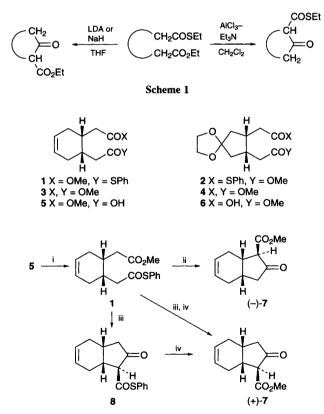
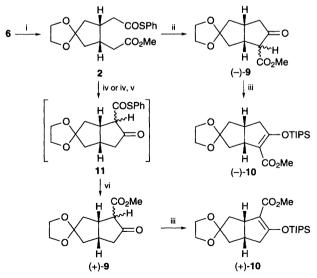
A new enantiodivergent procedure utilising the chemoselective Dieckmann-type cyclisation of chiral mono-thiol diesters


Shigeki Sano, Hideki Ushirogochi, Kenji Morimoto, Satoshi Tamai and Yoshimitsu Nagao*

Faculty of Pharmaceutical Sciences, The University of Tokushima, Sho-machi, Tokushima 770, Japan

The chiral mono-thiol diester, 1 or 2, is converted to the corresponding enantiomeric cyclised products, (-)-7 and (+)-7 or (-)-9 and (+)-9, depending on whether LDA or AlCl₃-Et₃N is used.

Recently we demonstrated that the Dieckmann-type cyclisation reactions of various dicarboxylic acid derivatives were readily promoted by using Lewis acids such as $AlCl_3$, $MgBr_2$, $MgCl_2$ and $Sn(OSO_2CF_3)_2$ in the presence of Et₃N or *N*-ethylpiperidine.¹ Among these Dieckmann-type reactions, the cyclisation mode of mono-thiol diesters employing $AlCl_3$ -Et₃N proved to be different from that of the same compounds employing LDA or sodium hydride as shown in Scheme 1.¹ Thus, we anticipated new enantiodivergent procedures based on the chemoselective cyclisation mode of chiral mono-thiol diesters **1** and **2** under different Dieckmann-type reaction conditions as shown in Schemes 2 and 3.


Known chiral monoesters 5² (98% ee†) and 6² (94% ee†), obtained by enzymatic hydrolyses of diesters 3 and 4 with porcine pancreatic lipase or porcine liver esterase,² were treated with thiophenol (1.1 equiv.) in the presence of *N*,*N*'-carbonyldimidazole (CDI) (1.1 equiv.) in THF to give the corresponding mono-thiol diesters 1 {77% yield, colourless oil, $[\alpha]_D^{21}$ -4.5 (c 0.69, CHCl₃)³ and 2 {90% yield, colourless

Scheme 2 Reagents and conditions: i, CDI, PhSH, THF; ii, LDA, HMPA, THF; iii, AlCl₃, Et₃N, CH₂Cl₂; iv, CF₃CO₂Ag, MeOH–THF (1:1)

needles (CH₂Cl₂-hexane), mp 64.5-65.5 °C, $[\alpha]_D^{23}$ +31.9 (c 0.99, CHCl₃], respectively. Treatment of 1 with LDA (2.5 equiv.) in the presence of HMPA (1 equiv.) in THF at -55 °C gave the known cyclised product (-)-7 {68% yield, 96% ee,‡ $[\alpha]_D^{27}$ -154.7 (c 1.13, CHCl₃); recrystallised from Et₂Ohexane, colourless needles, mp 59-60.5 °C, $[\alpha]_D^{21}$ -161.8 $(c 0.22, CHCl_3)$.³ On the other hand, the same mono-thiol diester 1 was treated with AlCl₃ (2.4 equiv.) in the presence of Et₃N (2.4 equiv.) in CH₂Cl₂ at 0 °C to afford cyclic β -keto thioester 8 as a colourless oil in 61% yield. Compound 8 was readily converted to the methyl ester (+)-7 {97% ee, $\ddagger [\alpha]_D^{22}$ +155.7 (c 1.04, CHCl₃); recrystallised from Et₂O-hexane, colourless needles, mp 59.5-60 °C, $[\alpha]_D^{23}$ +158.7 (c 1.06, CHCl₃)} in a quantitative yield by transesterification with CF₃CO₂Ag (2 equiv.) in MeOH-THF (1:1) at room temperature.⁴ Similar treatment of 1 in one-pot without isolation of 8 gave (+)-7 {89% ee, $\ddagger [\alpha]_D^{24} + 142.9$ (c 1.20, CHCl₃); recrystallised from Et₂O-hexane, colourless needles. mp 59–60.5 °C, $[\alpha]_D^{22}$ +165.5 (c 1.05, CHCl₃)} in 72% yield from 1.

