Journal of Organometallic Chemistry 798 (2015) 171-181

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Poly-iodinated *closo* $1,2-C_2B_{10}$ and *nido* $[7,8-C_2B_9]^-$ carborane frameworks: Synthesis and consequences

Marius Lupu^a, Adnana Zaulet^a, Francesc Teixidor^a, Reijo Sillanpää^b, Clara Viñas^{a,*}

^a Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC) Campus UAB, 08193, Bellaterra, Spain
^b Department of Chemistry, University of Jyväskylä, FIN-40014, Jyväskylä, Finland

ARTICLE INFO

Article history: Received 10 April 2015 Received in revised form 26 May 2015 Accepted 27 May 2015 Available online 20 June 2015 Dedicated to Prof. Russell N. Grimes, a true pioneer in the field of Boron chemistry that contributed substantially to the understanding and evolution of Boron clusters, on the occasion of his 80th birthday.

Keywords: Carboranes Iodination Acidity Solvent free

1. Introduction

Highly iodinated molecules have been of interest in materials science and medical applications [1] including the potential use of iodinated ortho-carboranes as next-generation radiopaque contrast agents for X-ray diagnostic imaging [2]. These compounds have a much larger ratio of iodine in their structures than the iodinated organic compounds currently used in X-ray contrast agents. Clean and effective syntheses are still the critical issue for the consideration of highly iodinated o-carboranes as realistic candidates for Xray contrast agents [3]. However, the recent development of a fast, solvent free synthetic procedure has allowed the preparation of 1-R-8,9,10,12-I₄-1,2-closo-C₂B₁₀H₇ and 1,2-R₂-8,9,10,12-I₄-1,2-closo- $C_2B_{10}H_6$ (R = H, Me, Ph) derivatives by direct reaction of o-carboranes (1,2-closo-C₂B₁₀H₁₂, 1-R-1,2-closo-C₂B₁₀H₁₁ and 1,2-R₂-1,2closo-C₂B₁₀H₁₀) and iodine in sealed tubes [4,5]. Appealingly, the procedure does not require any solvent-based workup and the iodine excess is recovered and re-utilized. The C-substituted

ABSTRACT

The preparation of C_c-monosubstituted *closo* and *nido* carborane derivatives, mono-, di and tetraiodinated is reported. Some of these mono-to poly-iodinated *nido* carboranes are studied in terms of the acidity of the open face bridging proton, their chemical shift position in the ¹H NMR, and the lesser tendency to η^5 -coordination in parallel to a larger number of iodo groups.

© 2015 Elsevier B.V. All rights reserved.

counterparts require slightly shorter reaction times, for the same degree of iodination, than the parent *o*-carborane. This result is consistent with both theoretical [6] and experimental data [7] reported by Lipscomb and co-workers, which showed that the electron-donating effect of methyl groups bonded to the $C_{cluster}$ atoms (C_c) causes a uniform increase in electron density on the B atoms, while having little or no effect on the sequence of substitution.

Although halogenated *nido* carboranes have potential relevance to important topics such as radioiodine carrier [8] and as boron neutron capture therapy (BNCT) reagents [9], relatively few Biodinated $[7,8-nido-C_2B_9]^-$ derivatives are known. Two ways have been reported for the synthesis of *nido* B-iodine *o*-carborane derivatives: i) by electrophilic iodination of the boron vertexes of the anionic $[7,8-nido-C_2B_9H_{12}]^-$ cluster, leading to *nido* carboranes substituted at the 9 and 11 positions, that are the sites of highest electron density as a result of their position in the open pentagonal face of the *nido* cluster [10] and, ii) by partial deboronation of related B–I *closo* clusters. The reported B–I *nido* carboranes are: the monoiodinated $[5-I-nido-7,8-nido-C_2B_9H_{11}]^-$ [11–13] and [9-I-nido- $7,8-nido-C_2B_9H_{11}]^-$ [11,14], the diiodinated [7,8-I₂-7,8-*nido*-C₂B₉H₁₀]⁻ [11], $[9,11-I_2-7,8-nido-C_2B_9H_{10}]^-$ [11,14,15] and $[5,6-I_2-$

^{*} Corresponding author. E-mail address: clara@icmab.es (C. Viñas).

7,8-*nido*-C₂B₉H₁₀]⁻ [13], triiodinated [5,6,9-I₃-7,8-*nido*-C₂B₉H₉]⁻ [13], and tetraiodinated [1,5,6,10-I₄-7,8-*nido*-C₂B₉H₈]⁻ [16]. The vertexes numbering of neutral 1,2-*closo*-C₂B₁₀H₁₂ and anionic [7,8-*nido*-C₂B₉H₁₂]⁻/[7,8-*nido*-C₂B₉H₁₁]²⁻ platforms are indicated in Chart 1.

In this paper, we describe the syntheses of a set of *closo* Biodinated derivatives of monosubstituted 1-R-*closo*- $C_2B_{10}H_{11}$ clusters and the consequences of their deboronation that lead to highly regioselective B-iodinated *nido* counterparts, and to study the influence of the iodo groups in their acidity particularly on the open face bridging hydrogen.

