<sup>+</sup>–H and C=N stretches occur at  $\sim$ 3440 and  $\sim$ 1620 cm<sup>-1</sup>, respectively, consistent with the zwitterionic iminium-phenolato function. In <sup>1</sup>H NMR, the N<sup>+</sup>–H and O–H signals occur near  $\delta$  12.0 and  $\delta$  2.3, respectively (both signals disappear upon shaking with  $D_2O$ ). The  $\sigma$ -vinyl 10-H proton occurs near  $\delta$  6.3 as a singlet.

The structure of **3a** has been determined (Figure 2, Table 1). In the distorted octahedral coordination sphere, the nearly linear P-Ru-P axis lies approximately perpendicular to the plane (mean deviation of 0.02 Å) of the RuC<sub>2</sub>ClO meridian. The hydroxymethyl group is tilted away from the meridian and lies closer to P2 than P1, their distances from the O3 atom being 5.176(16)

<sup>(1)</sup> Ghosh, K.; Pattanayak, S.; Chakravorty, A. Organometallics 1998, 17, 1956 and references therein.

<sup>(2)</sup> Bruce, M. I.; Catlaw, A.; Cifuentes, M. P.; Snow, M. R.; Tiekink,

<sup>(2)</sup> Bruce, M. I.; Cataw, A.; Chuentes, M. P.; Show, M. R.; Heklink,
E. R. T. J. Organomet. Chem. 1990, 397, 187.
(3) Lutsenko, Z. L.; Aleksandrov, G. G.; Petrovskii, P. V.; Shubina,
E. S.; Andrianov, V. G.; Struchkov, Yu. T.; Rubezhov, A. Z. J. Organomet. Chem. 1985, 281, 349.
(4) Garn, D.; Knoch, F.; Kish, H. J. Organomet. Chem. 1993, 444,

<sup>155</sup> 

 <sup>(5)</sup> Barns, R. M.; Hubbard, J. L. *J. Am. Chem. Soc.* 1994, *116*, 9514.
 (6) Ferstl, W.; Sakodinskaya, I. K.; Beydoun-Sutter, N.; Borgne, G.
 Defense M.; Burdoun A. D. Ortsurgerst *Hist* 1007.

<sup>(7)</sup> Ghosh, P.; Bag, N.; Chakravorty, A. Organometallics **1996**, *15*, 3042. (b) Bag, N.; Choudhury, S. B.; Pramanik, A.; Lahiri, G. K.; Chakravorty, A. Inorg. Chem. **1990**, *29*, 5013. (c) Bag, N.; Choudhury, S. B.; Lahiri, G. K.; Chakravorty, A. J. Chem. Soc., Chem. Commun. 1990. 1626.







Figure 2. ORTEP plot (30% probability ellipsoids) and atom-labeling scheme for 3a.

and 6.275(18) Å, respectively. The chelate ring is nearly planar (mean deviation of 0.02 Å), and indeed, the RuRL<sup>3</sup> fragment excluding MeC<sub>6</sub>H<sub>5</sub>, Me, and CH<sub>2</sub>OH groups is approximately planar (mean deviation of 0.04 Å). The Ru–C10 (sp<sup>2</sup>) bond is  $\sim$ 0.2 Å longer than Ru– C11 (sp) bond. The Ru-Cl bond is longer than usual because of the trans influence of the  $\sigma$ -vinyl site as observed previously.<sup>1</sup>

Insertion Rates. These have been determined spectrophotometrically in CH<sub>2</sub>Cl<sub>2</sub>-MeOH mixtures over a range of temperature. The two reactions studied in detail are stated in eq 2. The spectra of the reacting

$$1\mathbf{a} + \mathbf{x}\mathbf{a} \rightarrow 2\mathbf{a}, 3\mathbf{a} \tag{2}$$

solutions (Figure 3, case of ha) are characterized by multiple isosbestic points, strongly implicating<sup>9</sup> that **1a** and the expanded metallacycle are the only stable absorbing species. Studies in 2:1 CH<sub>2</sub>Cl<sub>2</sub>-MeOH mix-

Table 1. Selected Bond Lengths [Å] and Angles [deg] for Ru(RL<sup>3</sup>)(PPh<sub>2</sub>)<sub>2</sub>(CO)Cl. 3A

