Cleavage of Phosphate Esters by a Cyclodextrin Dimer Catalyst That Binds the Substrates Together with La³⁺ and Hydrogen Peroxide

Ronald Breslow* and Biliang Zhang

Department of Chemistry, Columbia University New York, New York 10027

Received May 2, 1994

We have reported the synthesis and properties of cyclodextrin dimer 1, whose linker can bind metal ions.¹ It uses them to catalyze the hydrolysis of esters that bind into both cavities and stretch along the linker group.¹ We⁴ and others⁵⁻⁷ have described the

hydrolysis of phosphodiesters catalyzed by lanthanide ions, and the hydrolysis of bis(p-nitrophenyl) phosphate (2)^{8,9} and of RNA¹⁰⁻¹² by bipyridine complexes has been reported. Rate accelerations were generally 103 or less. Meares has described13 the metal ion catalyzed hydrolysis of a peptide bond in which H_2O_2 was more effective than H_2O_2 , and such hydrolytic cleavage by hydrogen peroxide has been described recently for DNA.14,15 Combining these approaches, Takasaki and Chin (TC) have reported¹⁶ the remarkable catalyzed oxidative hydrolysis of bis-(p-nitrophenyl) phosphate (2) to form 2 mol of p-nitrophenol and inorganic phosphate using La^{3+} and H_2O_2 . From the pH vs rate profile they suggested that there were two La³⁺ and two H_2O_2 in the transition state (with a related mechanism for a DNA cleavage case¹⁷). The acceleration at pH 7.0 exceeded 10⁸

(1) Breslow, R.; Zhang, B. J. Am. Chem. Soc. 1992, 114, 5882-5883. We described the synthesis and the mass spectrum of 1; the NMR spectra (1H and ¹³C) are also definitive. For instance, ¹H NMR (400 MHz, DMSO-d₆): δ 3.10-4.20 (m, H₂, H₃, H₄, H₅, and H₆ on cyclodextrin), 4.50 (m, 12H, primary hydroxyl), 4.82 (m, 14H, anomeric protons), 5.75 (m, 28H, secondary hydroxyl), 7.93 (dd, J = 8.4 and 2.4 Hz, 2H, pyridine), 8.23 (d, J = 8.4 Hz, 2H, pyridine) and 8.58 (d, J = 2.0 Hz, 2H, pyridine). We saw the hydrolysis of a p-nitrophenyl ester of adamantanepropiolic acid catalyzed by the Cu²⁺ complex of 1 with a rate acceleration of 220000 fold. In more recent work we see that the Zn^{2+} complex of 1 catalyzes the hydrolysis of that ester in the presence of pyridine-2-carboxaldoxime with a rate acceleration of 1.7×10^{6} over the background rate at pH 7.0, apparently using the catalysis by metal complexes of this oxime that we first reported many years ago."

(2) Breslow, R.; Chipman, D. J. Am. Chem. Soc. 1965, 87, 4195-4196.

- (3) Breslow, R.; Overman, L. E. J. Am. Chem. Soc. 1970, 92, 1075-1077 (4) Breslow, R; Huang, D.-L. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 4080
- (5) Morrow, J. R.; Buttrey, L. A.; Shelton, V. M.; Berback, K. A. J. Am. Chem. Soc. 1992, 114, 1903-1905.
- (6) Morrow, J. R.; Buttrey, L. A.; Berback, K. A. Inorg. Chem. 1992, 31, 16-20.
- (7) Komiyama, M.; Matsumara, K.; Matsumoto, Y. J. Chem. Soc., Chem. Commun. 1992, 640-641.
- (8) Morrow, J. R.; Trogler, W. C. Inorg. Chem. 1988, 27, 3387-3394.
 (9) Morrow, J. R.; Trogler, W. C. Inorg. Chem. 1992, 31, 1544.
 (10) Stern, M. K.; Bashkin, J. K.; Sall, E. D. J. Am. Chem. Soc. 1990, 112, 5357-5359
- (11) Modak, A.S.; Gard, J.K.; Merriman, M.C.; Winkeler, K.A.; Bashkin, J. K.; Stern, M. K. J. Am. Chem. Soc. 1991, 113, 283-291.
- (12) Bashkin, J. K.; Jenkins, L. A. J. Chem. Soc., Dalton Trans. 1993, 3631
- (13) Rana, T. M.; Meares, C. F. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 10578-10582
- (14) Kimball, A. S.; Lee, J.; Jayaram, M.; Tullius, T. D. Biochemistry 1993, 32, 4698–4701. (15) Schnaith, L. M. T.; Hanson, R. S.; Que, L., Jr. Proc. Natl. Acad. Sci.
- U.S.A. 1994, 91, 569-73.
- (16) Takasaki, B. K.; Chin, J. J. Am. Chem. Soc. 1993, 115, 9337-9338. (17) Cf. also: Takasaki, B. K.; Chin, J. J. Am. Chem. Soc. 1994, 116, 1121-1122

