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Cyclization 

Jonathan Congmon, and Marcus A. Tius*[a] 

 

Abstract: The cationic Au(I)-catalyzed cyclization of highly 

substituted enynes has been shown to provide cyclopentenones with 

up to two contiguous, all-carbon atom quaternary centers in a 

diastereospecific process. In the more challenging examples in 

which two contiguous quaternary centers are formed during 

cyclization, the essential role of a carboethoxy group to control the 

reaction outcome has been demonstrated. The less challenging 

examples that lead to a single quaternary center in the ring require 

no activation by aryl or by electron withdrawing groups. 

The Nazarov cyclization continues to provide efficient access to 

cyclopentenones more than 70 years after its discovery.[1] In 

some cases the relative and the absolute stereochemistry of the 

product can be controlled,[2] rendering the method especially 

valuable in total synthesis.[3] Nazarov cyclizations leading to 

cyclopentenones bearing one or more all-carbon atom 

quaternary centers represent the most difficult case. We have 

recently developed asymmetric Pd(0)- and chiral Bronsted acid 

(CBA)-catalyzed diastereo- and enantioselective Nazarov 

cyclizations. The CBA-catalyzed cyclization leads to products 

with adjacent all-carbon atom quaternary centers.[4] Predictably, 

the reaction is slower for highly congested systems, enabling 

competing processes to take place. Our preliminary results 

indicated that a heavy catalyst load is required in the Pd(0)-

catalyzed reaction in order to prepare cyclopentenones bearing 

adjacent all-carbon atom quaternary centers, suggesting the 

need for more reactive catalysts. 

Our search for a more effective way to assemble adjacent 

all-carbon atom quaternary centers led us to the 2006 report by 

Zhang and Wang describing the cationic Au(I)-catalyzed 

cyclization of enynyl acetate 1 to cyclopentenone 2 (Scheme 

1).[5] Since 2006 a number of related Au(I)- and Au(III)-catalyzed 

Nazarov reactions have been described,[6] including one that 

demonstrates good levels of asymmetry transfer.[6c] Asymmetry 

transfer has also been demonstrated for the related Au(I)-

catalyzed Rautenstrauch rearrangement.[7,8] In the majority of 

cases cyclization is initiated either by [1,3]- or by [1,2]-oxa 

migration, typically of acetate, that is triggered through alkyne 

activation by the catalyst. There appears to be a delicate 

balance between the factors that favor [1,3]- over [1,2]-oxa 

migration.[9,10] 

We questioned whether enynyl acetates such as 3 and 5[11] 

would be capable of undergoing Au(I)-catalyzed cyclization, or 

whether other rearrangements might compete. In Zhang’s 

reaction [1,2]-hydride migration takes place immediately 

following cyclization. An analogous [1,2]-alkyl or aryl migration 

that might have taken place during the rearrangement of 3 or 5 

could have led to complex product mixtures.[12] Even if five-

membered ring formation represented the dominant reaction 

pathway for enynes 3 and 5, it seemed likely that the reaction of 

5 would lead to mixtures of diastereomers. Very surprisingly, the 

cyclization of 5 and of all related enynes that we examined led to 

single diastereomers of the cyclopentenone product. 

 

Scheme 1. Cationic Au(I)-Catalyzed Nazarov Cyclizations. 

The conditions for the cyclization were optimized using 

enyne 3 (Table 1). The cationic Au(I) catalyst in each case was 

prepared in situ from equimolar quantities of the appropriate 

ligated AuCl and silver(I) triflimide that were delivered as 

standard solutions in dichloromethane.[13] A significantly faster 

reaction was observed in the case of the triphenylphosphino 

complex (entry 1), but under identical conditions the yield of 4 

was better with the aryl phosphite ligand (entry 3), so it was 

chosen.[14] Since there was no significant difference between 

1,2-dichloroethane and dichloromethane (entries 3, 4) 

dichloromethane was selected.[15] The Au(I) catalyst was in all 

cases highly reactive and as little as 0.5 mol% led to acceptable 

results (entry 7).[16] Entries 8–10 refer to control experiments that 

showed that both Au(I) and Ag(I) were necessary in order for 

reaction to take place. Since AgNTf2 might have been the source 

of a small amount of the strong Bronsted acid Tf2NH, the control 

experiment of entry 10 was carried out. Within 10 min of 

exposure to 1 equivalent of Tf2NH all of 3 had been consumed, 
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and no 4 was detected by TLC in the complex reaction mixture, 

making it unlikely that 4 is formed through Bronsted acid 

catalysis. The reaction conditions of entries 4 and 6 were used 

for slow- and fast-reacting enynes, respectively. 

 

Table 1. Optimization of the Reaction Conditions.  

