44 Short Papers SYNTHESIS

1-Aminoalkanephosphonates. Part II. A Facile Conversion of 1-Aminoalkanephosphonic Acids into *O,O*-Diethyl 1-Aminoalkanephosphonates.[†]

Zbigniew H. Kudzin,** Piotr Łyżwa, b Jerzy Łuczak, Grzegorz Andrijewskic

^a Department of Organic Chemistry, University of Łódź, Narutowicza 68, Łódź. 90-136, Poland

^b Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 116, Łódź. 90–363, Poland

° Department of Inorganic and General Chemistry, University of Łódź, Narutowicza 68, Łodź. 90-136, Poland

Fax + 48(42)786583

Received 15 May 1996; revised 23 July 1996

Dedicated to Professor Harry R. Hudson on the occasion of his retirement from the School of Applied Chemistry, University of North London.

1-(N-Trifluoroacetylamino)alkanephosphonate O,O-diethyl esters **2C**, obtained from parent 1-aminoalkanephosphonic acids **1**, have been selectively deprotected on the amino function affording O,O-diethyl 1-aminoalkanephosphonates **3**. Protonation constants of all amino esters **3** synthesized have been determined by potentiometric titration.

1-Aminoalkanephosphonates 3 have received considerable attention since they are key substrates in the synthesis of phosphonopeptides I^1 and also due to their biological activity.^{2,3}

The compounds 3, however, are obtained by a limited number of mostly specific and rather laborious, synthetic methods.^{1,4} Thus, 1-aminoalkanephosphonates 3 have been prepared by addition of diethyl⁵ or dimethyl⁶ phosphites to the specific Schiff bases and subsequent deprotection of the amino function in the *N*-substituted 1-aminoalkanephosphonates formed. Amino esters 3 have also been obtained via reduction of oximes⁷⁻¹⁰ or hydrazones¹¹ of 1-oxoalkanephosphonates.

O,O-Diphenyl 1-aminoalkanephosphonates have been synthesized by hydrolytic degradation of corresponding 1-(N-benzyloxycarbonylamino)alkanephosphonates. The subsequent transesterification of the latter compounds afforded various O,O-dialkyl 1-aminoalkanephosphonates. The group of methods of increasing synthetic importance is based on the esterification of free 1-aminoalkanephosphonic acids, 14,17 since the latter compounds are now easily accessible. Increasing synthesis lead to O,O-dialkyl 1-N-acylamino)alkanephosphonates 2, which have been used as substrates in the selective (also enantioselective) N-acyl hydrolysis. 12,14-16

Recently we have reported on the highly efficient conversion of 1-aminoalkanephosphonic acids 1 into corresponding 1-(N-acylamino)alkanephosphonates 2 by means of anhydride-orthoester systems.¹⁷ These compounds proved to be easy to isolate by distillation and/or crystallization and stable while stored at room temperature for a long time.

Among them, the derivatives **2C** containing the *N*-trifluoroacetylamino (*N*-TFA-amino) group are particularly interesting due to their volatility and liability of the *N*-TFA linkage (compounds **2A** and **2B** present *N*-formylamino and *N*-acetylamino derivatives).¹⁷

In this communication we would like to report on the new one-pot synthesis of 1-aminoalkanephosphonates 3 based on the conversion of the amino acids 1 into 1-(N-trifluoroacetylamino)alkanephosphonates 2C, followed by the amino group deprotection.

$$R-CH-P(OH)_{2} \xrightarrow{TFAA-HC(OEt)_{3}} R-CH-P(OEt)_{2}$$

$$NH_{2} \qquad NH-CCF_{3}$$

$$1a-f \qquad 2Ca-f$$

$$\xrightarrow{NaBH_{4}/ROH} R-CH-P(OEt)_{2} \qquad (eq. 1)$$

$$NH_{2} \qquad 3a-f$$

The deprotection of the 1-(N-TFA-amino)alkanephosphonates **2C** has been conveniently achieved in alcoholic solution of sodium borohydride, (this reagent has also been applied in peptide chemistry^{18,19}), affording with high yields the title *O,O*-diethyl 1-aminoalkanephosphonates **3**, isolated in the form of oxalates **4**. Conversion of stable oxalates **4** into free amino esters **3** was found to be nearly quantitative.

An attempt to apply an alternative procedure of deprotection using basic conditions²⁰ (EtOH/EtONa) has been unsuccessful due to the formation of stable amidate salts 5. The formation of 5a has been indicated in the ³¹P NMR spectra [increase of chemical shifts from $\delta = 25.0$ for 2Ca, (EtOH) to $\delta = 28$ for 5a (EtOH/EtONa)] and also in ¹H NMR experiments (disappearance of the NH-TFA proton of 2Ca after treatment with potassium *t*-butanolate). This formed salt 5a remained unchanged for a week at ambient temperature, and regenerated quantitatively to the parent amide 2Ca after treatment with acetic acid (eq. 2).