Figure 1. Dependence of k_{obs} (s⁻¹) on [La³⁺] (M) for hydrolysis of BNPP (2) (0.06 mM) by hydrogen peroxide and La(III) in HEPES buffer (pH 7.0) at 25 °C, as a log/log plot.

Figure 2. Dependence of k_{obs} (s⁻¹) on [La³⁺] (M) for hydrolysis of BNPP (2) (0.06 mM) by dimer 1 (0.2 mM), hydrogen peroxide (48 mM), and La(III) in HEPES buffer (pH 7.0) at 25 °C, as a log/log plot.

relative to buffer alone. It seemed that the extraordinary rate effect was related to the operation of two complexed metal ions.

Since La³⁺ can bind to bipyridyl, we have investigated this system with our catalyst 1. We see that there is indeed catalysis of the hydrolysis of 2 by the La^{3+} complex of 1 in the presence of H_2O_2 , but with a difference in kinetic behavior from that in the absence of 1. In particular, we find that the very large rate acceleration can be achieved with a catalyst that binds the substrate and uses only one La^{3+} and one H_2O_2 .

We confirm the suggestion by TC that their reaction involves 2 La³⁺. As Figure 1 shows, at 25 °C and pH 7.0 (HEPES buffer) with 0.06 mM 2 and 48 mM H_2O_2 the log k vs log [La³⁺] is a good straight line with a slope of 2.2, from 10^{-4} M to $10^{-2.4}$ M La^{3+} , where some kinetic saturation may be appearing. At 1.0 mM La³⁺ the 48 mM H₂O₂ provides an additional rate factor of 5300 relative to water. The results are essentially the same in the presence of 0.2 mM 2,2'-bipyridyl.

However, under the same conditions in the presence of 0.2 mM 1 the slope of such a log/log plot (Figure 2) is 1.03. This cannot reflect saturation binding of one La^{3+} to 1, with only a second La³⁺ detected kinetically,¹⁸ since (1) the linear plot extends well below the 1:1 $La^{3+}/1$ ratio, and (2) binding of La^{3+} is not strong enough for such saturation at low concentrations (vide

7893

⁽¹⁸⁾ The saturation kinetic data with substrate 3 show that binding of La³⁺ to 1 is not complete below [La³⁺] of 1 mM, and if it were complete a second free La³⁺ would not be available when $[La^{3+}] < 0.2 \text{ mM}$, the concentration of 1. However, these arguments do not exclude the possibility that La³⁺ is strongly bound to the *complex* of 1 and 2 (but not 1 and 3). Additional evidence for our mechanism is our finding that the reaction with 1 and 2 has a kinetic order of 1.13 ± 0.06 in H₂O₂, while the reaction without 1 has a kinetic order of 1.75 ± 0.18 in H₂O₂.

Scheme 1

infra). Instead, we have a mechanism that involves only one La³⁺ and one H₂O₂ in the transition state (we see an H₂O₂ kinetic order of 1.13 \pm 0.06), presumably that of Scheme 1. Under these conditions, with 1.0 mM La³⁺, the 48 mM H₂O₂ provides an additional rate factor of 400 relative to water.

Consistent with the difference in kinetic order, when $[La^{3+}] < 0.5$ mM the process with dimer 1 present is faster than without it, the rate advantage increasing as $[La^{3+}]$ is lowered (Table 1.). With $[La^{3+}] = 0.1$ mM, for example, the rate acceleration is 9.7 $\times 10^4$ in the absence of 1 and 300 $\times 10^4$ in its presence at 0.2 mM. At $[La^{3+}] > 1.0$ mM the dimer gives no rate advantage and can become a weak inhibitor (Table 1), presumably by binding substrate, since the process second order in La³⁺ takes over. Just as TC report,¹⁶ we see (³¹P NMR) the formation of some monoester partway through the reactions, which eventually disappears to form only inorganic phosphate.