C( C(1

C C(

C(

O(

| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | ·····(-·· ) | (3)             | (00)0-,                    | 0.1                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|-----------------|----------------------------|------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | Dist        | ances           |                            |                        |
| Ru - C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )                | 1 820(13)   | Ru-C            | 1                          | 2 530(3)               |
| $R_{\rm H} = C(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ń                | 2 020(11)   | O(1) = 0        | C(1)                       | 1.284(13)              |
| $R_{\rm u} = O(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "                | 2 100(7)    | O(2) - (2)      | C(1)                       | 1.204(13)<br>1.153(13) |
| $R_{\rm L} = O(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 2.100(7)    | O(z) = 0        | $\mathcal{L}(\mathbf{II})$ | 1.133(13)<br>1.995(14) |
| Ru - P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 2.365(4)    |                 | 5)                         | 1.325(14)              |
| Ru - P(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 2.376(3)    | C(9) - 0        | C(10)                      | 1.363(16)              |
| $N \cdots O(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 2.608(12)   |                 |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |             | ,               |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>G</b> (1.0)   | An          | gles            | <b>P</b> (0)               |                        |
| C(11)−Ru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -C(10)           | 91.4(5)     | $P(1)-R_1$      | u-P(2)                     | 177.26(12)             |
| C(11)-Ru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -O(1)            | 178.1(4)    | C(11)-I         | Ru–Cl                      | 99.6(4)                |
| C(10)-Ru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0(1)            | 86.9(4)     | C(10)-I         | Ru–Cl                      | 168.8(4)               |
| C(11) - Ru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-\mathbf{P}(1)$ | 89.2(4)     | O(1)-R          | u–Cl                       | 82.2(2)                |
| (10) - Ru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -P(1)            | 89 4(3)     | $P(1) - R_1$    | u-Cl                       | 93 08(12)              |
| (10) - Ru - (11) | D(1)             | 90.0(2)     | $P(2) - P_1$    | u = Cl                     | 80 12(11)              |
| $\Gamma(1) = Ku = \Gamma(1,1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T(1)             | 90.0(2)     | $\Gamma(L) = R$ | (1) D.                     | 121 0(7)               |
| $(11) - Ru^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -P(2)            | 92.0(4)     | C(1) = 0        | $(1) - \kappa u$           | 131.0(7)               |
| (10)-Ru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -P(2)            | 88.1(3)     | C(9) - C        | (10)–Ru                    | 129.8(10)              |
| D(1)-Ru-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P(2)             | 88.7(2)     | O(2)-C          | (11)–Ru                    | 177.6(11)              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |             |                 |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.5              |             | ·               |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |             |                 |                            | [                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |             |                 |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |             |                 |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                |             |                 |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |             |                 |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.07             |             |                 |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M                |             |                 |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |             |                 |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                |             |                 |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 4           |                 |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 6 -            |             |                 |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2              |             |                 |                            |                        |
| e<br>u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                | KI A        |                 |                            |                        |
| ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |             |                 |                            | ł                      |
| pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                |             |                 |                            |                        |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |             |                 |                            |                        |
| Å.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0-             |             |                 |                            |                        |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |             |                 |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | N V         |                 |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | A I         | 1               |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |             | T.              |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                | N N         |                 | _                          |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5              | 1           |                 |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                | 1           |                 |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |             |                 | 1111                       |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |             |                 | 1111                       | 1                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                |             |                 |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |             | 500             | ( 0.0                      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 280              | 400         | 500             | 500                        | /00                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |             | λ (nm)          |                            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |             |                 |                            |                        |

Figure 3. Spectral time evolution in the reaction of 1a  $(1.27 \times 10^{-4} \text{ M})$  with ha  $(9.97 \times 10^{-3} \text{ M})$  in CH<sub>2</sub>Cl<sub>2</sub>-MeOH (8.14 M in MeOH) solution at 308 K.

tures in the presence of a large excess (>10-fold) of xa over 1a have revealed the rate law of eq 3, the pseudo-

$$rate = k_{obs}[\mathbf{1a}] \tag{3}$$

first-order rate constant  $k_{obs}$  being proportional to the concentration of xa. It was further observed that the insertion process failed to proceed in pure CH<sub>2</sub>Cl<sub>2</sub>. This prompted us to examine the rate as a function of methanol concentration at constant xa concentration. The rate was found to be proportional to the concentration of methanol. The consolidated concentration dependence of  $k_{obs}$  is stated in eq 4 where  $k'_{xa}$  is a constant, vide infra.

