This article was downloaded by: [Chulalongkorn University] On: 27 December 2014, At: 00:10 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

A Simple Procedure to Ditertiary Phosphinocarboxylic Acids and Their Bisphosphine Oxides

Mark R. J. Elsegood $^{\rm a}$, Thomas A. Noble $^{\rm a}$, Salem Talib $^{\rm a}$ & Martin B. Smith $^{\rm a}$

^a Department of Chemistry, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK Published online: 08 May 2013.

To cite this article: Mark R. J. Elsegood , Thomas A. Noble , Salem Talib & Martin B. Smith (2013) A Simple Procedure to Ditertiary Phosphinocarboxylic Acids and Their Bisphosphine Oxides, Phosphorus, Sulfur, and Silicon and the Related Elements, 188:1-3, 121-127, DOI: <u>10.1080/10426507.2012.743133</u>

To link to this article: <u>http://dx.doi.org/10.1080/10426507.2012.743133</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at <u>http://www.tandfonline.com/page/terms-and-conditions</u>

Phosphorus, Sulfur, and Silicon, 188:121–127, 2013 Copyright © Taylor & Francis Group, LLC ISSN: 1042-6507 print / 1563-5325 online DOI: 10.1080/10426507.2012.743133

A SIMPLE PROCEDURE TO DITERTIARY PHOSPHINOCARBOXYLIC ACIDS AND THEIR BISPHOSPHINE OXIDES

Mark R. J. Elsegood, Thomas A. Noble, Salem Talib, and Martin B. Smith

Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK

GRAPHICAL ABSTRACT

Abstract A simple two-step route to a series of carboxylic acid functionalized ditertiary phosphine oxides is described, including the X-ray crystal structures of three representative examples namely $\{Ph_2P(O)CH_2\}_2N(CH_2)_nCO_2H$ (n = 3-5). Strong intermolecular $O-H\cdots O$ H-bonding is observed in all cases leading to distinct packing arrangements.

Keywords Tertiary phosphine oxides; ligands; hydrogen bonding; NMR spectroscopy; X-ray crystallography

INTRODUCTION

Phosphine oxides are versatile compounds for diverse applications in organic synthesis,^{1–3} photoinitiators for surface modification,⁴ preparation of quantum dots,⁵ coordination chemistry,⁶ and industrial processes such as selective metal extraction.⁷ Some

We would like to thank Loughborough University and The Leverhulme Trust (S.T.) for funding.

Received 4 September 2012; accepted 18 October 2012.

Address correspondence to Dr. Martin B. Smith, Department of Chemistry, Loughborough University Loughborough, Leicestershire LE11 3TU, UK. E-mail: m.b.smith@lboro.ac.uk

Figure 1 Some examples of phosphine oxides.

representative examples of phosphine oxides used in these scenarios are illustrated in Figure 1. Bis(phosphine) oxides are known^{2.8} and often incorporate a carbon connectivity between both $-P(O)R_2$ groups (where R = Ph typically). Carboxylic acid bearing ditertiary phosphines and their oxides are attractive targets, yet their ease of preparation and suitability to our program were inappropriate.^{2,8} Phosphorus based Mannich transformations are an extremely useful synthetic method for accessing new "hybrid" ligands.^{9, 10} Keglevich and coworkers⁹ recently showed bis(phosphine) oxides of the type $\{Ph_2P(O)CH_2\}_2N(R)$ are accessible via the microwave assisted double phospha-Mannich reaction of HP(O)Ph₂, (CH₂O)_n and various arylamines. Our research group¹⁰ is also interested in P-C-N(R)-C-P based ligands and we required access to readily amenable ditertiary phosphine bisoxides, bearing N-backbone functionality for further modification. Herein we describe a simple, high yielding, two-step method for the synthesis of new carboxylic acid modified ditertiary phosphine bisoxides derived from cheap, commercially available, starting materials. The structures of $\{Ph_2P(O)CH_2\}_2N(CH_2)_nCO_2H$ (n = 3 2c; n= 4 2d, and n = 5 2e) have been determined by single crystal X-ray diffraction and reveal different structural H-bonding motifs as a function of alkyl spacer chain length.