2. Materials and methods

All manipulations were carried out under inert atmosphere. 1,2dimethoxyethane (DME) and THF were distilled from sodium benzophenone prior to use. Reagents were obtained commercially and used as purchased. 1,2-closo-C₂B₁₀H₁₂, 1-Me-1,2-closo-C₂B₁₀H₁₁, 1-Ph-1,2-*closo*-C₂B₁₀H₁₁ were obtained from Katchem. IR spectra (v, cm^{-1} : ATR or KBr pellets) were obtained on a Shimadzu FTIR-8300 spectrophotometer. The ¹H- and ¹H{¹¹B}-NMR (300.13 MHz), $^{13}C{^{1}H}$ -NMR (75.47 MHz) and ^{11}B - and $^{11}B{^{1}H}$ -NMR (96.29 MHz) spectra were recorded on a Bruker ARX 300 instrument equipped with the appropriate decoupling accessories. All NMR spectra were performed in acetone-d₆ at 22 °C. The ¹¹B- and $^{11}B{^{1}H}$ -NMR shifts were referenced to external BF₃ · OEt₂, while the ¹H, ¹H{¹¹B} and ¹³C{¹H}-NMR shifts were referenced to SiMe₄. Chemical shifts are reported in units of parts per million downfield from reference, and all coupling constants in Hz. The mass spectra were recorded in the negative ion mode using a BrukerBiflex MALDI-TOF-MS [N₂ laser; λ_{exc} 337 nm (0.5 ns pulses); voltage ion source 20.00 kV (Uis1) and 17.50 kV (Uis2)].

2.1. Synthesis of the mixture 1-Me-9-I-1,2-closo-C_2B_{10}H_{10} and 1-Me-12-I-1,2-closo-C_2B_{10}H_{10}

A 25 mL round-bottomed flask was charged with 1-Me-1,2*closo*-C₂B₁₀H₁₀ (250 mg, 1.57 mmol) and iodine (4.00 g, 15.97 mmol), closed and sealed to air with Teflon. The flask was then introduced in an oil bath at a temperature of 120 °C, maintained for 45 min and then allowed to cool slowly to room temperature. Excess iodine was effectively separated by sublimation from the reaction mixture at 50 °C under reduced pressure to give 1-Me-9-I-1,2-*closo*-C₂B₁₀H₁₀/1-Me-12-I-1,2-*closo*-C₂B₁₀H₁₀ as a yellowish solid. (330 mg, 74%). IR (KBr): v = 3040 (C_c-H), 2932, 2868 (C_{alkyl}-H), 2579 (B–H). ¹H NMR (CDCl₃): δ = 3.91 (s, 1H, C_c-H), 3.72 (s, 1H, C_c-H), 2.66–2.27 (B–H), 2.08 (s, 3H, CH₃), 1.94 (s, 3H, CH₃). ¹H {¹¹B} (CD₃COCD₃): δ = 3.88 (s, 1H, C_c-H), 3.69 (s, 1H, C_c-H), 2.66 (s, B–H), 2.60 (s, B–H), 2.42 (s, B–H), 2.30 (s, B–H), 2.27 (s, B–H), 2.08 (s, 3H, CH₃), 1.94 (s, 3H, CH₃). ¹¹B NMR (CDCl₃): δ = -0.4 (d, ¹J(B,H) = 152), -5.6 (d, ¹J(B,H) = 201), -7.7 (d, ¹J(B,H) = 165), -10.4

(d,
$${}^{1}J(B,H) = 88$$
), -11.7 (d, ${}^{1}J(B,H) = 130$), -12.9 (d, ${}^{1}J(B,H) = 118$), -16.3 (br s, 1B, B–I), -19.4 (br s, 1B, B–I).

2.2. Synthesis of the mixture 1-Ph-9-I-1,2-closo- $C_{2}B_{10}H_{10}$ and 1-Ph-12-I-1,2-closo- $C_{2}B_{10}H_{10}$

The initial procedure was as before, in a 25 mL flask, 1-Ph-1,2*closo*-C₂B₁₀H₁₀ (50 mg, 0.22 mmol) and iodine (574 mg, 2.25 mmol). The flask was then introduced in an oil bath at a temperature of 120 °C, maintained for 75 min at this temperature, and then allowed to cool slowly to room temperature. Then, diethyl ether enough to dissolve the product and a 10% aqueous solution of sodium metabisulphite were added to the residue. The mixture was vigorously shaken and the two layers were separated. The organic layer was washed in this way several times, until the complete quenching of the excess iodine. The organic phase was then dried over MgSO₄, filtered and the solvent removed under reduced pressure, to give 1-Ph-9-I-1,2-closo-C₂B₁₀H₁₀/1-Ph-12-I-1,2-closo- $C_2B_{10}H_{10}$ as a yellowish oil (59 mg, 75%). IR (KBr): v = 3040 (aromatic CH). 2932 (C_c-H). 2601 (B–H). ¹H NMR (CDCl₃): $\delta = 7.52 - 7.39$ (m, 5H, C₆H₅), 4.29 (s, 1H, C_c-H), 4.09 (s, 1H, C_c-H), 2.99–2.38 (B–H). ¹H{¹¹B} (CD₃COCD₃): $\delta = 7.52 - 7.39$ (m, 5H, C₆H₅), 4.29 (s, 1H, C_c-H), 4.09 (s, 1H, C_c-H), 2.99 (s, B–H), 2.80 (s, B–H), 2.70 (s, B–H), 2.61(s, B-H), 2.38 (s, B-H). ¹¹B NMR (CDCl₃): $\delta = -0.7$ (d, ${}^{1}J(B,H) = 159$), -3.3 (d, ${}^{1}J(B,H) = 151$), -7.5 (d, ${}^{1}J(B,H) = 158$), -10.7 $(d, {}^{1}J(B,H) = 130), -11.4 (d, B-H), -12.7 (d, B-H), -16.4 (br s, 1B, -16.4)$ B–I), –17.1 (br s, 1B, B–I).