$$k_{\rm obs} = k'_{\rm xa} [{\rm xa}] [{\rm MeOH}]$$
(4)

<sup>(8)</sup> Chevalier, P.; Sandorfy, C. Can. J. Chem. 1960, 38, 2524. (b) Bohme, H.; Haake, M. In Advances in Organic Chemistry, Bohme, H., Vieche, H. G., Eds.; Interscience: New York, 1976; Part 1, Vol. 9, p 1. (c) Farvot, J.; Vocelle, D.; Sandorpy, C. *Photochem. Photobiol.* **1979**, *30*, 417. (d) Sandorfy, C.; Vocelle, D. *Mol. Phys. Chem. Biol.* **1989**, *4*, 195.



**Figure 4.** Plots of  $k_{obs}$  vs [xa][MeOH] at 313 K: (+) ha; (O) pa.

 

 Table 2. Rate Data for Reaction of 1a and pa in CH<sub>2</sub>Cl<sub>2</sub>-MeOH Mixture

| <i>T</i> ,<br>K | 10 <sup>4</sup> [ <b>1a</b> ],<br>M | 10 <sup>3</sup> [pa],<br>M | 10 <sup>3</sup> [pa][MeOH],<br>M <sup>2</sup> | $10^5 k_{ m obs}$ , $^a$<br>${ m s}^{-1}$ | $10^{3}k_{ m pa}K,\ { m s}^{-1}~{ m M}^{-2}$ |
|-----------------|-------------------------------------|----------------------------|-----------------------------------------------|-------------------------------------------|----------------------------------------------|
| 308             | 1.11                                | 1.32                       | 10.74                                         | 3.3(1)                                    |                                              |
|                 |                                     | 2.64                       | 21.49                                         | 5.6(4)                                    | 2.6(4)                                       |
|                 |                                     | 3.96                       | 32.23                                         | 7.4(2)                                    |                                              |
|                 |                                     | 5.28                       | 42.98                                         | 11.9(1)                                   |                                              |
| 313             | 1.19                                | 1.29                       | 10.50                                         | 4.9(2)                                    |                                              |
|                 |                                     | 2.58                       | 21.00                                         | 9.9(1)                                    |                                              |
|                 |                                     | 3.87                       | 31.50                                         | 14.8(3)                                   |                                              |
|                 |                                     | 5.16                       | 42.00                                         | 18.2(3)                                   |                                              |
|                 | 0.19                                | 0.50                       | 1.23                                          | 0.9(1)                                    | 4.2(1)                                       |
|                 |                                     |                            | 3.70                                          | 1.9(3)                                    |                                              |
|                 |                                     |                            | 6.17                                          | 3.3(2)                                    |                                              |
|                 |                                     |                            | 8.64                                          | 4.8(4)                                    |                                              |
|                 | 1.38                                | 9.61                       | 71.11                                         | 30.1(1)                                   |                                              |
| 318             | 1.10                                | 1.32                       | 10.74                                         | 6.9(4)                                    |                                              |
|                 |                                     | 2.64                       | 21.49                                         | 14.7(1)                                   | 6.0(5)                                       |
|                 |                                     | 3.96                       | 32.23                                         | 18.8(2)                                   |                                              |
|                 |                                     | 5.28                       | 42.98                                         | 27.0(1)                                   |                                              |
| 323             | 1.27                                | 1.29                       | 10.50                                         | 9.6(1)                                    |                                              |
|                 |                                     | 2.58                       | 21.00                                         | 17.0(3)                                   | 7.1(1)                                       |
|                 |                                     | 3.87                       | 31.50                                         | 24.0(1)                                   |                                              |
|                 |                                     | 5.16                       | 42.00                                         | 32.0(2)                                   |                                              |

<sup>a</sup> Least-squares deviations are given in parentheses.

The plots of observed rate constants vs [xa][MeOH] encompassing large variations in the concentrations of xa and MeOH are excellently (correlation factor of 0.99) linear (Figure 4). Rate data are listed in Tables 2 (for pa) and 3 (for ha).