RESULTS AND DISCUSSION

Using a procedure similar to that recently developed by us¹⁰ for preparing novel carboxylic acid functionalized ditertiary phosphines, reaction of two equivalents of Ph₂PCH₂OH (readily preformed from equimolar amounts of [CH₂O]_n and Ph₂PH)¹¹ with one equivalent of $H_2N(CH_2)_nCO_2H$ (n = 1-5, 11) in refluxing CH₃OH, gave the condensed ligands {Ph2PCH2}2N(CH2)nCO2H 1a-f (Scheme 1). Compounds 1a-f were characterized in situ by ${}^{31}P{}^{1}H$ NMR spectroscopy (Table 1). As demonstrated by the facile synthesis of 1a-f, this simple method unsurprisingly appears insensitive to alkyl chain length with no significant amounts of other phosphorus species observed by ${}^{31}P{}^{1}H$ NMR spectroscopy. Oxidation of 1a-f, under standard conditions (aq. H₂O₂/THF/r.t.)¹² and subsequent workup, gave the corresponding ditertiary phosphine bisoxides 2a-f (Scheme 1) as colorless solids. The unoptimized yields for 2a-f are in the range 60–77% (Table 1). The ${}^{31}P{}^{1}H{}$ NMR data (Table 1) confirm oxidation of both phosphorus centers since only one singlet ³¹P resonance is observed at ca. $\delta(P)$ 30 ppm. Our data is in good agreement with those of known phosphine oxides⁹ and, moreover, these ³¹P NMR resonances are some 50 ppm downfield with respect to the trivalent precursors 1a-f. All compounds were further characterized by ¹H NMR, FT-IR and elemental analysis (see Experimental Section for selected data). Compounds 2a-f are freely soluble in CH₂Cl₂, THF, and CH₃OH, but show limited solubility in CH₃CN and H₂O (the lower alkyl chain members are soluble in basic media).

Scheme 1 (i) 2 Ph₂PCH₂OH, CH₃OH, reflux (ii) aq. H₂O₂, THF.

Suitable crystals of **2c**, **2d**, and **2e** were obtained by vapor diffusion of diethyl ether into a CDCl₃ solution over the course of several days. The single crystal X-ray structures¹³ of **2c** (Figure 2), **2d**, and **2e** have been determined with selected bond lengths and angles given in Table 2. In all cases, the X-ray structures confirm the presence of both $-P(O)Ph_2$ and $-CO_2H$ groups. The $-P(O)Ph_2$ groups adopt an *anti* configuration with respect to each other and the P=O bond lengths [1.486(2)–1.499(3) Å] are in the normal range.⁹ Furthermore, in all three structures, the central nitrogen atom is clearly pyramidal as indicated by the $\sum[N(1) \text{ angles}]$ of 337° (**2c**), 341° (**2d**), and 339° (**2e**). The most unusual feature between all three X-ray structures, none of which incorporate solvent cocrystallization, are the different packing arrangements on going from **2c** (C₃) to **2d** (C₄) to **2e** (C₅) (Figures 3a–c). In **2c**, molecules are linked into a 1-D zig-zag chain through strong O–H···O intermolecular H-bonding [O(4)···O(2') 2.621(4) Å, H(4)···O(2')

Compound	Reaction time (h)	Yield (%) ^a	$\delta(\mathbf{P}) (\mathbf{ppm})^{c}$
1a	19		-26.4
1b	5 ^b		-27.8
1c	21		-27.6
1d	19		-27.8
1e	20		-27.9
1f	16		-27.7
2a	1.5	77	29.5
2b	1.5	70	30.0
2c	1.5	61	30.0
2d	1.5	62	30.6
2e	4	60	30.2
2f	4	60	30.1

Table 1 Selected experimental and ³¹P{¹H} NMR data for 1a-f and 2a-f

^a Yields for **1a**-**f** not determined.

^b Reaction conducted at r.t.

^{c 31}P{¹H)} NMR spectra were recorded (101.23, 161.97, or 202.46 MHz) in CH₃OH/C₆D₆ (for 1a-f) and CDCl₃ (2a-f).

Figure 2 Crystal structure of 2c. Compounds 2d and 2e are ostensibly similar and not shown. All hydrogen atoms except H(4) have been omitted for clarity.