The yields and physical properties of synthesized O,O-diethyl 1-aminoalkanephosphonates 3 and their oxalates 4 are given in Table 1 and 2, respectively. The results of protonation investigations of 3 are summarized in Table 3.

Table 1. Conversion of 1-Aminoalkanephosphonic Acids 1 into O,O-Diethyl 1-Aminoalkanephosphonates 3

Compound 3/4		Yields [%] ^a		mp of 4		Molecular equivalent of 4 ^b			DCIMS of 3 ^d		
Nr	R	A (3)	B (4)	Found	Reported	Found	Calculated	Formula of 4	M + 1	Formula of 3	
a	Me	97	85	120-122	101-10310	292.0	289.2	$3a \times C_2H_2O_4 \times H_2O^c$	182	C ₆ H ₁₆ NPO ₃	
b	Pr	75	70	127-129		312.0	317.2	$3\mathbf{b} \times \mathbf{C}_{2}^{2}\mathbf{H}_{2}^{2}\mathbf{O}_{4}^{2} \times \mathbf{H}_{2}^{2}\mathbf{O}^{c}$	210	$C_8H_{20}NPO_3$	
c	i-Pr	88	70	127-129	$121 - 123^{10}$	303.9	299.2	$3c \times C_2^2H_2^2O_4$	210	$C_8H_{20}NPO_3$	
d	Bu	84	75	138-139		331.3	331.3	$3d \times C_2H_2O_4 \times H_2O^c$	224	$C_{0}H_{22}NPO_{3}$	
e	Bz	86	76	129-132	$131 - 132^{10}$	375.4	383.2	$3e \times C_2H_2O_4 \times 2H_2O^c$	258	$C_{12}H_{20}NPO_3$	
f	Ph	85	70	165-167		334.7	333.2	$3\mathbf{f} \times \mathbf{C}_2^2 \mathbf{H}_2^2 \mathbf{O}_4^{c}$	244	$C_{11}^{12}H_{18}^{20}NPO_3$	

Yields: A - NMR yields of 3, B - isolation in the form of oxalates 4 yields.

Table 2. Spectroscopic Properties of 1-Aminoalkanephosphonates 3

Compound	31 P NMR δ , J (Hz)		¹ H NMR ^{a, c} δ, J (Hz)						
3/4	3 ^a	4 ^b	3a(c)						
a	30.1	22.6	$1.15-1.30$ (m, 9H, $2CH_3CH_2O$, CH_3CH); $1.35-1.55$ (br s, 2H, NH ₂); $2.88-3.08$ (m, 1H, CH ₃ CH); 4.02 (gd, $J = 0.76$, 7.1, 4H, $2CH_3CH_2O$).						
a°			1.41 (td, $J = 1.03$, 6.10, 6H, 2C H_3 CH ₂ O); 1.61 (dd, $J = 7.0$, 16.8, 3H, C H_3 CH); 3.70–4.0 (br s, 1H, CHP); 4.30 (qd, $J = 1.03$, 7.00, 4H, 2C H_3 CH ₂ O); 7.35–7.70 (br s, 3H, NH ₃).						
b	30.0	22.3	0.90 (t, $J = 6.9$, 3H, $CH_3(CH_2)_2$); 1.30 (t, $J = 7.08$, 6H, $2CH_3CH_2O$); 1.32–1.95 (m, 6H, NH ₂ + CH ₂ (CH ₂) ₃); 2.82–3.02 (m, 1H, CHP); 4.11 (qd, $J = 0.80$, 7.18, 4H, 2CH ₃ CH ₂ O).						
c	29.1	21.9	$0.99(t, J = 6.98, 6H, (CH_3)_2CH); 1.29(t, J = 7.06, 6H, 2CH_3CH_2O); 1.46-1.60(br s, 2H, NH_2); 1.96-2.20$ (m, 1H, 'CH ₃) ₂ CH); 2.80 (dd, $J = 3.43, 14.2, 1H, PCH$); 4.09 (qd, $J = 0.80, 7.18, 4H, 2CH_3CH_2O$).						
d	29.9	22.4	0.89 (t, $J = 6.80$, 3 H, $CH_3(CH_2)_3$); 1.31 (t, $J = 7.1$, 6 H, $2CH_3CH_2O$); 1.40 – 2.00 (m, 8 H, $CH_3(CH_2)_3 + NH_2$); 2.86 – 2.98 (m, 1 H, CHP); 4.11 (qd, $J = 0.87$, $J = 7.18$, 4 H, $2CH_3CH_2O$).						
e	28.4	21.8	1.31 (td, $J = 0.80$, $J = 6.30$, 6H, $2CH_3CH_2O$); 1.40–1.70 (br s, 2H, NH ₂); 2.35–2.75 (m, 1H, CHP); 3.10–3.85 (m, 2H, PhC H_2); 4.14 (qd, $J = 1.50$, 6.90, 4H, 2CH ₂ CH ₂ O); 7.10–7.40 (m, 5H ₂).						
f	25.4	21.4	1.21 (td, $J = 7.07$, 19.5, 6H, 2CH ₃ CH ₂ O); 1.89 (s, 2H, NH ₂); 3.78–4.10 (m, 4H, 2CH ₃ CH ₂ O); 4.24 (d, $J = 17.2$, 1H, CHP); 7.20–7.50 (m, 5H _{ar}).						

