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ABSTRACT: Lewis acid catalyzed cycloaddition of cyclo-
hexenone and butadiene affords trans-fused octalone with high
regio- and diastereoselectivity. The use of the ruthenium
porphyrin complex as the Lewis acid catalyst is key to the
reaction. The cycloaddition proceeds in toluene with 1 mol %
of the ruthenium catalyst at 25 °C.

Octalones are among the most versatile building blocks for
the synthesis of various natural products such as

polycyclic sesquiterpenes and triterpenes. The [4 + 2]
cycloaddition of cyclohexenones with butadienes, namely, the
Diels−Alder reaction, would be one of the most straightforward
synthetic routes to octalones with a cis-fused framework
(Scheme 1a). This reaction appears to be simple and facile;

however, as a matter of fact it is rather difficult to accomplish
due to the low reactivity as a dienophile. Hence, the
development of efficient catalysts for the reaction remains a
research topic of great interest.1 Efforts have also been devoted
to preparing octalones with a trans-fused framework by
cycloaddition.2,3 Herein, we report that the intermolecular
reaction of cyclohexenones with 1,3-butadienes affords trans-
fused octalones in a single step (Scheme 1b); ruthenium
porphyrin was found to catalyze the [4 + 2] cycloaddition and
isomerization at ambient temperature.4−7

Porphyrins have emerged as useful ligands for transition-
metal catalysts in organic synthesis in cases where the use of
other ligands is infeasible.8,9 Recently, we developed the iron-
porphyrin-catalyzed [4 + 2] cycloaddition of aldehydes with
1,3-butadienes to afford dihydropyranes.10 During the course of
our study on metalloporphyrin-catalyzed reactions,11 we
postulated that ruthenium porphyrin also catalyzes the
cycloaddition of carbonyl compounds with carbon−carbon
unsaturated compounds, since both iron and ruthenium

complexes show Lewis acidity toward carbonyl compounds
and thus efficiently catalyze Diels−Alder-type reactions. To test
the hypothesis, we examined the cycloadditions of carbonyl
compounds with carbon−carbon unsaturated compounds12

and found that ruthenium porphyrin complex [Ru(TBPP)-
(CO)]SbF6 (TBPP: meso-tetrakis(4-tert-butylphenyl)por-
phyrinate, Figure 1) catalyzed the [4 + 2] cycloaddition of

cyclohexenone with 1,3-butadiene to afford trans-fused octalone
diastereoselectively in 74% yield regioselectively (Table 1, entry
1).13−15 We also examined the effect of counteranions, which
would act as axial ligands, on the reactivity of the Ru center.
When the triflate anion (TfO−) was used, 3aa was obtained in
35% yield (entry 2) along with the diastereomer 3aa′.
Ruthenium porphyrin [Ru(TBPP)(CO)] did not catalyze the
reaction (entry 3).16

The use of the ruthenium porphyrin [Ru(TMP)(CO)]SbF6
(TMP: meso-tetrakis(2,4,6-trimethylphenyl) porphyrinate),
which has a sterically hindered meso-aryl group near ruthenium,
provided octalone 3aa in 60% yield (entry 4). However, the
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Scheme 1. Cycloaddition To Afford Octalone

Figure 1. Ruthenium porphyrin complexes.
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desired product 3aa was not obtained when using other Lewis
acid catalysts such as RuCl3, AlCl3, BF3·Et2O, methylaluminum
bis(2,6-di-tert-butyl-4-methylphenoxide) (MAD), and AgSbF6
or when using the Brønsted acid TfOH (entries 5−10).
Moreover, nonruthenium metalloporphyrin complexes having
iron and cobalt atoms did not show any catalytic activity
(entries 11 and 12).
With the optimized reaction conditions in hand, we briefly

examined the [Ru(TBPP)]SbF6-catalyzed [4 + 2] cycloaddition
to afford trans-fused octalones 3. The results are summarized in
Scheme 2. Not only the symmetrically substituted 1,3-
butadiene 2a but also unsymmetrically substituted 1,3-dienes
such as isoprene 2b, 2-benzyl-1,3-butadiene 2c, and myrcene
2d participated in the reaction with cyclohexenone to afford the
correspondingly substituted octalones 3ab, 3ac, and 3ad in
good to moderate yields with high regio- and diastereoselec-
tivity. Aryl-substituted 1,3-butadienes, which tend to oligo-
merize in the presence of a strong Lewis acid or Brønsted acid,
also reacted with cyclohexenone to provide the corresponding
octalones. For examples, phenyl- and tolyl-substituted 1,3-
butadienes 3e and 3f reacted with cyclohexenone to afford the
correspondingly substituted otcalones 3ae and 3af in 65% and
64% yields, respectively. Aryl-substituted 1,3-butadienes having
electron-withdrawing groups such as chloride, fluoride, and
trifluoromethyl also participated in the cycloaddition to give
3ag, 3ah, and 3ai in moderate yields. However, aryl-substituted
1,3-diene possessing an electron-donating methoxy group failed
to react with cyclohexenone because it underwent rapid
oligomerization. Butadiene 2j possessing an acetyl group also
participated in the reaction to give 3aj in 27% isolated yield,
along with the dimer of 2j. However, cyclohexenones 1b and 1c
did not participate in the reaction with 2a. The molecular
structures of trans-fused octalones 3aa and 3ag were confirmed
through X-ray crystal structure analysis (Figure 2).
The cycloaddition of cyclohexenone 1a with 2a provided