**Methanol Adduct.** The relation of eq 4 is consistent with the presence of a methanol adduct occurring in equilibrium, the equilibrium constant being *K*, eqs 5 and 6. The methanol adduct is taken as the reactive inter-

$$\mathbf{1a} + \mathbf{MeOH} \stackrel{K}{\Leftarrow} \mathbf{1a} \cdot \mathbf{MeOH}$$
(5)

$$K = \frac{[\mathbf{1a} \cdot \text{MeOH}]}{[\mathbf{1a}][\text{MeOH}]} \tag{6}$$

mediate as in eq 7, which is the rate-determining step

$$1\mathbf{a} \cdot \text{MeOH} + \mathbf{xa} \xrightarrow[\text{rds}]{k_{xa}} \mathbf{2a}, \mathbf{3a} + \text{MeOH}$$
(7)

(rds). The corresponding rate law given in eq 8 is characterized by the rate constant  $k_{xa}$ . The relation of

$$rate = k_{xa} [1a \cdot MeOH] [xa]$$
(8)

Table 3. Rate Data for Reaction of 1a and ha in<br/>CH2Cl2-MeOH Mixture

| <i>Т</i> ,<br>К | 10 <sup>4</sup> [ <b>1a</b> ],<br>M | 10 <sup>3</sup> [ha],<br>M | 10 <sup>3</sup> [ha][MeOH],<br>M <sup>2</sup> | $10^5 k_{\rm obs},^a \\ {\rm s}^{-1}$ | $10^{3}k_{ m ha}K,\ { m s}^{-1}~{ m M}^{-2}$ |
|-----------------|-------------------------------------|----------------------------|-----------------------------------------------|---------------------------------------|----------------------------------------------|
| 298             | 1.79                                | 2.82                       | 22.95                                         | 23.0(4)                               |                                              |
|                 |                                     | 5.64                       | 45.90                                         | 43.0(3)                               | 7.2(4)                                       |
|                 |                                     | 8.46                       | 68.86                                         | 56.0(2)                               |                                              |
|                 |                                     | 11.28                      | 91.82                                         | 74.0(3)                               |                                              |
| 303             | 1.83                                | 2.92                       | 23.77                                         | 24.0(3)                               |                                              |
|                 |                                     | 5.84                       | 47.54                                         | 52.0(2)                               | 11.1(4)                                      |
|                 |                                     | 8.76                       | 71.31                                         | 77.0(3)                               |                                              |
| 308             | 1.83                                | 2.92                       | 23.77                                         | 35.0(1)                               |                                              |
|                 |                                     | 5.84                       | 47.54                                         | 67.0(3)                               | 13.2(1)                                      |
|                 |                                     | 8.76                       | 71.31                                         | 98.0(4)                               |                                              |
| 313             | 1.79                                | 2.82                       | 22.95                                         | 56.0(3)                               |                                              |
|                 |                                     | 5.64                       | 45.90                                         | 108.0(4)                              |                                              |
|                 |                                     | 8.46                       | 68.86                                         | 152.0(2)                              |                                              |
|                 |                                     | 11.28                      | 91.82                                         | 205.0(4)                              | 22.0(3)                                      |
|                 | 0.49                                | 0.83                       | 2.04                                          | 5.2(2)                                |                                              |
|                 |                                     |                            | 6.14                                          | 16.0(3)                               |                                              |
|                 |                                     |                            | 10.24                                         | 28.0(1)                               |                                              |
|                 |                                     |                            | 18.43                                         | 41.0(3)                               |                                              |
|                 |                                     |                            |                                               |                                       |                                              |

<sup>*a*</sup> Least-squares deviations are given in parentheses.

eq 4 is readily derived by combining eqs 3, 6, and 8, the constant  $k'_{xa}$  of eq 4 being related to K and  $k_{xa}$  as in eq 9.

$$k'_{\rm xa} = Kk_{\rm xa} \tag{9}$$

The value of  $K'_{xa}$  increases with increasing temperature (Tables 2 and 3), and the Eyring equation is obeyed. The corresponding activation enthalpies ( $\Delta H^{\#}$ ) are 12.9-(1.0) and 12.5(1.0) kcal mol<sup>-1</sup> and the activation entropies ( $\Delta S^{\#}$ ) are -28.9(2.9) and -26.7(2.7) eu, respectively, for the pa and ha insertions. The rate-determining step is thus associative in nature. We have not succeeded, however, in determining  $k_{xa}$  and K separately, and both quantities are expected to be temperature-dependent. This has vitiated estimation of true activation parameters, which must relate only to  $k_{xa}$ . It is possible, however, to estimate genuine relative rate constants for the pa and ha reactions with a given type **1** substrate by virtue of eq 10, which follows from eq 9. Scrutiny of

$$\frac{k'_{\rm ha}}{k'_{\rm pa}} = \frac{k_{\rm ha}}{k_{\rm pa}} \tag{10}$$

Table 2 reveals that at a given temperature  $k_{\text{ha}} \approx 5 k_{\text{pa}}$ . This is qualitatively reflected in the much higher slope of the ha line in Figure 4.