2.3. Synthesis of 1-Me-9,12-I₂-1,2-C₂B₁₀H₉

A thick-walled Pyrex tube charged with 1-Me-1,2-closo-C₂B₁₀H₁₁ (250 mg, 1.57 mmol) and iodine (4.00 g, 15.79 mmol) was put under vacuum, cooled down with liquid nitrogen and sealed. The tube was then placed in a furnace and the temperature was raised to 170 °C during 30 min, maintained at this temperature for 3.5 h and then allowed to cool slowly to room temperature. Excess of iodine was effectively separated by sublimation from the reaction mixture at 50 °C under reduced pressure to give 1-Me-9,12-I₂-1,2-closo-C₂B₁₀H₉ as a yellowish solid. (485 mg, 75%). IR (KBr): $v = 3041 (C_c-H), 2936, 2863 (C_{alkvl}-H), 2621, 2575 (B-H).^{1}H NMR$ $(CDCl_3): \delta = 4.01 \text{ (br s, 1H, C_c-H), } 3.75-1.75 \text{ (B}-H), 1.98 \text{ (s, 3H, CH}_3).$ ¹H{¹¹B} (CD₃COCD₃): δ = 4.01 (br s, 1H, C_c-H), 2.85 (br s, 2H, B–H), 2.78 (br s, 4H, B–H), 2.49 (br s, 2H, B–H), 1.98 (s, 3H, CH₃). ¹³C{¹H} (CDCl₃): $\delta = 68.11$ (s, C_c-CH₃), 59.17 (s, C_c-H), 25.49 (s, CH₃). ¹¹B NMR (CDCl₃): $\delta = -10.5$ (d, ¹*J*(B,H) = 156, 2B), -14.8 (d, ¹*J*(B,H) = 177, 2B), -15.9 (d, 1 /(B,H) = 173, 2B), -16.7 (d, 1 /(B,H) = 184, 2B), -18.4(br s, 1B), -21.7 (br s, 1B). MALDI-TOFMS: *m*/*z* = 408.69 (23%) [M], 525.09 [M + I -B] (100%), 536.25 [M + I] (75%). Crystals suitable for X ray diffraction study were grown from mixture hexane/ethyl acetate (1/1).

Chart 1. Icosahedral neutral 1,2-*closo*- $C_2B_{10}H_{12}$, monoanionic [7,8-*nido*- $C_2B_9H_{12}]^-$ and dianionic [7,8-*nido*- $C_2B_9H_{11}]^{2-}$ platforms with their numbering. Vertexes with numbers correspond to B. All vertexes, also including C, have external H or substituent.

2.4. Synthesis of 1-Ph-9,12-I₂-1,2-closo-C₂B₁₀H₉

A thick-walled Pyrex tube charged with 1-Ph-1,2-closo-C₂B₁₀H₁₁ (250 mg, 1.12 mmol) and iodine (4.00 g, 11.29 mmol) was put under vacuum, cooled down with liquid nitrogen and sealed. The tube was then placed in a furnace and the temperature was raised to 170 °C during 30 min, maintained for 3.5 h at this temperature, and then allowed to cool slowly to room temperature. Then, diethyl ether enough to dissolve the product and a 10% aqueous solution of sodium metabisulphite were added to the residue. The mixture was vigorously shaken and the two layers were separated. The organic layer was washed in this way several times, until the complete quenching of the excess iodine. The organic phase was then dried over MgSO₄, filtered and the solvent removed under reduced pressure, to give 1-Ph-9,12-I₂-1,2-*closo*-C₂B₁₀H₉ as a brownish oil. (470 mg, 79%). IR (KBr): v = 3042 (aromatic CH), 2923 (C_c-H), 2610 (B-H).¹H (CDCl₃): $\delta = 7.47$ (d, 3H, ³J(H,H) = 6, C_{arvl}-H), 7.39 (dd, 2H, ${}^{3}J(H,H) = 6$, C_{arvl}-H), 4.38 (br s, 1H, C_c-H), 3.75–1.75 (B–H). ${}^{1}H{}^{11}B{}$ NMR (CD₃COCD₃): $\delta = 7.47$ (d, 3H, ³*J*(H,H) = 6, C_{aryl}-H), 7.39 (dd, 2H, 3 J(H,H) = 6, C_{arvl}-H), 4.38 (br s, 1H, C_c-H), 4.38 (br s, 1H, C_c-H), 3.09 (br s, 2H, B–H), 3.00 (br s, 2H, B–H), 2.86 (br s, 2H, B–H), 2.76 (br s, 2H, B–H). ¹³C{¹H} NMR (CDCl₃): δ = 131.81, 131.00, 130.79, 130.05, 129.30, 127.52 (C₆H₅), 57.91 (C_c-H). ¹¹B NMR (CDCl₃): $\delta = -5.8$ (d. ${}^{1}J(B,H) = 160, 2B), -10.4, -11.4, -12.1 (6B), -14.0 (br s, 1B), -15.1 (br$ s, 1B).