Table 3. Comparison of Protonation Constants of 1-Aminoalkanephosphonic Acids 1, O,O-Diethyl 1-Aminoalkanephosphonates 3, 1-Aminoalkanoic Acids and their Ethyl Esters.

R	1-aminoa	lkanephos	phonates		1-amino	3		
	O,O-diethyl ester pK	amino acid pK ₁ pK ₂		pK_3	O-ethyl ester pK ²²	amino a pK_1^{23}	cid pK ₂ ²³	
		Prel	PIL2			P1	P112	
Me	6.40		5.55	10.11^{26}	7.80	2.34	9.69	
-		0.47	5.58	10.20^{24}				
Et					7.53			
Pr	6.43		5.67	10.29^{24}				
<i>i</i> -Pr	6.28	1.23	5.68	10.46^{26}				
		0.62	5.80	10.35^{24}				
Bu	6.45	0.68	5.70	10.29^{24}				
<i>i</i> -Bu					7.63	2.39	9.60	
PhCH ₂	5.95		5.43	9.62^{26}				
Ph	5.70							

Molecular equivalent derived from potentiometric titration (first inflection point).

The microanalyses were in fair agreement with the calculated values (N \pm 0.10, P \pm 0.29).

d Intensity of 100%.

<sup>Solutions of 3 in CDCl₃.
Solutions of 4 in CD₃OD.
Solutions of 3 in CD₃Cl – TFA (20%).</sup>

46 Short Papers SYNTHESIS

$$Me - CH - P(OEt)_2 \xrightarrow{ROTM^{+}/ROH} Me - CH - P(OEt)_2$$

$$NHCCF_3 \qquad N - CCF_3$$

$$2Ca \qquad 5a$$

$$ACOH Me - CH - P(OEt)_2$$

$$NHCCF_3 \qquad (eq. 2)$$

$$NHCCF_3 \qquad (eq. 2)$$

1-Aminoalkanephosphonic acids 1 have been prepared according to ref. 21. Other reagents were purchased from Aldrich. All compounds obtained were characterized by DCIMS, ¹³P NMR and ¹H NMR. All melting points (Boetius apparatus) are uncorrected. ³¹P NMR spectra were recorded on a Bruker AC 200 spectrometer operating at 81.01 MHz. Positive chemical shift values are reported for compounds absorbing at lower fields than phosphoric acid. ¹H NMR spectra were recorded at 200 MHz. The direct isobutane chemical ionization mass spectra (DCIMS) were obtained on a Finnigan MAT 95 spectrometer.

Potentiometric Measurements:

The acid protonation constants of the O,O-diethyl 1-aminoalkane-phosphonates were determined by pH-metric titration of their oxalate salts 4 by means of an automatic titrator EMU connected to an IBM PC computer (Politechnika Wrocławska, Poland), fitted with a combined glass-calomel electrode TRIZMA E 5259 (Sigma). The electrode system was calibrated using standard buffer solutions (2 < pH < 10), so that the pH-meter readings could be converted into hydrogen-ion concentrations. In all cases the temperature was 20.0 ± 0.5 °C. The exact concentrations of solutions of 4 were determined by titration; the concentrations (in samples 5 mL) were approximately 2×10^{-3} mol dm⁻³. The ionic strength was adjusted to 0.1 mol dm⁻³ with KNO₃. The titrations (100 to 200 measurements) with increment of 0.001 mL were performed with a KOH solution of known concentration (0.1 mol dm⁻³).