 

 

 

Entry LAuCl (mol %)[a] Solvent Time Yield 

(%) 

1 Ph3PAuCl (5) DCE 30 min 70 

2 IPrAuCl (5) DCE 1 h 71 

3 (ArO)3PAuCl (5) DCE 1 h 76 

4 (ArO)3PAuCl (5) DCM 1 h 81[b] 

5 (ArO)3PAuCl (2.5) DCM 4 h 68 

6 (ArO)3PAuCl (1) DCM 16 h 67 

7 (ArO)3PAuCl (0.5) DCM 3 d 65[c] 

8 no AgNTf2; (ArO)3PAuCl (5) DCE 3 h no rxn 

9 no Au(I); AgNTf2 (5) DCE 3 h no rxn 

10 no Au(I), Ag(I); Tf2NH (100) DCE 3 h [d] 

[a] Equimolar amounts of Au(I) and Ag(I) were used unless stated 

otherwise. All reactions with 5 mol% catalyst were performed on a 0.2 

mmol scale. Reactions with 2.5, 1 and 0.5 mol% catalyst were performed 

on a 1 mmol scale. [b] Performed on a 0.3 mmol scale. [c] 5 mol% of Ag(I) 

was used. [d] No 3 or 4 was detected by TLC after 10 min. The same 

decomposition products were detected when 5 mol% Tf2NH was used. 

DCE, 1,2-dichloroethane; DCM, dichloromethane; IPr, 1,3-Bis(2,6-

diisopropylphenyl)imidazol-2-ylidene; Ar, 2-tert-butylphenyl. 

Table 2 summarizes our findings. The carboethoxy group 

was not required and a moderately activated substrate led to 7, 

albeit in a slower reaction and in slightly lower yield. Compounds 

bearing n  vinyl bromine atom (9–11) were formed readily.[17] 

The activating aryl group was not required, and the all-aliphatic 

cases (11–13, 18 and 20–23) all proceed in good yield. 

Cyclization to -trifluoromethyl cyclopentenones 14-16 took 

place in good yield.[18,19] Cyclopentenones 6 and 18–23 deserve 

special mention. Because the loss of a proton from one of the 

carbon atoms in the ring is not possible, in these examples the 

reaction is terminated through proton loss from an exocyclic 

carbon atom. Significantly, all compounds in this series were 

isolated as single diastereomers of adjacent, all-carbon atom 

quaternary centers.[20] The stereochemical assignment in 6, 18, 

19 and 28 (Scheme 2) was made on the basis of the positive 

nOe  between the two cis methyl groups. This has implications 

for the mechanism, which we postulate to follow the pathway 

outlined in Scheme 2.[21] Complexation of the cationic Au(I) 

catalyst to the alkyne function of 5 leads to 24 through 

participation of the acetoxy group. Rearrangement to 

pentadienyl cation 25[22] is followed by cyclization to 26. Proton 

loss from the exocyclic carbon atom results in protiodeauration 

of 27 with formation of dienol acetate 28 and regeneration of the 

catalyst. Whereas enol acetate cleavage was required as a 

separate step in the case of 6 and 18–23, in all other cases 

hydrolytic cleavage of the acetate through adventitious water 

took place during the reaction, and the odor of acetic acid was 

detected during workup. Adding 0.5 g/mmol of powdered 4Å 

molecular sieves to the reaction mixture made it possible to 

isolate the enol acetate in all cases. If a significant amount of 

water is present during the reaction, cyclization is not observed, 

presumably because protiodeauration takes place prematurely. 

For example, in wet dichloromethane dienone 29 was formed as 

the sole product in 70% yield as a single geometrical isomer 

from the corresponding enyne. The Z stereochemistry was 

assigned on the basis of the positive nOe between the C2-H and 

C3-Me.[23] 

Table 2. Examples of the Cyclization. 

 

(a) (ArO)3PAuCl/AgNTf2 (1 mol%), DCM, 12 h. (b) (ArO)3PAuCl/AgNTf2 (5 

mol%), DCM, 1 h. (c) 1. (ArO)3PAuCl/AgNTf2 (1 mol%) 2. K2CO3, EtOH, rt, 3 h, 

yield over 2 steps. Ar, 2-tert-butylphenyl; DCM, dichloromethane; TIPS, 

triisopropylsilyl. 

Enynes 30–32 represent examples that failed to undergo 

cyclization and that were recovered intact from the reaction 
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mixture in each case. In the case of 30 the two trifluoromethyl 

groups presumably inhibit the formation of the cation and no 

reaction was observed after 2 d under the optimized reaction 

conditions. The nucleophilic carbonyl oxygen atom of the 

morpholino amide in 31 probably intercepts the alkyne-gold 

complex more effectively than the acetate, thus inhibiting the 

[1,3]-oxa migration. No reaction was observed after 1 d. 

Aromatic  bonds also appear to be unreactive as evidenced by 

the inertness of 32 that was recovered unchanged after 2 d. 

 

Scheme 2. Postulated Mechanism. 

The rearrangement that leads to the examples of Table 2 is 

a delicately balanced process, as indicated by the results that 

are summarized in Scheme 3. Although the preparation of 7 

(Table 2) shows that the presence of an electron withdrawing 

group is not a strict requirement for the success of the 

cyclization to cyclopentenones bearing a single quaternary 

center, we wished to determine whether a carboethoxy group 

was required for the preparation of the far more challenging 

products that incorporate adjacent quaternary carbon atoms. 

