
This article was downloaded by: [University of Toronto Libraries] On: 30 December 2014, At: 06:21 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

The Preparation of 1, 5- $Se_2S_2N_4$

Arto Maaninen , Jari Siivari , Risto S. Laitinen & Tristram Chivers

^a Departments of Chemistry , University of Oulu , FIN-90570 Oulu, Finland

^b Departments of Chemistry, University of Oulu, FIN-90570 Oulu, Finland

 $^{\rm c}$ Departments of Chemistry , University of Oulu , FIN-90570 Oulu, Finland

^d Departments of Chemistry, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta, Canada T2N 1N4 Published online: 02 Apr 2008.

To cite this article: Arto Maaninen , Jari Siivari , Risto S. Laitinen & Tristram Chivers (1997) The Preparation of 1, $5-Se_2S_2N_4$, Phosphorus, Sulfur, and Silicon and the Related Elements, 124:1, 457-460, DOI: <u>10.1080/10426509708545658</u>

To link to this article: <u>http://dx.doi.org/10.1080/10426509708545658</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

THE PREPARATION OF 1, 5-Se₂S₂N₄

ARTO MAANINEN,^a JARI SIIVARI,^a RISTO S. LAITINEN,^a and TRISTRAM CHIVERS^b Departments of Chemistry, ^a University of Oulu, FIN-90570 Oulu, Finland, and ^b University of Calgary, 2500 University Dr. N.W., Calgary, Alberta, Canada T2N 1N4

The reaction of $[(Me_3Si)_2N]_2S$ with an equimolar amount of SeCl₄ or the reaction of $[(Me_3Si)_2N]_2Se$ with 1:1 mixture of SCl₂ and SO₂Cl₂ produces 1,5-Se₂S₂N₄ in good yields. The product is identified and characterized using X-Ray diffraction, vibrational analysis, mass spectroscopy, and NMR-spectroscopy.

Keywords: Chalcogen-nitrogen-compounds; Raman spectroscopy; NMR spectroscopy; crystal structure

INTRODUCTION

The chemistry of selenium-nitrogen compounds is a relatively limited but a rapidly growing field.^[1,2]We report here a convenient synthesis of 1,5-Se₂S₂N₄ from [(Me₃Si)₂N]₂S and SeCl₄, or from [(Me₃Si)₂N]₂Se and SCl₂ and SO₂Cl₂. Both reactions afford the same product that is identified using X-ray diffraction, vibrational analysis, as well as NMR and mass spectroscopy.

EXPERIMENTAL SECTION

All reactions were carried under an argon atmosphere. The solvents were dried by freshly distilling under a nitrogen atmosphere.

Caution! The eight-membered $Se_2S_2N_4$ ring molecule is explosive when heated or subjected to mechanical stress.

Reaction of [(Me₃Si)₂N]₂S with SeCl₄

A solution of $[(Me_3Si)_2N]_2S$ in CS₂ was added dropwise to a slurry of SeCl₄ in CS₂ at -78° C. The reaction mixture was allowed to warm slowly to room temperature with stirring for 12 hours. The yield was 70 mol % based on the initial amount of $[(Me_3Si)_2N]_2S$.

Reaction of [(Me₃Si)₂N]₂Se with SCl₂ and SO₂Cl₂

 $[(Me_3Si)_2N]_2Se$ was dissolved in CS₂, and a mixture of SCl₂ and SO₂Cl₂ in CS₂ was added dropwise at -78° C. The yield was 73 mol % based on the initial amount of $[(Me_3Si)_2N]_2Se$.

RESULTS AND DISCUSSION

 $Se_2S_2N_4$ can be prepared in good yields according to the following reactions.