2.5. Synthesis of 1-Bz-2-Me-8,9,10,12-I₄-1,2-closo-C₂B₁₀H₆

The procedure was as for 1-Ph-9.12-I₂-1.2-closo-C₂B₁₀H₉ (R = Me. Ph) with1-Bz-2-Me-C₂B₁₀H₁₀ (0.2 g, 0.805 mmol) and iodine (2.043 g, 8.052 mmol). The tube was then placed in a furnace and the temperature gradually raised to 270 °C during 20 min, maintained for 3 h and allowed to drop slowly to room temperature. The mixture was then dissolved in diethyl ether (4 mL), and the excess of iodine quenched by addition of 5% aqueous solution Na₂S₂O₅ (4 mL). The mixture was thoroughly shaken and the two layers separated. The aqueous layer was extracted with diethyl ether $(3 \times 5 \text{ mL})$. The combined organic phase was dried over NaSO₄, filtered and evaporated in vacuum. The resulting solid, 1-Bz-2-Me-8,9,10,12-I₄-1,2-C₂B₁₀H₆, was obtained in 77% yield (470 mg). Good crystals for X ray diffraction were grown from the mixture hexane/ ethyl acetate (1/1). FTIR (KBr), v (cm⁻¹): 2625, 2607 (s, B–H). ¹H NMR (CD₃COCD₃): δ 7.44 (5H, C_{aryl}-H), 3.80 (2H, s, CH₂), 2.43 (3H, s, C_c-CH₃). ¹H{¹¹B} NMR (CD₃COCD₃): δ 7.44 (5H, C_{arvl}-H), 3.80 (2H, s, CH₂), 3.35, 3.20, 2.93 (s, B-H), 2.43 (3H, s, C_c-CH₃). ¹¹B NMR (CD_3COCD_3) : $\delta - 8.1$, -9.5 (br s, 8B), -17.8 (br s, 2B–I). ¹³C{¹H} NMR (CDCl₃): δ 134.39, 130.52, 128.92, 128.55 (s, C_{aryl}), 79.37 (s, C_c), 76.77 (s, C_c), 39.74 (s, CH₂), 22.18 (s, CH₃).

2.6. Deboronation of the C_c-monosubstituted mono or polyiodinated closo o-carboranes

The carboranes described in the preceding sections have been deboranated as described in Refs. [13] and [16]. The crystal structures of $[HNMe_3][5-I-7,8-nido-C_2B_9H_{11}]$ and $[HNMe_3][7-Ph-1,8,9,12-I_4-7,8-nido-C_2B_9H_7]$ are reported in this paper.

2.6.1. Characterization of $[NMe_4][9-I-7,8-nido-C_2B_9H_{11}]$

The [NMe₄][9-I-7,8-*nido*-C₂B₉H₁₁] was prepared according to the general procedure described in the literature [14]. IR (KBr): ν (cm⁻¹) 3181, 3168 (C_c-H), 3097, 3037, 2958 (C_{alkyl}-H), 2574, 2518, 2430 (BH), 1474, 1467, 1446. ¹¹B NMR (CDCl₃): δ = +18.3 (s, B(9)), -5.2 (d, ¹*J*(B,H) = 138, 1B), -16.0 (d, ¹*J*(B,H) = 136, 1B), -17.8 (d, ¹*J*(B,H) = 148, 2B), -21.6 (d, ¹*J*(B,H) = 152, 1B), -24.9 (d, ¹*J*(B,H) = 138, 1B), -29.5 (d, ¹*J*(B,H) = 131, 1B), -37.4 (d,

 ${}^{1}J(B,H) = 140, 1B).$

2.6.2. Characterization of [HNMe₃][9,11-I₂-7,8-nido-C₂B₉H₁₀]

The [HNMe₃][9,11-I₂-7,8-*nido*-C₂B₉H₁₀] was prepared according to the general procedure described in the literature [14]. IR (KBr): ν (cm⁻¹) 3140 (C_c-H), 3032, 2960 (C_{alkyl}-H), 2766 (Me₃N-H), 2584, 2561, 2539, 2521 (BH), 1474, 1449 (δ Me₃N-H). ¹¹B NMR (CDCI₃): δ = -12.8 (d, ¹J(B,H) = 143, 2B: B5+B6), -15.5 (d, ¹J(B,H) = 166, 1B: B3), -18.5 (d, ¹J(B,H) = 154, 2B: B4+B7), -19.9 (s, 2B: B9+B11), -28.1 (br d, ¹J(B,H) = 133, 1B: B10), -35.2 (d, ¹J(B,H) = 144, 1B: B1). ¹H NMR (CD₃COCD₃): δ 3.23 (s, NMe₃, 9H), 2.33 (s, C_c-H, 1H). ¹H (¹¹B) NMR (CD₃COCD₃): δ 3.23 (s, NMe₃, 9H), 2.33 (s, C_c-H, 1H), 1.78 (s, C_c-H, 1H), 1.78 (s, C_c-H, 1H), 2.25, 1.98, 1.76, 1.43, 0.86, 0.65 (br s, B-H), -2.98 (t, ¹J(H,H) = 6, B-H-B).