Subsequently, other enantiodivergent Dieckmann-type cyclisation reactions were attempted as shown in Scheme 3. The reaction of mono-thiol diester **2** with LDA (2.5 equiv.) and HMPA (1 equiv.) in THF at -50 °C furnished cyclic β -keto ester (-)-9 {colourless oil, $[\alpha]_D^{22} - 21.2$ ($c \ 1.05$, CHCl₃)} as a mixture of the keto and enol forms in 44% yield. On treatment with AlCl₃ (3.6 equiv.) and Et₃N (3.6 equiv.) in CH₂Cl₂ followed by transesterification with K₂CO₃ (2 equiv.) in MeOH–CH₂Cl₂ (1:1), **2** was converted to (+)-9 {colourless oil, $[\alpha]_D^{23} + 23.6$ ($c \ 0.48$, CHCl₃)} as a mixture of the keto and enol forms in 43% yield. In order to determine the enantiomeric purity of both compounds (-)-9 and (+)-9, which were treated with triisopropylsilyl (TIPS) chloride (1.5 equiv.) in the

Scheme 3 Reagents and conditions: i, CDI, PhSH, THF; ii, LDA, HMPA, THF; iii, KH, TIPSCl, THF; iv, AlCl₃, Et₃N, CH₂Cl₂; v, gel filtration (Sephadex LH-20, THF); vi, K₂CO₃, MeOH–CH₂Cl₂ (1:1)

Chem. Commun., 1996 1775

presence of excess KH in THF to give the corresponding TIPS enolates (-)-10 {84% yield, 98% ee,§ colourless oil, $[\alpha]_D^{25}$ -19.8 (c 1.02, CHCl₃)} and (+)-10 {79% yield, 83% ee,§ colourless oil, $[\alpha]_D^{22}$ +16.6 (c 1.12, CHCl₃)}, respectively. Although pure β -keto thioester 11 could not be isolated because of its instability on silica gel, similar treatment (transesterification followed by TIPS-enolisation) of the residue, obtained by gel filtration of crude 11 through a Sephadex LH-20 column, afforded higher enantiomeric excess of (+)-10 {90% ee,§ $[\alpha]_D^{24}$ +19.2 (c 1.01, CHCl₃)} in 32% yield from 2. Optically active compounds 7, 9 and 10 should be useful for asymmetric syntheses of prostacarbacyclins,³ biologically active sesquiterpenoids⁵ and other natural products.⁶

Footnotes

 \dagger Determined by HPLC analysis of (4S)-isopropyl-1,3-thiazolidine-2-thione amide of the monocarboxylic acid.²

‡ Calculated on the basis of the specific rotation value of pure (–)-7 { $[\alpha]_D^{23}$ – 160.9 (c 0.21, CHCl₃)}.³

§ Determined by HPLC analysis (Daicel CHIRALPAK AD) with hexanepropan-2-ol (200:1).

References

- 1 S. Tamai, H. Ushirogochi, S. Sano and Y. Nagao, Chem. Lett., 1995, 295.
- 2 Y. Nagao, M. Kume, R. C. Wakabayashi, T. Nakamura and M. Ochiai, *Chem. Lett.*, 1989, 239.
- 3 Y. Nagao, T. Nakamura, M. Ochiai, K. Fuji and E. Fujita, J. Chem. Soc., Chem. Commun., 1987, 267.
- 4 S. Masamune, Y. Hayase, W. Schilling, W. K. Chan and G. S. Bates, J. Am. Chem. Soc., 1977, 99, 6756.
- 5 K. H. Overton, *Terpenoids and Steroids*, The Chemical Society, London, 1975, vol. 5.
- 6 J. Mann, R. S. Davidson, J. B. Hobbs, D. V. Banthorpe and J. B. Harborne, *Natural Products: Their Chemistry and Biological Significance*, Longman Scientific & Technical, Harlow, 1994.

Received, 19th April 1996; Com. 6/02736I