1.68(2) Å; $O(4)-H(4)\cdots O(2')$ 166(4)°], whereas in **2d**, strong $O-H\cdots O$ intermolecular H-bonding $O(4)\cdots O(2')$ 2.589(3) Å, $H(4)\cdots O(2')$ 1.73(3) Å; $O(4)-H(4)\cdots O(2')$ 164(3)°] leads to spirals (2₁ screw axis) that run along the crystallographic *a* axis.¹⁴ In **2e**, molecules form discrete dimer pair through P=O···H–O hydrogen bonding [O(4)···O(1') 2.585(2) Å, $H(4)\cdots O(1')$ 1.73(3) Å; $O(4)-H(4)\cdots O(1')$ 167(3)°]. This leads to formation of a large 24-membered ring as opposed to the more classical carboxylic acid-carboxylic acid head-to-tail 8-membered ring through pairs of C=O···H–O hydrogen bonds.^{10, 15} Furthermore, additional weak intermolecular C–H···O contacts were observed in **2c–e**. All attempts to obtain suitable crystals of **2a**, **2b**, or **2f** were unsuccessful.

Table 2 Selected bond lengths (Å) and angles (°) for 2c-e

	2c	2d	2e
P(1)-O(1)	1.489(3)	1.486(2)	1.4962(15)
P(2) - O(2)	1.499(3)	1.4911(18)	1.4902(16)
C-O(3)	1.202(5)	1.213(3)	1.209(3)
C - O(4)	1.325(4)	1.323(3)	1.325(2)
C(1) - N(1) - C(2)	112.0(3)	111.2(2)	111.24(15)

(a)

(b)

Figure 3 Packing diagrams of (a) 2c, (b) 2d, and (c) 2e. All hydrogen atoms except those on $-CO_2H$ groups have been omitted for clarity.

In summary, we have shown, new carboxylic acid modified ditertiary phosphine bisoxides are readily accessible. This procedure should be tolerant to other reactive functional groups, and current efforts are directed toward tagging these precursors onto bioconjugate and polymeric supports. Related hydroxyalkyl aminophosphonic acids have recently been used to prepare novel composite films.¹⁶