With phosphate triester 3,¹⁹ the situation is different. Now there is almost no observable catalysis by La³⁺ and H₂O₂ alone (Table 1), since the neutral substrate does not bind to the metal ion. The result is that the phosphate diester 2—which is ca. 10⁵ slower in simple base hydrolysis than is the triester 3—becomes 10³ faster than 2 with 1.0 mM La³⁺ and 48 mM H₂O₂. However, in the presence of dimer 1 we see catalysis of the hydrolysis of 3 (Table 1). The rate increases linearly with [La³⁺] until it levels off to a plateau at [La³⁺] > 1.0 mM, apparently representing saturation binding of La³⁺ to 1 only at this rather high La³⁺ concentration. The product in this case is methyl phosphate (³¹P

Table 1. Some Pseudo-First-Order Rate Constants for Hydrolysis of Phosphate Esters in pH 7.0 Aqueous Solution at 25 °C^a

[La ³⁺] (mM)	HOOH (mM)	dimer 1 (mM)	$k_{obs}{}^{b}$ (s ⁻¹)	$k_{\rm rel} \ (k_{\rm obs}/k_{\rm uncat})$
Bis(p-nitrophenyl) Phosphate (2)				
			1.1 × 10 ⁻¹¹	1
0.1	48		(1.07 ± 0.45) × 10 ⁻⁶	9.73 × 10 ⁴
0.1	48	0.2	$(3.37 \pm 0.24) \times 10^{-5}$	3.06×10^{6}
1.0	48		$(9.22 \pm 0.15) \times 10^{-4}$	8.38×10^{7}
1.0	48	0.2	$(4.50 \pm 0.36) \times 10^{-4}$	4.09×10^{7}
2.0	48		$(3.35 \pm 0.12) \times 10^{-3}$	3.05×10^{8}
2.0	48	0.2	$(1.76 \pm 0.45) \times 10^{-3}$	1.60×10^{8}
Methyl Bis(p-nitrophenyl) Phosphate (3)				
	•		$(0.49 \pm 0.18) \times 10^{-6}$	1.0
1.0			$(0.53 \pm 0.11) \times 10^{-6}$	1.1
1.0	48		$(1.10 \pm 0.52) \times 10^{-6}$	2.2
1.0		0.2	$(0.65 \pm 0.19) \times 10^{-6}$	1.3
1.0	48	0.2	$(1.88 \pm 0.22) \times 10^{-4}$	384.0

^a Reactions were carried out in 50 mM HEPES buffer (pH 7.0 \pm 0.1) and 0.06 mM bis(*p*-nitrophenyl) phosphate (2) at 25.0 \pm 0.2 °C, monitored by UV absorbance at 400 nm. ^b k_{obs} values were calculated by a computer program ("kore") for fast reactions, product \geq 95%, the correlation coefficient \geq 0.9999. For slow reactions k_{obs} values were obtained by calculating the initial rate. ^c Reference 17 and unpublished confirmation of the reported rate by Dr. W. Chapman in this laboratory.

NMR, quartet at δ 1.20) along with 2 mol of *p*-nitrophenol. From the data in Table 1, the H₂O₂ is adding a factor of 300 over water in this case.

It is clear that the remarkable catalytic acceleration is that for the hydrolysis of anionic substrate 2 by the La^{3+}/H_2O_2 combination reported by TC.¹⁶ However, at low concentrations of La^{3+} a quadrimolecular complex is formed of 1, La^{3+} , H_2O_2 , and substrate 2 or 3. In this complex, molecular recognition and binding of the substrate combine with a highly effective catalytic group to produce an enzyme mimic with very interesting potential.

Acknowledgment. Support of this work by the National Institutes of Health and the Office of Naval Research are gratefully acknowledged.

⁽¹⁹⁾ Moffatt, J. G.; Khorana, H. G. J. Am. Chem. Soc. 1957, 79, 3741. CI-MS: $(M + 1)^+ = 355$. ¹H NMR as expected with CH₃ doublet from ³¹P splitting.