**Reaction Model.** Solutions of **1a** in  $CH_2Cl_2$ —MeOH are nonconducting, and the insertion rate is not affected by the presence of even large excess of (>10-fold) chloride (Et<sub>4</sub>NCl/LiCl) and PPh<sub>3</sub> in the reaction medium. These observations militate against possible displacement of chloride and phosphine ligands by methanol. On the other hand, the Ru–O(phenolato) bond in type **1** species is relatively weak and is known to be readily displaced by Lewis bases.<sup>10</sup> It is proposed that methanol acts as a Lewis base, generating the reactive adduct stylized as **4**. Alkyne  $\pi$ -anchoring and activation is believed to occur via displacement of methanol as in **5**. Rapid 2 + 2 addition between C=C and Ru–C (aryl) and reestablishment of the Ru–

<sup>(9)</sup> Wilkins, R. G. *Kinetics and Mechenism of Reactions of Transition Metal Complexes*, 2nd ed.; VCH: New York, 1991; p 156.

<sup>(10)</sup> Ghosh, P.; Pramanik, A.; Chakravorty, A. *Organometallics* **1996**, *15*, 4147. (b) Ghosh, P.; Chakravorty, A. *Inorg. Chem.* **1997**, *36*, 64.



O(phenolato) bond complete the metallacycle expansion, affording **2** or **3**.

Space-filling models reveal that the 2 + 2 addition reaction is subject to steric crowding<sup>1</sup> from Cl and PPh<sub>3</sub> ligands, and this can explain the regiospecificity of the insertion reaction characterized by the addition of  $\equiv$  CX and  $\equiv$ CH fragments, respectively, to the carbon and metal ends of Ru–C bond.

To our knowledge, the only other reported kinetic study of alkyne insertion into Ru–C bond concerns certain orthoruthenated N,N-dimethylbenzylamine species<sup>6</sup> wherein, unlike in our system, the reaction involves displacement of chloride by methanol.

**Effect of Substituents.** The 2 + 2 addition process involves nucleophilic attack on the metal. Electron withdrawal from metal via the Schiff base ligand should therefore make insertion more facile. The  $k_{obs}$  (Table 4) values for all three type **1** species were determined for both pa and ha under invariant conditions of temperature (40 °C) and concentrations (alkyne and MeOH). The R substituents are found to affect  $k_{obs}$  significantly, and it increased with increasing electron withdrawal: OMe < Me < Cl. Indeed, the plots of log  $k_{obs}$  vs Hammett constants<sup>11</sup> of R are found to be linear for both pa and ha insertions.

Electron-rich alkynes would be expected to insert more quickly, as ha does compared to pa. The smaller steric bulk of  $CH_2OH$  compared to Ph is also an advantage of ha over pa. The net observed effect is that ha reacts 5 times faster than pa.

#### **Concluding Remarks**

The main finding of this work will now be summarized. The insertion of ha into **1** has afforded the expanded metallacycle **3** in nearly quantitative yields. Rate studies in the cases of pa and ha in  $CH_2Cl_2$ -MeOH mixtures have revealed that the reactive intermediate is the methanol adduct **1**·MeOH presumably belonging to structural type **4**. The latter anchors and activates the alkyne via displacement of MeOH as in **5**. Sterically controlled regiospecific 2 + 2 addition between  $C \equiv C$  and Ru-C (aryl) bonds follows, finally affording **2** and **3**.