EXPERIMENTAL

The following method was used for the synthesis of 2a. To the solids Ph₂PCH₂OH (0.513 g, 2.37 mmol) and H₂NCH₂CO₂H (0.085 g, 1.13 mmol) was added oxygen-free CH_3OH (20 mL). The solution was refluxed for 19 h under a N_2 atmosphere. The solvent was evaporated to dryness under reduced pressure to afford **1a**. THF (15 mL) was added followed by H₂O₂ (1.5 mL, 27.5 wt% solution in water) and the solution stirred at r.t. for 1.5 h. The solvent was evaporated to dryness, the residue taken up in CH_2Cl_2 (30 mL) and washed with H_2O (30 mL). The organic layer was dried over anhydrous MgSO₄, the solvent reduced to ca. 5 mL and Et₂O (30 mL) added. Yield: 0.46 g, 77%. Selected data for **2a**: ¹H NMR [CDCl₃, 298 K]: $\delta = 7.76 - 7.34$ (m, 20H, arom-H), 3.76 (d, ²J_{PH} = 4.9 Hz, 4H, PCH₂), 2.97 (t, 2H, CH₂). FT-IR (KBr): 1715 cm⁻¹ (ν_{CO}). Calcd. for C₂₈H₂₇NO₄P₂: C, 66.80; H, 5.42; N, 2.78. Found: C, 66.46; H, 5.75; N, 2.40. Selected data for 2b: ¹H NMR [CDCl₃, 298 K]: $\delta = 7.73 - 7.36$ (m, 20H, arom-H), 3.79 (s, 4H, PCH₂), 3.23 (s, 2H, CH₂), 2.53 (s, 2H, CH₂). FT-IR (KBr): 1717 cm⁻¹ (ν_{CO}). Calcd. for C₂₉H₂₉NO₄P₂: C, 67.30; H, 5.66; N, 2.71. Found: C, 66.92; H, 5.60; N, 2.74. Selected data for **2c**: ¹H NMR $[CDCl_3, 298 \text{ K}]: \delta = 7.86 - 7.32 \text{ (m, 20H, arom-H)}, 3.76 \text{ (d, } {}^2J_{PH} = 3.6 \text{ Hz}, 4\text{H}, PCH_2),$ 2.97 (t, 2H, CH₂), 2.15 (t, 2H, CH₂), 1.69 (m, 2H, CH₂). FT-IR (KBr): 1715 cm⁻¹ (ν_{CO}). Calcd. for C₃₀H₃₁NO₄P₂: C, 67.78; H, 5.89; N, 2.64. Found: C, 67.12; H, 5.84; N, 2.67. Selected data for 2d: ¹H NMR [CDCl₃, 298 K]: $\delta = 7.74 - 7.25$ (m, 20H, arom-H), 3.66 $(d, {}^{2}J_{PH} = 4.0 \text{ Hz}, 4\text{H}, \text{PCH}_{2}), 2.89 (t, 2\text{H}, \text{CH}_{2}), 2.21 (t, 2\text{H}, \text{CH}_{2}), 1.39 (m, 2\text{H}, \text{CH}_{2}),$ 1.31 (m, 2H, CH₂). FT-IR (KBr): 1716 cm⁻¹ (v_{CO}). Calcd. for C₃₁H₃₃NO₄P₂: C, 68.24; H, 6.11; N, 2.57. Found: C, 67.83; H, 5.93; N, 2.59. Selected data for 2e: ¹H NMR [CDCl₃, 298 K]: $\delta = 7.87 - 7.32$ (m, 20H, arom-H), 3.75 (d, ${}^{2}J_{PH} = 4.4$ Hz, 4H, PCH₂), 2.97 (t, 2H, CH₂), 2.22 (t, 2H, CH₂), 1.52 (m, 2H, CH₂), 1.34 (m, 2H, CH₂), 1.08 (m, 2H, CH₂). FT-IR (KBr): 1700 cm⁻¹ (ν_{CO}). Calcd. for C₃₂H₃₅NO₄P₂: C, 68.68; H, 6.32; N, 2.50. Found: C, 67.68; H, 6.15; N, 2.60. Selected data for **2f**: ¹H NMR [CDCl₃, 298 K]: $\delta = 7.80 - 7.37$ (m, 20H, arom-H), 3.76 (d, ${}^{2}J_{PH} = 4.4$ Hz, 4H, PCH₂), 2.97 (t, 2H, CH₂), 2.36 (t, 2H, CH₂), 1.69–1.06 (m, 18H, CH₂). FT–IR (KBr): 1718 cm⁻¹ (ν_{CO}). Calcd. for C₃₈H₄₇NO₄P₂: C, 70.89; H, 7.37; N, 2.18. Found: C, 70.93; H, 7.37; N, 2.32.

Crystal data for **2c**: $C_{30}H_{31}NO_4P_2$, M = 531.50; monoclinic, $P2_1/n$, a = 7.7628(7), b= 35.747(3), c = 10.2069(9) Å, $\beta = 108.2102(17)^{\circ}$, V = 2690.5(4) Å³; Z = 4, $\rho_{cal} = 1.312$ g cm⁻³; μ (Mo-K α) = 0.198 mm⁻¹; λ = 0.71073 Å, T = 150(2) K; 19529 reflections were collected on a Bruker SMART 1000 CCD diffractometer¹³ using narrow ω -scans, 4743 of which were independent ($R_{int} = 0.0785$). The structure was solved by direct methods and refined on F^2 values to give a final R1 = 0.0577 for 2837 data with $F^2 > 2\sigma$ (F^2); $wR_2 =$ 0.1497 for all data.^{17, 18} Crystal data for **2d**: $C_{31}H_{33}NO_4P_2$, M = 545.52; orthorhombic, $P2_12_12_1, a = 7.9895(5), b = 16.9972(10), c = 20.1654(12)$ Å, V = 2738.4(3) Å³; $Z = 4, \rho_{cal}$ 1.323 g cm^{-3} ; μ (Mo-K α) = 0.197 mm⁻¹; λ = 0.71073 Å, T = 150(2) K; 24123 reflections were collected on a Bruker SMART 1000 CCD diffractometer using narrow ω -scans, 6677 of which were independent ($R_{int} = 0.0532$). The structure was solved by direct methods and refined on F^2 values to give a final R1 = 0.0507 for 4723 data with $F^2 > 2\sigma$ (F^2); wR_2 = 0.1044 for all data. Flack x = 0.01(10). Crystal data for **2e**: C₃₂H₃₅NO₄P₂, M = 559.55; monoclinic, $P2_1/n$, a = 7.9659(5), b = 17.8259(11), c = 20.7005(13) Å, $\beta = 96.0029(11)^\circ$, V = 2923.3(3) Å³; Z = 4, $\rho_{cal} 1.271$ g cm⁻³; μ (Mo-K α) = 0.186 mm⁻¹; $\lambda = 0.71073$ Å, T =150(2) K; 25371 reflections were collected on a Bruker SMART 1000 CCD diffractometer using narrow ω -scans, 6995 of which were independent ($R_{int} = 0.0398$). The structure was solved by direct methods and refined on F^2 values to give a final R1 = 0.0448 for 4762 data with $F^2 > 2\sigma$ (F^2); $wR_2 = 0.1181$ for all data. A complete set of X-ray crystallographic structural data for compounds **2c–e** (CCDC numbers 897295, 897296, and 214336) are available at the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44 1223 336 033; e-mail: deposit@ccdc.ac.uk) on request, quoting the deposition number.