2.7. X-ray structure analysis

X-ray crystal structure analyses for 1-Me-9,12-I₂-1,2-closo-C₂B₁₀H₉ and [NHMe₃][7-Ph-1,5,6,10-I₄-7,8-nido-C₂B₉H₇] were done with an EnrafNonius CCD area detector diffractometer with MoK_a radiation ($\lambda = 0.71073$ Å) at 123 K. The data sets were corrected for absorption using SADABS program [17]. X-ray crystal structure analysis for [NHMe₃][5,6,11-I₃-7,8-nido-C₂B₉H₈] was done with an Agilent Supernova diffractometer equipped with Atlas CCD areadetector using MoK_{α} radiation ($\lambda = 0.71073$ Å) at 123 K. The data set was corrected for absorption using a multifaceted crystal model as implemented in CrysAlisPro program package [18]. The structures were solved with the program SIR97 [19]; full-least-squares refinements on F^2 were performed with SHELXL97 [20] using anisotropic displacement parameters for most of the non-H atoms: The hydrogen atoms were treated as riding atoms using the SHELX97 default parameters or their positional parameters were refined isotropically according to the riding model. All calculations and graphics were done at WinGX platform [21]. Crystallographic data and structure refinement details are shown in Table 1. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1058310-1058314. Copies of the data can be obtained free of charge from www.ccdc.cam.ac.uk/conts/retrieving.html.

3. Results and discussion

3.1. B-iodinated closo 1-R-o-carborane (R = Me, Ph) derivatives: mono, di and tetraiodinated

As described in a previous communication, a solvent-free regioselective tetraiodination on o-carboranes is effectively achieved by reaction of $1,2-R_2-1,2-closo-C_2B_{10}H_{10}$ (R = H, Me, Ph) and $1-R-1,2-closo-C_2B_{10}H_{11}$ (R = Me, Ph) with excess iodine in sealed tubes (Scheme 1) [4].

In this paper, an extension of this fast, efficient and solvent free procedure was used to explore the versatility of the method in the iodination reaction to synthesize the *closo* monoiodinated compounds 1-R-9-I-1,2-*closo*-C₂B₁₀H₁₀/1-R-12-I-1,2-*closo*-C₂B₁₀H₁₀ and diiodinated 1-R-9,12-I₂-1,2-*closo*-C₂B₁₀H₉ as well as the C_c hetero-disubstituted 1-Me-2-Bz-8,9,10,12-I₄-1,2-*closo*-C₂B₁₀H₆. We have tested the reaction of 1-R-1,2-*closo*-C₂B₁₀H₁₁ (R = Me, Ph) and iodine in a ratio 1:10 in sealed tubes under various experimental conditions (temperature and reaction time). The best results are shown in Table 2. Always, after the reaction is completed, volatiles, including HI, are carefully removed first by natural diffusion after mindful opening of the reaction flask glass tube, then by evaporation leaving the crude product as a solid that is analysed by ¹H{¹¹B} NMR spectra. Almost all of the iodine in excess (95%) could be

Table 1

Crystallographic data and structure refinement details for neutral *closo* carborane derivatives 1-Me-9,12-I₂-1,2-*closo*-C₂B₁₀H₉, **1**; 1-Me-2-Bz-8,9,10,12-I₄-1,2-*closo*-C₂B₁₀H₆, **2** compounds and the anionic *nido* derivatives [NMe₄][5-I-7,8-*nido*-C₂B₉H₁₁], **3**; [HNMe₃][5,6,11-I₃-7,8-*nido*-C₂B₉H₉], **4** and [HNMe₃][7-Ph-1,5,6,10-I₄-7,8-*nido*-C₂B₉H₇], **5**.

Compound	1	2	3	4	5
Formula	C ₃ H ₁₂ B ₁₀ I ₂	$C_{10}H_{16}B_{10}I_4$	C ₆ H ₂₂ B ₉ IN	C5H19B9I3N	C11H22B9I4N
M_r	410.05	751.93	332.44	571.2	749.19
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space group (no.)	$P2_1/n$ (14)	$P2_{1}/c$ (14)	$P2_1/n$ (14)	$P2_1/n$ (14)	$P2_1/c$ (14)
a (Å)	8.9345(3)	9.421(13)	15.29(2)	6.9919(2)	13.5502(2)
b (Å)	12.7332(3)	16.59(2)	13.259(18)	17.5061(5)	12.3860(2)
<i>c</i> (Å)	11.4559(3)	15.685(17)	15.56(2)	14.3988(3)	14.9886(2)
α (°)	90	90	90	90	90
β(°)	97.6710(10)	113.05(6)	93.48(2)	92.382(10)	113.7250(10)
γ (°)	90	90	90	90	90
V (Å)	1291.61(6)	2256(5)	3149(7)	1760.90(8)	2302.98(6)
Z	4	4	8	4	4
$D_{\rm c} ({\rm g} {\rm cm}^{-1})$	2.109	2.214	1.394	2.155	2.23
$\mu(MoK_{\alpha}) (mm^{-1})$	4.821	5.517	2.005	5.301	5.409
T/K	123(2)	300(2)	173.5(2)	123(2)	123(2)
Observed reflections	2514	5249	5329	3026	4500
R _{int}	0.03	0.0417	0.0648	0.0264	0.0333
Parameters	137	218	310	184	235
$R[F^2 > 2\sigma(F^2)]$	0.0222	0.0605	0.1060	0.0282	0.0267
$wR(F^2)^a$	0.0487	0.1646	0.3011	0.0592	0.0518
Largest peak, hole (e $Å^{-3}$)	0.877, -0.567	1.611, -1.286	7.235, -3.241	1.962, -0.743	1.385, -0.818