trans-fused octalone 3aa in 74% yield after 12 h, while a shorter

reaction time (30 min) afforded cis-fused octalone 3aa′ in 11%
yield (Scheme 3). Furthermore, epimerization of cis-fused
octalone 3aa′ to trans-fused octalone 3aa was efficiently
catalyzed by the ruthenium porphyrin, within 4 h (Scheme
4). These results indicated that the ruthenium-porphyrin-
catalyzed cycloaddition proceeded to initially afford a cis-fused
octalone, which underwent epimerization to the trans-fused
octalone.17

In summary, we have demonstrated the ruthenium-
porphyrin-catalyzed reaction of cyclohexenones with 1,3-
butadienes to afford trans-fused octalones regio- and stereo-
selectively. The ruthenium porphyrin effectively catalyzed (1)
the [4 + 2] cycloaddition to provide cis-octalones and

Table 1. [4 + 2] Cycloaddition of Cyclohexenone 1a and 1,3-
Butadiene 2a To Afford Trans-Fused Octalone 3aaa

entry catalyst yield (%)b,c

1 [Ru(TBPP)(CO)]SbF6
d 74 (99/1)

2 [Ru(TBPP)(CO)]OTfd 35 (6/1)
3 [Ru(TBPP)(CO)]d <1 (−/−)
4 [Ru(TMP)(CO)]SbF6

e 60 (99/1)
5 RuCl3 <1 (−/−)
6 AlCl3 <1 (−/−)
7 BF3·Et2O <1 (−/−)
8 MADf <1 (−/−)
9 AgSbF6 <5 (−/−)
10 TfOH <1 (−/−)
11 [Fe(TPP)]SbF6 <1 (−/−)
12 [Co(TPP)]SbF6 <1 (−/−)

aReaction conditions: catalyst (1 mol %), cyclohexenone 1a (0.2
mmol), and butadiene 2a (0.8 mmol) in 0.1 mL of toluene for 12 h.
bGC yields are given. cRatio of diastereomers (3aa/3aa′). dTBPP:
meso-tetrakis(4-tert-butylphenyl)porphyrinate. eTMP: meso-tetrakis-
(2,4,6-trimethylphenyl)porphyrinate. fMAD: methylaluminum bis-
(2,6-di-tert-butyl-4-methylphenoxide).

Scheme 2. [4 + 2] Cycloaddition of Cyclohexenone and 1,3-
Butadiene To Afford Trans-Fused Octalonea

aReaction conditions: catalyst (1 mol %), cyclohexenone 1 (0.2
mmol), and butadiene 2 (0.8 mmol) in 0.1 mL of toluene for 12 h.
Isolated yields are given. bReaction time, 24 h. cButadiene (0.4 mmol).
dReaction temperature, 50 °C. ecis-3ca′ was isolated in 55% yield.

Figure 2. ORTEP drawings of 3aa and 3ag.

Organic Letters Letter

dx.doi.org/10.1021/ol500625r | Org. Lett. 2014, 16, 2594−25972595



subsequent (2) epimerization to the trans-isomer. Detailed
studies to elucidate the mechanism underlying the unique
reactivity of the ruthenium porphyrin catalyst and efforts to
improve the scope of the reaction are underway.
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Scheme 3. Ruthenium-Porphyrin-Catalyzed [4 + 2]
Cycloaddition of Cyclohexenone 1a and Butadiene 2a

Scheme 4. Ruthenium-Porphyrin-Catalyzed Epimerization
of cis-3aa′ to trans-3aa
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(16) Even though [Ru(TBPP)(CO)]SbF6 could be reduced to
[Ru(TBPP)(CO)] under certain conditions, we observed that
[Ru(TBPP)(CO)] is inactive for the catalyst. Furthermore, the results
of the time course experiment with the [Ru(TBPP)(CO)]SbF6
catalyst indicate that there is no induction period for the reaction
(Supporting Information, Figure S1). Based on these results, we
proposed that [Ru(TBPP)(CO)]SbF6 is not reduced to [Ru(TBPP)
(CO)] under the catalytic reaction conditions and [Ru(TBPP)(CO)]
SbF6 is the active catalyst for the reaction.
(17) The time-dependent changes in cis-trans-isomers also indicated
that the ruthenium-porphyrin-catalyzed cycloaddition proceeded along
with epimerization of the cis-fused octalone to trans-fused octalone
(Supporting Information, Figure S1).
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