1-Aminoalkanephosphonates 3; General Procedure:

The 1-aminoalkanephosphonic acid 1 (1 mmol) was dissolved in a TFA (0.1 mL) – TFAA (0.6 mL) mixture and the resulting solution was heated with stirring at 45–55 °C for 15 min. The triethyl orthoformate (5 mL) was carefully added, the resulting mixture was heated at 100–110 °C for 2 h, and followed by evaporation (at 50 °C at 20 Torr and at 0.1 Torr) giving crude derivative 2 °C. This compound was dissolved in EtOH (10 mL), followed by addition of NaBH₄ (6 mmol, 228 mg). The resulting mixture was stirred for 1 h at r.t. and for 0.5 h at reflux temperature, and evaporated under reduced pressure. The residue so formed, was treated with 1M aq NaHCO₃ (10 mL) and extracted with CHCl₃. The combined organic extracts were dried by vigorous stirring over MgSO₄. The desiccant was filtered, and the filtrate was concentrated under reduced pres-

sure to afford crude 1-aminoalkanephosphonate 3 which was dissolved in $\rm Et_2O$ (1.5 mL) and precipitated in the form of oxalate 4 after treatment with oxalic acid (5 ml of 1M ethereal solution of oxalic acid). This mixture was allowed to stand for 2 h in a refrigerator and the product 4 was collected by filtration. The conversion of oxalates 4 into 1-aminoalkanephosphonates 3 was performed using described above extractive system based on 1M NaHCO₃ and CHCl₃.

- [†] Presented at the 5th Symposium of ECOPHOS, London, April 1996.
- (1) Kafarski, P.; Mastalerz, P. Beitr. Wirkstofforschung 1984, 24, 1.
- (2) Kafarski, P.; Lejczak, B.; Mastalerz, P. Beitr. Wirkstofforschung 1985, 25, 1.
- (3) Kafarski, P.; Lejczak, B. Phosphorus Sulfur Silicon Relat. Elem. 1991, 63, 193.
- (4) Kukhar, V.P.; Solodenko, V.A. Usp. Khim. 1987, 56, 1504.
- (5) Łukszo, J.; Tyka, R. Synthesis 1977, 239.
- (6) Soroka, M.; Zygmunt, J. Synthesis 1982, 370.
- (7) Berlin, K.D.; Roy, N.K.; Claunch, R.T.; Bude, D. J. Amer. Chem. Soc. 1968, 90, 4494.
- (8) Kowalik, J.; Kupczyk-Subotkowska, L.; Mastalerz, P. Synthesis 1981, 57.
- (9) Green, C.; Patel, G.; Elgendy, E.; Baran, J.; Cleason, G.; Kakkim, V. Tetrahedron Lett. 1993, 34, 6917.
- (10) Ryglowski, A.; Kafarski, P. Synth. Commun. 1994, 2725.
- (11) Kudzin, Z.H.; Kotynski, A. Synthesis 1990, 1028.
- (12) Oleksyszyn, J.; Subotkowska, L.; Mastalerz, P. Synthesis 1979, 985
- (13) Szewczyk, J.; Lejczak, B.; Kafarski, P. Synthesis 1982, 409.
- (14) Kafarski, P.; Lejczak, B. Synthesis 1988, 307.
- (15) Solodenko, V.; Kasheva, T.N.; Kukhar, V.P.; Kozlova, E.V.; Mironenko, D.A.; Svedas, V.K. Tetrahedron 1991, 47, 3989.
- (16) Solodenko, V.; Belik, M. Y.; Galusko, S. V.; Kukhar, V. K. P.; Kozlova, E. V.; Mironenko, D. A.; Svedas, V. K. Tetrahedron: Asymmetry 1993 4, 1965.
- (17) Kudzin, Z. H.; Łuczak, J. Synthesis 1995, 509. (Part I).
- (18) Weygand, F.; Frauendorfer, E. Chem. Ber. 1970, 103, 2437.
- (19) Wunsch, E.; In Methoden der Organischen Chemie, (Houben-Weyl): Miller, E., Ed.; Thieme: Stuttgart, 4th ed., 1974; p 171.
- (20) Kocienski, P.J. In *Protecting Groups*, Enders, D.; Noyori, R.; Trost, B.M., Eds.; Thieme: Stuttgart, 1994; p 189.
- (21) Kudzin, Z.H.; Stec, W.J. Synthesis 1978, 469.
- (22) Edsall, J.T.; Blanchard, M.H. J. Amer. Chem. Soc. 1933, 55,
- (23) Greenstein, J.P.; Winitz, M. Chemistry of the amino acids, Wiley: New York, 1961, Vol. 1; p 498.
- (24) Wozniak, M.; Nowogrocki, G. Talanta, 1979, 26, 1165.
- (25) Berry, J.P.; Isbell, J.P., Hunt, G.E. J. Org. Chem. 1972, 37, 4396.
- (26) Kiss, T.; Balla, J.; Nagy, G.; Kozlowski, H.; Kowalik, J. Inorganica Acta, 1987, 138, 25.