 $[(Me_3Si)_2N]_2S + SeCl_4 \rightarrow \frac{1}{2} Se_2S_2N_4 + 4 Me_3SiCl$ $[(Me_3Si)_2N]_2Se + SCl_2 + SO_2Cl_2 \rightarrow \frac{1}{2} Se_2S_2N_4 + 4 Me_3SiCl_2N_4 + 4 Me_3SiCl_2N_4$

The resulting dark brown-red material was almost insoluble in organic solvents and precipitated during the reaction. The elemental analysis of

the solid product can be inferred in terms of a mixture containing 91 mol % of $Se_2S_2N_4$ and 9 mol % of Se_8 (Anal. calcd for $Se_2S_2N_4$: N, 20.1; S, 23.0; Se 56.9. Found: N, 16.5. The ⁷⁷Se NMR spectrum of the product indicates a mixture of 90-95 % $Se_2S_2N_4$ and 5-10 % Se_8).

Se₂S₂N₄ crystallizes in a monoclinic space group $P2_1/c$, Z = 4, with the unit cell dimensions a = 8.818(2), b = 7.387(1), c = 8.981(2)Å, $\beta = 93.14(3)$ ° (T = 298 K); R = 0.0545. The compound is isostructural with S₄N₄ ^[3] and β -Se₄N₄.^[4] The structure is disordered with sulfur and selenium statistically distributed over chalcogen atom sites (site occupation factors of selenium in every position *ca*. 50 %).

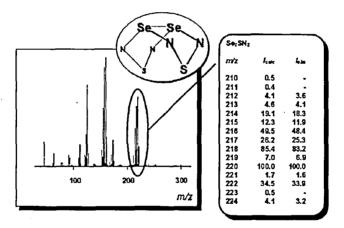


FIGURE 1 12 eV EI mass spectrum of 1,5-Se₂S₂N₄.

The 12 eV mass spectrum of the product showed Se_2SN_2 as the largest fragment. It can be inferred as a part of the $1,5-Se_2S_2N_4$ ring (see Fig. 1). The ¹⁴N NMR spectrum of the crude reaction mixture showed two resonances at -46 and -238 ppm. The resonance at -238 ppm is assigned to $Se_2S_2N_4$ (*c.f.* -256 ppm for S_4N_4 ^[5]). The resonance

at -46 ppm is due to an unknown species that is removed during the purification of the product by distillation. The ⁷⁷Se NMR spectrum showed two resonances at 1418 ppm and 620 ppm that are assigned to $1,5-Se_2S_2N_4$ and Se_8 ,^[6] respectively. The single ¹⁴N resonance also indicates that the product is the 1,5-isomer.

The observed Raman lines are in a good agreement with the fundamental vibrations calculated for $Se_2S_2N_4$ by using the general valence force field approach. The calculations also yield reasonable force constants.

Acknowledgments

The financial support from the Academy of Finland is gratefully acknowledged.

References

- T. Klapötke, In *The Chemistry of Inorganic Ring Systems*, ed. Steudel, R. (Elsevier Science Publishers, Amsterdam, 1992), pp 409-427.
- [2.] (a) E. G. Awere, J. Passmore, P. S. White, and T. Klapötke, J. Chem. Soc., Chem. Commun., 1415 (1989). (b) E. G. Awere, J. Passmore, and P. S. White, J. Chem. Soc., Dalton Trans., 299 (1993). (c) P. F. Kelly, M. Z. Slawin, D. J. Williams, and J. D. Woollins, J. Chem. Soc., Chem. Commun., 408 (1989).
- [3.] M.L. DeLucia and P. Coppens, Inorg. Chem., 17, 2336 (1978).
- [4.] H. Folkerts, B. Neumuller and K. Dehnicke, Z. anorg. allg. Chem. 620, 1011 (1994).
- [5.] T. Chivers, R.T. Oakley, O.J. Scherer, and G. Wolmershäuser, *Inorg. Chem.*, 20, 914 (1981).
- [6.] R.S. Laitinen and T.A. Pakkanen, *Inorg. Chem.*, 26, 2598 (1987).