^a $w = 1/[s^2(F_o^2) + (aP)^2 + bP]$ where $P = (F_o^2 + 2F_c^2)/3$

Scheme 1. General tetraiodination of 1-R-1,2-*closo*- $C_2B_{10}H_{11}$ (R = Me, Ph) by reaction with iodine in sealed tubes (R, R' = H, Me or Ph).

recovered from the mixture by sublimation under reduced pressure allowing further reuse of reagents.

As a representative example of these compounds, the ¹H NMR spectrum of the mixture of 1-Me-9-I-1,2-*closo*- $C_2B_{10}H_{10}$ and 1-Me-12-I-1,2-*closo*- $C_2B_{10}H_{10}$ display two broad singlets of the same intensity at 3.91 and 3.72 ppm and two singlets at 2.08 and 1.94 ppm corresponding to the C_c-H and the methyl groups (C_c-Me) of the two geometrical isomers. The ¹¹B{¹H} NMR spectra of these compounds also display two different resonances at high field that do not split when running ¹¹B NMR spectra in agreement with the presence of the two geometrical isomers with a B–I vertex. Fig. 1 shows the geometry of the two isomers while Fig. 2 displays the

Table 2 Mono, di and tetra iodination reaction of 1-R-1,2-closo-C₂B₁₀H₁₁ using iodine in a 1/ 10 M ratio.

R	<i>T</i> (°C)	<i>t</i> (h)	9-I-	9,12-I ₂ -	8,9,10,12-I ₄ -
H [5]	115	2.5	97%		
Me	120	0.75	74%		
Ph	120	1.25	75%		
H [5]	170	3.5		82%	
Me [4]	170	3.5		75%	
Ph [4]	170	3.5		79%	
H [4]	265	3.5			75%
Me [4]	265	3.5			>75%
Ph [4]	265	3.5			<75%

¹H and ¹¹B NMR spectra of the isomers mixture.

No attempt to separation regioisomers, 1-Me-9-I-1,2-*closo*- $C_2B_{10}H_{10}$ and 1-Me-12-I-1,2-*closo*- $C_2B_{10}H_{10}$, was made because our goal was to discern if the Me substituent bonded at one of the C_c would produce a major regioselective isomer. ¹H and ¹¹B NMR spectra of the mixture confirm same amount of each regioisomer and no antipodal influence of the C_c -Me on the electrophilic boron vertex substitution. The 1-R-9-I-1,2-*closo*- $C_2B_{10}H_{10}$ and 1-R-12-I-1,2-*closo*- $C_2B_{10}H_{10}$ (R = Ph, vinyl) regioisomers separation was recently reported for the investigation of polar liquid crystals [22].

In this paper, we report the single-crystal X-ray structure determination of $1-Me-9,12-I_2-1,2-closo-C_2B_{10}H_9$ and $1-Me-2-Bz-8,9,10,12-I_4-1,2-closo-C_2B_{10}H_6$.

3.2. Deboronation process of mono, di and tetraiodinated derivatives of closo 1-R-o-carborane (R = Me, Ph)

We have reported recently the partial deboronation reaction of closo 1-R-9-I-1,2- $C_2B_{10}H_{10}$, 1-R-12-I-1,2- $C_2B_{10}H_{10}$, 1-R-9,12-I₂-1,2- $C_2B_{10}H_9$ and 1-R-8,9,10,12-I₄-1,2- $C_2B_{10}H_7$ (R = Me, Ph) derivatives with KOH/EtOH under reflux conditions for 5 h that following precipitation with [HNMe₃]Cl leads to the formation of [HNMe₃][7-R-5-I-7,8-*nido*- $C_2B_9H_{10}$], [HNMe₃][7-R-6-I-7,8-*nido*- $C_2B_9H_{10}$], [HNMe₃][7-R-1,5,6,10-I₄-7,8-*nido*- $C_2B_9H_7$] in good to high yield [13]. The nucle-ophilic attack is produced selectively over one of the boron atoms that are directly bonded to the cluster carbons, because these boron

Fig. 1. The two mono B-iodinated isomers: 1-Me-12-I-closo-1,2-C_2B_{10}H_{10} and 1-Me-9-I-closo-1,2-C_2B_{10}H_{10}.

Fig. 2. 1H and $^{11}B\{^1H\}$ NMR spectra of the mixture of isomers 1-Me-12-I-closo-1,2-C_2B_{10}H_{10} and 1-Me-9-I-closo-1,2-C_2B_{10}H_{10}.

