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Abstract: A highly regioselective ortho-acetoxylation has been
achieved in the presence of 10 mol% Pd(OAc)2 and a stoichiometric
amount of PhI(OAc)2 in a mixture of acetic anhydride and acetic
acid via C–H activation to produce the corresponding acetoxy-sub-
stituted 3-aryl-1,2,4-benzotriazines derivatives in good yields.
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The direct conversion of C–H bonds into C–O, C–N,
C–S, C–halogen, and C–C bonds has been actively inves-
tigated in organic synthesis.1 Great efforts have been de-
voted to the development of efficient methods for the
direct C–H bond functionalization because of their poten-
tial in forming diverse derivatives.2 Transition-metal
complexes have been widely used as catalysts in C–H
bond activation, and palladium catalysts are particularly
attractive. Generally, the directing group possesses a lone-
pair electron and coordinates the transition-metal catalyst
via a five- or six-membered metallacycle to direct an
ortho functionalization.3 In recent years, the development
of regioselective C–O bond formation via C–H activation
received significant attention of organic chemists.4

1,2,4-Benzotriazine contains three nitrogen atoms and be-
longs to a special class of aromatic heterocycles, it is usu-
ally considered more significant than simple pyridine and
quinoline rings.5 It has been involved in many compounds
and reactions such as aza nucleosides and aza nucleo-
tides,6 ligands,7 herero Diels–Alder reactants,8 herbicid-
al,9 and metal-ion adsorption,10 and it has been found in
various agrochemicals, functional materials, and biologi-
cally active compounds.11 Moreover, as a directing group,
1,2,4-benzotriazine is a useful building block for its po-
tentially bioactive phenyl derivatives. Herein, we report a
suitable and efficient method for the C–O bond formation
on a phenyl ring via 1,2,4-benzotriazine-directed C–H
activation with palladium catalysts.

Initially, we examined the reaction of 3-aryl-1,2,4-benzo-
triazine (1a) with PhI(OAc)2 in AcOH–Ac2O (1:1) cata-
lyzed by PdCl2 at 100 °C (Table 1, entry 1). Gratifyingly,
the desired 2-{benzo[e][1,2,4]triazin-3-yl}phenyl acetate

(2a) was obtained in 45% yield after six hours. Among the
Pd sources we examined, Pd(OAc)2 showed the highest
activity for this reaction (Table 1, entries 2–4). Then sev-
eral other oxidants were evaluated, and the results showed
that PhI(OAc)2 was superior to Oxone, K2S2O8, 1,4-ben-
zoquinone (BQ), and Cu(OAc)2 (Table 1, entries 5–8).
Thus, PhI(OAc)2 was chosen as the oxidant for further op-
timization. Moreover, we have performed the reaction in
various solvents. The reaction was sluggish either in
MeCN or in Ac2O (Table 1, entries 9 and 13). The use of
1,2-dichloroethane (DCE), toluene, and AcOH did not im-
prove the yield of the product relative to AcOH–Ac2O
(Table 1, entries 10–12). Furthermore, changing the ratio
of AcOH vs. Ac2O did not improve the yield (Table 1, en-
tries 14 and 15). Other than oxidant and solvent, the reac-
tion temperature and time were also crucial for the
reaction, the yield of 2a decreased at both higher and low-
er temperature than 100 °C (Table 1, entry 16: 80 °C, en-
try 17: 120 °C); and the yield also decreased at longer and
shorter reaction time than six hours (Table 1, entries 18: 4
h, 19: 8 h). Therefore, the optimized conditions were iden-
tified (Table 1, entry 4).

Table 1 Optimization of the Reaction Conditionsa 

Entry Catalyst Oxidant Solvent Time 
(h)

Yield 
(%)