Accordingly, enyne 33 was exposed to the optimized reaction 

conditions. No cyclopentenone was produced but instead 

hydrocarbon 34 was formed in 73% yield as a ca. 2:1 mixture of 

geometrical isomers. We assume that pentadienyl cation 35 was 

formed as an intermediate according to the postulated 

mechanism, and differing from 25 only in having an isobutyl 

group in place of carboethoxy. In the absence of the favorable 

polarization by an electron withdrawing carboethoxy group, 

cation 35 undergoes a competitive aromatic Nazarov cyclization 

through conformer 36. Proton loss followed by protiodeauration 

gives tertiary, benzylic, bis-allylic acetate 37 that loses acetic 

acid to form 34. A comparison of the reactions of 33 and of 5 

highlights the essential role of the carboethoxy group that 

accelerates the desired cyclization to cyclopentenone 6. 

Scheme 3. Anomalous cyclization of 33. 

Conclusions. Of the compounds shown in Table 2, only 

cyclopentenone 7 represents a known structure.[24] The novelty 

of this cyclization is showcased by 

cyclopentenones substituted by a trifluoromethyl group or that 

incorporate a -bromovinyl. Significantly, the method also 

provides access to compounds bearing contiguous, all-carbon 

atom quaternary centers as single diastereomers. The high 

diastereoselectivity of the process is the result of rapid 

isomerization, relative to cyclization, of the intermediate 

pentadienyl carbocation that is bonded to the gold atom, e.g. 25. 

This is likely due to the same effect that we had observed during 

our study of a Pd(0)-catalyzed Nazarov-type cyclization in which 

electron pair-electron pair repulsions between ester carbonyl 

and hydroxyl oxygen atoms strongly favor a single geometrical 

isomer of an alkene.[25,26] In Scheme 2 the repulsive interaction 

between the covalently bonded Au atom and the carboethoxy 

group results in the formation of a single geometrical isomer of 

25, ultimately leading to a single diasteroisomer of 28. The 

preparation of 29 as a single C2-C3 geometrical isomer 

suggests that this effect may be exploited for the synthesis of 

trisubstituted alkenes.[27] The stereochemical outcome in 6 and 

in 18–23 provides experimental evidence that this family of 

Au(I)-catalyzed cyclizations are conrotatory processes. Control 

of the stereochemistry of adjacent, all-carbon atom quaternary 

centers is still a very challenging problem for which this work 

provides an efficient solution. The ability to prepare the enyne 

starting materials easily and in good yield through several 

different routes, as well as the indication that it will be possible to 

develop an effective catalytic asymmetric version of the reaction 

suggest that it will be valuable in synthesis.[28] 

Experimental Section 

Experimental Details. Alkyne 5 (94 mg, 0.30 mmol, 1 equiv.) was 

dissolved in CH2Cl2 (2 mL) and 1 mL of the standard solution of the 
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active gold catalyst was added. The reaction mixture was allowed to stir 

at room temperature overnight. The volatiles were removed in vacuo and 

the product was purified by silica gel column chromatography (3% 

EtOAc/hexanes to 5% EtOAc/hexanes) to provide cyclopentene 28 (74 

mg, 78%) as a pale yellow oil. To enol acetate 28 (60 mg, 0.19 mmol, 1 

equiv.) in EtOH was added K2CO3 (40 mg, 0.29 mmol, 1.5 equiv.) in one 

portion at room temperature. After stirring for 3 h at room temperature, 

the reaction mixture was washed with water and extracted with EtOAc 

(x3). The combined organic extracts were washed with water, brine, dried 

over Na2SO4, and concenrated in vacuo. The product was purified by 

silica gel column chromatography (10% EtOAc/hexanes) to provide 

cyclopentenone 6 (50 mg, 96%; 75% overall) as a pale yellow oil. 1H 

NMR (300 MHz, CDCl3) 0.99 (t, J = 7.2 Hz, 3H), 1.35 (s, 3H), 1.74 (s, 

3H), 2.27 (d, J = 18.1 Hz, 1H), 3.07 (d, J = 18.1 Hz, 1H), 3.78 (dq, J = 7.2, 

0.8 Hz, 2H), 5.35 (s, 1H), 6.39 (s, 1H), 7.12 – 7.36 (m, 5H); 13C NMR (75 

MHz, CDCl3)  13.6, 20.3, 23.3, 46.8, 52.5, 53.5, 60.8, 119.9, 127.0, 

127.2, 128.0, 143.6, 152.7, 174.2, 204.1; IR (neat, cm–1) 3025, 2979, 

1723, 1641, 1450, 1387, 1289, 1213, 1028; HRMS (ESI+) m/z calculated 

for C17H21O3 [M+H]+: 273.1491; found: 273.1619. 
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The cationic Au(I) catalyzed 

cyclization of substituted enynes 

leads to cyclopentenones through a 

cascade of reactions. The highly 

diastereoselective synthesis of 

cyclopentenones bearing adjacent, 

all-carbon atom quaternary centers is 

reported. 
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