Fig. 3. ORTEP drawing of 1-Me-9,12-l₂-1,2-*closo*-C₂B₁₀H₉. Thermal displacement ellipsoids are drawn at 20% probability level. Selected bond lengths (Å): I9 – B9 = 2.174(4), I12 – B12 = 2.179(5), C1-C2 = 1.643(4). C1-C13 = 1.517(5).

atoms, either B(3) or B(6), are the ones most electronically impoverished (Scheme 2). The non-equivalence of the initial C_c substituents of the $[7,8-nido-C_2B_9]^-$ cluster resulted in the preparation of four isomers. No attempt to resolve the *nido*-carborane ligands into their enantiomers was made and the ligand racemic mixture was isolated.

All synthesized compounds, *closo* and *nido*, were characterized by ¹H-, ¹¹B, ¹³C NMR and MALDI-TOF-MS spectroscopy [13]. The

Scheme 2. Anionic iodinated chiral ligands, $[7-R-5-I-7,8-nido-C_2B_9H_{10}]^-$ and $[7-R-6-I-7,8-nido-C_2B_9H_{10}]^-$.

Fig. 4. ORTEP drawing of 1-Me-2-Bz-8,9,10,12-I₄-1,2-*closo*-C₂B₁₀H₆. Thermal displacement ellipsoids are drawn at 20% probability level.

single-crystal X-ray structure determination for $[NMe_4][5-I-7,8-nido-C_2B_9H_{11}]$, $[HNMe_3][5,6,11-I_3-7,8-nido-C_2B_9H_9]$ and $[HNMe_3]$ [7-Ph-1,5,6,10-I_4-7,8-nido-C_2B_9H_7] are reported.

3.3. X-ray structure determination

Closo B-iodinated derivatives: Crystals suitable for X-ray diffraction of 1-Me-9,12-I₂-1,2-*closo*-C₂B₁₀H₉ (Fig. 3), and 1-Me-2-Bz-8,9,10,12-I₄-1,2-*closo*-C₂B₁₀H₆ (Fig. 4) were grown from a solution of hexane:ethyl acetate (1:1). *Nido* B-iodinated derivatives: Crystals suitable for X-ray diffraction of [NMe₄][5-I-7,8-*nido*-C₂B₉H₁₁] (Fig. 5), [HNMe₃][5,6,11-I₃-7,8-*nido*-C₂B₉H₉] (Fig. 6) and

Fig. 5. ORTEP drawing of $[NMe_4][5-I-7,8-nido-C_2B_9H_{11}]$. Thermal displacement ellipsoids are drawn at 20% probability level.

Fig. 6. ORTEP drawing of $[HNMe_3][5,6,11-I_3-7,8-nido-C_2B_9H_9]$. Thermal displacement ellipsoids are drawn at 20% probability level. Selected bond lengths (Å): I5 – B5 = 2.183(5), I6 – B6 = 2.185(5), C7–C8 = 1.555(7), C8–B9 = 1.624(7), B9–B10 = 1.854(8), B10–B11 = 1.797(7), B11–C7 = 1.597(7).

 $[NHMe_3]$ [7-Ph-1,5,6,10-I₄-7,8-*nido*-C₂B₉H₇] (Fig. 7) were grown from ethanol, water and chloroform solutions, respectively. The structural parameters in the compounds are normal. However, bond distances B11–C7 and B11–B10 are longer in tetra B-iodine compound than in tri B-iodine one (see the captions in Figs. 6 and 7).

Figs. 8 and 9 display the crystal packing showing the periodical weak C_c -H···I-B and C_c -H···H-B interactions of 1-Me-9,12-I₂-1,2-*closo*-C₂B₁₀H₉ and [7-Ph-1,5,6,10-I₄-7,8-*nido*-C₂B₉H₇]⁻, respectively.

Fig. 7. ORTEP drawing of [HNMe₃][7-Ph-1,5,6,10-I₄-7,8-*nido*-C₂B₉H₇]. Thermal displacement ellipsoids are drawn at 20% probability level. Selected bond lengths (Å): 11 - B1 = 2.178(4), 15 - B5 = 2.190(4), 16 - B6 = 2.173(5), C7-C8 = 1.566(6), C8-B9 = 1.611(6), B9-B10 = 1.838(6), B10-B11 = 1.824(6), B11-C7 = 1.625(6).

Fig. 8. Crystal structure of 1-Me-9,12-I₂-1,2-C₂B₁₀H₉ showing the C_c-H···I hydrogen bonding (I···H is 2.962 Å) of molecules forming an infinite zig-zag chains running parallel to the *b* crystallographic axis.

An examination of Cambridge Structural Database [23] shows just 28 X-ray structures of iodinated *closo* $1,2-C_2B_{10}$ carborane framework and 8 X-ray structures of iodinated *nido* $[7,8-C_2B_9]^-$ carborane framework that have been summarized in Table 3.

4. NMR spectral considerations on B-iodinated [7,8-nido- $C_2B_9H_{12}]^-$ derivatives

The sensitivity of the electron distribution in carboranes to the presence of substituents has long been apparent [24]. For icosahedral carborane derivatives of $1-R-1,2-closo-C_2B_{10}H_{11}$, ¹¹B NMR studies have shown that the chemical shifts of the cage boron atoms vary with the substituent R [25], particularly on the boron atom opposite to the point of attachment of the substituent, the "antipodal atom" [26]. The ¹¹B NMR spectrum of *o*-carborane was rationalised in 1986 following a set of empirical rules incorporating antipodal, rhomboidal, butterfly and neighbour effects [27]. It was also reported that the presence of iodine atoms bonded to Boron vertexes in *closo o*-carborane modifies all the resonances of the ¹¹B NMR spectrum but the largest upfield shift is always due to the B–I [5,28]. In this paper the influence of B–I in the ${}^{11}B{}^{1}H{}$ -NMR as well as in the acidity of the hydrogen bridge has been studied.