Electronic and steric features make ha 5 times more reactive than pa. The R substituents affect the reactivity

| of Different K at 515 K in Cli2Cl2 MeOn Mixture |                                     |                            |                                       |                                     |                            |                                         |
|-------------------------------------------------|-------------------------------------|----------------------------|---------------------------------------|-------------------------------------|----------------------------|-----------------------------------------|
|                                                 | pa insertion                        |                            |                                       | ha insertion                        |                            |                                         |
| R                                               | 10 <sup>4</sup> [ <b>1a</b> ],<br>M | 10 <sup>4</sup> [pa],<br>M | $10^3 k_{\rm obs},$ min <sup>-1</sup> | 10 <sup>4</sup> [ <b>1a</b> ],<br>M | 10 <sup>4</sup> [ha],<br>M | $\frac{10^3 k_{\rm obs}}{\rm min^{-1}}$ |
| Me<br>Cl<br>OMe                                 | 0.15<br>0.15<br>0.17                | 4.68                       | 4.1(1)<br>8.6(1)<br>3.8(1)            | 0.45<br>0.43<br>0.44                | 9.20                       | 14.3(1)<br>24.7(3)<br>12.2(1)           |

Table 4. Observed Rate Constants for the Insertion of pa and ha into Ru(RL<sup>1</sup>)(PPh<sub>3</sub>)<sub>2</sub>(CO)Cl

 $^{a}$  [MeOH] = 22.21 M.

of 1, the rate increasing with increasing electron withdrawal (OMe  $\leq$  Me  $\leq$  Cl).

## **Experimental Section**

**Materials.** The compounds  $Ru(PPh_3)_3Cl_2^{12}$  and  $Ru(RL^1)$ -(PPh\_3)\_2(CO)Cl<sup>7</sup> were prepared as reported. Phenylacetylene and hydroxymethylacetylene (propargyl alcohol) were obtained from Aldrich. The purification of dichloromethane and methanol was done as described before.<sup>13</sup> All other chemicals and solvents were of analytical grade and were used as received.

**Physical Measurements.** Electronic and IR spectra were recorded with a Shimadzu UV-1601PC spectrophotometer (thermostated cell compartment) and Perkin-Elmer 783 IR spectrophotometer. <sup>1</sup>H NMR spectra were obtained using a Bruker 300 MHz FT NMR spectrophotometer (tetramethylsilane internal standard). Microanalyses (C, H, N) were done by using a Perkin-Elmer 240 C elemental analyzer. Solution electrical conductivity was measured by a Philips PR 9500 bridge using a platinized conductivity cell with a cell constant of 1.0.

**Preparation of Complexes.**  $Ru(RL^3)(PPh_3)_2(CO)Cl$  complexes were synthesized in nearly quantitative (~98%) yield by reacting  $Ru(RL^1)(PPh_3)_2(CO)Cl$  in a  $CH_2Cl_2$ -MeOH mixture with excess ha. Details of a representative case are given below. The other compounds were prepared analogously.

[Ru(MeL<sup>3</sup>)(PPh<sub>3</sub>)<sub>2</sub>(CO)Cl] (3a). In a round-bottom flask Ru(MeL1)(PPh3)2(CO)Cl (50 mg, 0.054 mmol) was dissolved in a 2:1 (by volume) CH<sub>2</sub>Cl<sub>2</sub>-MeOH mixture and ha (30 mg, 0.536 mmol) was added to it. The mixture was stirred at 40 °C for 15 min on a magnetic stirrer. The color of the solution changed from violet to green. When the solution was concentrated and cooled, a green crystalline solid separated, which was collected, washed thoroughly with methanol, and dried in vacuo. Yield, 52 mg (98%); mp, 152 °C. Anal. Calcd for RuC<sub>55</sub>H<sub>48</sub>NO<sub>3</sub>P<sub>2</sub>Cl: C, 68.14; H, 4.99; N, 1.44. Found: C, 68.19; H, 4.91; N, 1.46. <sup>1</sup>H NMR (CDCl<sub>3</sub>, δ): 6.44 (s, 1H arom), 6.34 (s, 1H, C=CH-(Ru)), 3.71-3.79 (m, 2H, -CH2-), 2.29 (s, 1H, OH), 12.72 (m, 1H, =N<sup>+</sup>H), 7.04–7.92 (m, 35 H, arom and –HC=N<sup>+</sup>), 2.12 (s, 3H, -CH<sub>3</sub>), 2.29 (s, 3H, -CH<sub>3</sub>). IR (KBr, cm<sup>-1</sup>): v(C=N) 1620; *v*(C≡O) 1900; *v*(N−H, hexachlorobutadiene) 3440. UVvis (CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda_{max}$ , nm ( $\epsilon$ , M<sup>-1</sup> cm<sup>-1</sup>)): 575 (2600), 420 (5070), 320 (8050)