1 PdCl2 PhI(OAc)2 AcOH–Ac2O 6 45b

2 Pd(Ph3P)2Cl2 PhI(OAc)2 AcOH–Ac2O 6 28b

3 PdCl2C4H6N2 PhI(OAc)2 AcOH–Ac2O 6 39b

4 Pd(OAc)2 PhI(OAc)2 AcOH–Ac2O 6 72b

5 Pd(OAc)2 Oxone AcOH–Ac2O 6 42b

6 Pd(OAc)2 K2S2O8 AcOH–Ac2O 6 51b

7 Pd(OAc)2 BQ AcOH–Ac2O 6 n.d.b

8 Pd(OAc)2 Cu(OAc)2 AcOH–Ac2O 6 n.d.b

9 Pd(OAc)2 PhI(OAc)2 MeCN 6 trace

10 Pd(OAc)2 PhI(OAc)2 DCE 6 53

N
N

N
catalyst, oxidant

solvent

N
N

N

AcO
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3-Aryl-1,2,4-benzotriazine presents two ortho C–H bonds
that can coordinate with Pd at both 2,6-positions, but with
1.1 equivalents of PhI(OAc)2 the monosubstituted product
was obtained in good yield (Table 2, entry 1). When in-
crease the feed of PhI(OAc)2 to 2.2 equivalents, only the
disubstituted product was detected (Scheme 1, 3a). Using
the optimized conditions, we also examined a series of 3-
aryl-1,2,4-benzotriazine compounds to establish the scope
and limitations of this process. Generally, the reaction of
3-aryl-1,2,4-benzotriazine bearing either electron-with-
drawing or electron-donating groups proceeded smoothly
and afforded the corresponding desired product 2 in mod-
erate to good yields (Table 2). However, the compounds
with electron-donating functional groups on the aryl ring
(Table 2, entries 1–4) generally gave higher yields than
those with electron-withdrawing groups (Table 2, entries
5 and 6; 72–84% for 2a–d vs. 58–60% for 2e–f). Interest-
ingly, methyl groups on the aryl ring seem to facilitate the
reaction (Table 2, entries 2–4), and the 4-methyl-substi-
tuted compound gave the highest yield (Table 2, entry 2:
84%). However, the stronger electron-donating methoxy
group on the aryl ring gave the product in low yield (Table
2, entry 7). To our surprise, the compound with the strong
electron-withdrawing nitro group at the meta position
gave the product in 31% yield (Table 2, entry 9). How-
ever, the compound with the nitro group at the para posi-
tion may not be suitable for the process as the desired

product was not isolated, and only a trace amount of the
product was detected on silica gel (Table 2, entry 8). Fur-
thermore, for substitution on the 1,2,4-benzotriazine,
electron-donating substituted compounds (Table 2, entry
10: 70%, entry 11: 63%) gave slightly higher yields than
those with electron-withdrawing substituents (Table 2,
entry 12: 62%), but dimethyl substitution did not give bet-
ter yield than single methyl substitution. For compounds
with substitution at both phenyl and aryl rings, electron-
rich 3-aryl-1,2,4-benzotriazines showed better reactivity
and achieved higher yields than electron-deficient ones
(Table 2, entries 13–17). Notably, 3-fury-1,2,4-benzotri-
azines can also undergo this transformation, albeit in 14%
yield (Scheme 2, 2q).

Scheme 1  Synthesis of 2-{benzo[e][1,2,4]triazin-3-yl}-1,3-phenyl-
ene diacetate from 3-aryl-1,2,4-benzotriazine

Scheme 2  Synthesis of 2-{benzo[e][1,2,4]triazin-3-yl}furan-3-yl
acetate from 3-fury-1,2,4-benzotriazine

11 Pd(OAc)2 PhI(OAc)2 toluene 6 47

12 Pd(OAc)2 PhI(OAc)2 AcOH 6 34

13 Pd(OAc)2 PhI(OAc)2 Ac2O 6 11

14 Pd(OAc)2 PhI(OAc)2 AcOH–Ac2O 6 38c

15 Pd(OAc)2 PhI(OAc)2 AcOH–Ac2O 6 23d

16 Pd(OAc)2 PhI(OAc)2 AcOH–Ac2O 6 53b,e

17 Pd(OAc)2 PhI(OAc)2 AcOH–Ac2O 6 48b,f

18 Pd(OAc)2 PhI(OAc)2 AcOH–Ac2O 4 43b

19 Pd(OAc)2 PhI(OAc)2 AcOH–Ac2O 8 59b

a Reaction conditions: The reaction was carried out using 1a (0.2 
mmol), catalyst (0.02 mmol), and oxidant (0.22 mmol) in solvent (1 
mL) under air for 6 h at 100 °C.
b Yield for AcOH–Ac2O (1:1).
c Yield for AcOH–Ac2O (2:1).
d Yield for AcOH–Ac2O (1:2).
e Yield for a reaction temperature of 80 °C.
f Yield for a reaction temperature of 120 °C.
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Scheme 3  Proposed reaction mechanism
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A plausible reaction mechanism based on the results ob-
tained above combined with previous reports12 has been
proposed in Scheme 3. We assume that the reaction may
undergo according to the following procedures. 1,2,4-Tri-
azine-directed C–H activation generates a five-membered
cyclopalladated intermediate,13 the intermedium pallada-
cycle is stabilized with the 1,2,4-triazine group to induce
the ortho acetoxylation.14 The resulting PdII could be con-
verted into PdIV by PhI(OAc)2 to complete the catalytic
cycle (Scheme 3, a).15 An alternative peroxide-based oxi-
dant may also give the key PdIV intermediate 1 when em-
ploying an external acetate source such as acetic acid
(Scheme 3, b).16

In conclusion, we have developed a direct palladium-cat-
alyzed method for the synthesis of 2-{benzo[e][1,2,4]tri-
azin-3-yl}phenyl acetate derivatives form 3-aryl-1,2,4-
benzotriazines using 10 mol% Pd(OAc)2 and with
PhI(OAc)2 as oxidation agent in AcOH–Ac2O in air in a
one-pot manner, involving the cleavage of a C–H bond
and the formation of a C–O bond. A variety of substitu-
ents are tolerated in this reaction, which proceeds smooth-

ly in moderate to good yields. Additionally, the approach
provides a new access to a variety of acetoxy-susbstituted
3-aryl-1,2,4-benzotriazines derivatives which may be im-
portant in medicinal chemistry for drug discovery and de-
velopment. The application of 1,2,4-benzotriazines as a
directing group to construct carbon–heteroatom bonds,
and other further investigations, are under way in our lab-
oratory.
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