REFERENCES

- 1. Zhao, D.; Mao, L.; Wang, L.; Yang, D.; Wang, R. Chem. Commun. 2012, 889-891.
- 2. Rummelt, S. M.; Ranocchiari, M.; van Bokhoven, J. A. Org. Lett. 2012, 14, 2188-2190.
- Stankevič, M.; Wójcik, K.; Jaklińska, M.; Pietrusiewicz, K. M. Eur. J. Org. Chem. 2012, 2521-2534.
- Huber, A.; Kuschel, A.; Ott, T.; Santiso-Quinones, G.; Stein, D.; Bräuer, J.; Kissner, R.; Krumeich, F.; Schönberg, H.; Levalois-Grützmacher, J.; Grützmacher, H. Angew. Chem. Int. Ed. 2012, 51, 4648-4652.
- 5. Wang, F.; Buhro, W. E. J. Am. Chem. Soc. 2012, 134, 5369-5380.
- 6. Bowden, A.; Horton, P. N.; Platt, A. W. G. Inorg. Chem. 2011, 50, 2553-2561.
- Pailloux, S.; Edicome Shirima, C.; Ray, A. D.; Duesler, E. N.; Paine, R. T.; Klaehn, J. R.; Mcllwain, M. E.; Hay, B. P. *Inorg. Chem.* **2009**, 48, 3104-3113.
- 8. Avey, A.; Schut, D. M.; Weakley, T. J. R.; Tyler, D. R. Inorg. Chem. 1993, 32, 233-236.
- Bálint, E.; Fazekas, E.; Pongrácz, P.; Kollár, L.; Drahos, L.; Holczbauer, T.; Czugler, M.; Keglevich, G. J. Organomet. Chem. 2012, 717, 75-82.
- Smith, M. B.; Dale, S. H.; Coles, S. J.; Gelbrich, T.; Hursthouse, M. B.; Light, M. E.; Horton, P. N. Cryst. Eng. Commun. 2007, 9, 165-175.
- 11. Kellner, K.; Tzschach, A.; Nagy-Magos, Z.; Markó, L. J. Organomet. Chem. 1980, 193, 307-314.
- 12. Hilliard, C. R.; Bhuvanesh, N.; Gladysz, J. A.; Blümel, J. Dalton Trans. 2012, 41, 1742-1754.
- 13. SMART and SAINT Software for CCD diffractometers, Bruker AXS Inc.: Madison, WI, 2001.
- Cross, R. J.; Farrugia, L. J.; Newman, P. D.; Peacock, R. D.; Stirling, D. Phosphorus, Sulfur Silicon Relat. Elem. 1998, 140, 63-72.
- Durran, S. E.; Elsegood, M. R. J.; Hawkins, N.; Smith, M. B.; Talib, S. *Tetrahedron Lett.* 2003, 44, 5255-5257.
- 16. Donnadio, A.; Pica, M.; Taddei, M.; Vivani, R. J. Mater. Chem. 2012, 22, 5098-5106.
- 17. Sheldrick, G. M. Acta Crystallogr. Sect. A 2008, 64, 112-122.
- Sheldrick, G. M. SHELXTL user manual, version 6.12. Bruker AXS Inc.: Madison, WI, USA, 2001.