**[Ru(ClL<sup>3</sup>)(PPh<sub>3</sub>)<sub>2</sub>(CO)Cl] (3b).** Yield, 51 mg (96%); mp, 155 °C. Anal. Calcd for RuC<sub>54</sub>H<sub>45</sub>NO<sub>3</sub>P<sub>2</sub>Cl<sub>2</sub>: C, 65.52; H, 4.58; N, 1.42. Found: C, 65.57; H, 4.53; N, 1.45. <sup>1</sup>H NMR (CDCl<sub>3</sub>,  $\delta$ ): 6.43 (s, 1H arom), 6.33 (s, 1H, C=CH(Ru)), 3.71–3.79 (m, 2H,  $-CH_2-$ ), 2.31 (s, 1H, OH), 12.66 (m, 1H,  $=N^+H$ ), 7.11–7.96 (m, 35 H, arom and  $-HC=N^+$ ), 2.11 (s, 3H,  $-CH_3$ ). IR (KBr, cm<sup>-1</sup>):  $\nu$ (C=N) 1610;  $\nu$ (C=O) 1890;  $\nu$ (N–H, hexachlorobutadiene) 3440. UV–vis (CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda_{max}$ , nm ( $\epsilon$ , M<sup>-1</sup> cm<sup>-1</sup>)): 570 (4650), 420 (8850), 320 (14400).

**[Ru(MeOL<sup>3</sup>)(PPh<sub>3</sub>)<sub>2</sub>(CO)Cl] (3c).** Yield, 52 mg (98%); mp, 153 °C. Anal. Calcd for RuC<sub>55</sub>H<sub>48</sub>NO<sub>4</sub>P<sub>2</sub>Cl: C, 67.04; H, 4.91; N, 1.42. Found: C, 67.01; H, 4.88; N, 1.43. <sup>1</sup>H NMR (CDCl<sub>3</sub>,

<sup>(11)</sup> Finar, I. L. Organic Chemistry, Vol. 1: Fundamental Principles, 6th ed.; ELBS, Longman Group: Essex, England, 1990; p 605.

<sup>(12)</sup> Stephenson, T. A.; Wilkinson, G. J. Inorg. Nucl. Chem. 1966, 28, 945.

<sup>(13)</sup> Vogel, A. I. *Practical Organic Chemistry*, 3rd ed.; ELBS and Longman Group: Harlow, England, 1965; pp 176, 169.

δ): 6.44 (s, 1H arom), 6.34 (s, 1H, C=CH(Ru)), 3.71-3.76 (m, 5H, -CH<sub>2</sub>- and -OMe), 2.31 (s, 1H, OH), 12.71 (m, 1H, = N+H), 7.13-7.90 (m, 35H, arom and -HC=N+), 2.12 (s, 3H, -CH<sub>3</sub>). IR (KBr, cm<sup>-1</sup>):  $\nu$ (C=N) 1610;  $\nu$ (C=0) 1890;  $\nu$ (N-H, hexachlorobutadiene) 3440. UV–vis (CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda_{max}$ , nm( $\epsilon$ , M<sup>-1</sup> cm<sup>-1</sup>)): 570 (2460), 420 (4510), 320 (9120).

Rate Measurements. Measurements were carried out in CH<sub>2</sub>Cl<sub>2</sub>-MeOH mixtures by observing the change in absorbances at 403 nm for pa and at 408 nm for ha. The  $k_{obs}$  values were calculated from a linear plot of  $-\ln(A_t - A_{\infty})$  vs *t*, where  $A_t$  and  $A_{\infty}$  are the absorbances at time t and at the end of reaction (48 h), respectively. The activation enthalpy ( $\Delta H^{\#}$ ) and entropy ( $\Delta S^{\#}$ ) were calculated from the variable-temperature rate constant, using the Eyring equation, eq 11 ( $k_{\rm B}$  and h are the Boltzmann constant and Planck's constant, respectively).

$$k = \frac{k_{\rm B}T}{h} \left[ \exp\left(\frac{-\Delta H^{\#}}{RT}\right) \exp\left(\frac{\Delta S^{\#}}{R}\right) \right]$$
(11)

The plots of  $-\ln[k'_{xa}h/(k_BT)]$  vs  $^{1}/_{T}$  were satisfactorily linear (correlation factor of 0.98). The curve fit and all other calculations were done with the Microcal Origin, version 4.0, software package.

X-ray Structure Determination. Single crystals of Ru- $(MeL^3)(PPh_3)_2(CO)Cl$ , **3a**  $(0.25 \times 0.25 \times 0.40 \text{ mm}^3)$  were grown (at 298 K) by slow diffusion of hexane into dichloromethane solution followed by evaporation. The crystals were inherently poor in quality, giving rise to broadened diffraction peaks, and only moderately good refinement could be achieved. The thermal parameters are relatively high, especially for one phenyl ring on the P1 atom. Cell parameters were determined by a least-squares fit of 30 machine-centered reflections ( $2\theta$ =  $15-30^{\circ}$ ). Data were collected with the  $\omega$ -scan technique in the range  $3^{\circ} \leq 2\theta \leq 45^{\circ}$  on a Siemens R3m/V four-circle diffractometer with graphite-monochromated Mo K $\alpha$  radiation  $(\lambda = 0.710~73$  Å). Two check reflections measured after every 198 reflections showed no significant intensity reduction in any case. All data were corrected for Lorentz polarization

| Table 5. | Crytal, | Data  | <b>Collection</b> ,     | and   | Refinement |
|----------|---------|-------|-------------------------|-------|------------|
| Para     | meters  | for R | u(RL <sup>3</sup> )(PPh | 3)2(C | 0)Cl, 3a   |

|                | mol formula                                                                     | C55H48ClNO3P2Ru                                |
|----------------|---------------------------------------------------------------------------------|------------------------------------------------|
|                | mol wt                                                                          | 969.40                                         |
|                | cryst syst                                                                      | monoclinic                                     |
|                | space group                                                                     | $P2_{1}/c$                                     |
|                | a, Å                                                                            | 14.655(8)                                      |
|                | <i>b</i> , Å                                                                    | 15.091(6)                                      |
|                | <i>c</i> , Å                                                                    | 21.949(14)                                     |
|                | $\beta$ , deg                                                                   | 92.93(5)                                       |
|                | V, Å <sup>3</sup>                                                               | 4848(5)                                        |
|                | Ż                                                                               | 4                                              |
|                | λ, Å                                                                            | 0.710 73                                       |
|                | $\mu$ , cm <sup>-1</sup>                                                        | 4.88                                           |
|                | $D_{\rm calcd}$ , g cm <sup>-3</sup>                                            | 1.328                                          |
|                | $R^{a}$ , wR2 <sup>b</sup> [I > 2 $\sigma$ (I)]                                 | 7.95, 18.19                                    |
| <sup>a</sup> R | $\mathcal{Q} = \sum   F_0  -  F_c  / \sum  F_0 . \ ^b \text{ wR2} = [\sum P_0]$ | $W(F_0^2 - F_c^2)^2 / \sum (F_0^2)^2 ]^{1/2}.$ |
|                |                                                                                 |                                                |

effects, and an empirical absorption correction<sup>14</sup> was done on the basis of an azimuthal scan of six reflections for the crystal.

The metal atom was located from Patterson maps, and the rest of the non-hydrogen atoms emerged from successive Fourier syntheses. The structures were refined by a full-matrix least-squares procedure on  $F^2$ . All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included at calculated positions. Calculations were performed using the SHELXTL, version 5.03,15 program package. Significant crystal data are listed in Table 5.

Acknowledgment. We thank the Department of Science and Technology, Indian National Science Academy and the Council of Scientific and Industrial Research, New Delhi, for financial support. Affiliation with Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India, is acknowledged. We are thankful to Prof. P. Banerjee for helpful discussions.

Supporting Information Available: X-ray crystallography files, in CIF format, for the structure determination of 3a. This material is available free of charge via the Internet at http://pubs.acs.org.

OM000649C

<sup>(14)</sup> North, A. C. T.; Phillips, D. C.; Mathews, F. A. Acta Crystallogr.,

Sect. A **1968**, 24, 351. (15) Sheldrick, G. M. SHELXTL, version 5.03; Bruker Analytical X-ray Systems: Madison, WI, 1994.