4.1. Influence of the number of B-I vertexes of nido species on the ${}^{11}B{}^{1}H{}$ -NMR spectrum

The ¹¹B{¹H}-NMR spectra of $[HNMe_3][7,8-nido-C_2B_9H_12]$, $[HNMe_3][5,6-I_2-7,8-nido-C_2B_9H_{10}]$, and $[HNMe_3][1,5,6,10-I_4-7,8-nido-C_2B_9H_8]$, are in the range -7 to -38 ppm, characteristic to *o*carborane derived *nido* species [29]. Fig. 10 shows the influence of the successive B-iodinations on the chemical shifts of ¹¹B{¹H} NMR spectra of the *nido o*-carborane derivatives. The $[HNMe_3][5,6-I_2-7,8-nido-C_2B_9H_{10}]$ spectrum displays the same number of resonances (2:1:2:2:1:1) of the non-iodinated $[HNMe_3][7,8-nido-C_2B_9H_{12}]$ cluster parent (2:2:1:2:1:1) from low to high field but different pattern. Conversely, for the case of $[HNMe_3][1,5,6,10-I_4-7,8-nido-C_2B_9H_8]$, the pattern is 2:1:4:2 (low to high field). Neither the resonance at $\delta = -24.0$ ppm for $[HNMe_3][5,6-I_2-7,8-nido-$

Fig. 9. Crystal packing of $[7-Ph-1,5,6,10-I_4-7,8-nido-C_2B_9H_7]^-$ showing the periodical $C_c-H\cdots I-B$ interactions (2.897 Å). White = H, pink = B, grey = C). Contacts shorter than the sum of Van der Waals radii (-0.2 Å) are plotted as dashed dark lines.

Crystal structures reported on iodinated neutral closo 1,2-C₂B₁₀ and monoanionic nido [7,8-C₂B₉]⁻ carborane frameworks.

		Compound	CCDC code	Reference
1,2-closo-C ₂ B ₁₀ framework	Mono-iodinated	[12-IPh-1,2-closo- C ₂ B ₁₀ H ₁₁]I	CARLAI	[34]
		9-I-1-SiMe ₂ tBu-1,2-closo-C ₂ B ₁₀ H ₁₀	HAWPAY	[35]
		12-I-1-SiMe ₂ tBu-1,2-closo-C ₂ B ₁₀ H ₁₀	HAWPEC	[35]
		9-I-1-CHMeOEt-1,2-closo-C ₂ B ₁₀ H ₁₀	IZEYAO	[36]
		9-I-1,2-Ph ₂ -1,2-closo-C ₂ B ₁₀ H ₁₀	KIYCUQ	[37]
		9-Et-12-I-1,2-closo-C ₂ B ₁₀ H ₁₀	LICJOW	[38]
		12-I-1,2-closo-C ₂ B ₁₀ H ₁₁	WUNDEP	[39]
		12-I-1,2-closo-C ₂ B ₁₀ H ₁₁	WUNDEP01	[40]
		9-X-12-Y-3,4,5,6,7,8,10,11-Me ₈ -1,2- <i>closo</i> -C ₂ B ₁₀ H ₂ (X,Y = I,Cl)	XARHUU	[41]
		8-I-1,2-closo-C ₂ B ₁₀ H ₁₁		[42]
		8-I-1-COOEt-1,2-closo-C ₂ B ₁₀ H ₁₀		[42]
	Di-iodinated	9,12-I ₂ -1,2-closo-C ₂ B ₁₀ H ₁₀	LICJUC	[38]
		9,12-I ₂ -1,2-closo-C ₂ B ₁₀ H ₁₀	WÜRVOU	[43]
		3,10-I ₂ -1,2-closo-C ₂ B ₁₀ H ₁₀		[42]
		9,12-I ₂ -1,2-Ph ₂ -1,2-closo-C ₂ B ₁₀ H ₈	BAQZUP	[44]
		9,12-I ₂ -8,10-Ph ₂ -1,2-closo-C ₂ B ₁₀ H ₈	ULOYAW	[45]
		9,12-I ₂ -1,2-Ni(PPh ₃) ₂ -1,2-closo-C ₂ B ₁₀ H ₈	OLIQEC	[46]
		9,12-I ₂ -1,2-(HgR) ₂ -1,2-closo-C ₂ B ₁₀ H ₈	YAWKIQ	[47]
	Tetra-iodinated	8,9,10,12-I ₄ -1,2- <i>closo</i> -C ₂ B ₁₀ H ₈	GERGAM	[4]
		8,9,10,12-I ₄ -1-Me-1,2-closo-C ₂ B ₁₀ H ₇	WUNDUF	[39]
		8,9,10,12-I ₄ -1-Ph-1,2- <i>closo</i> -C ₂ B ₁₀ H ₇	GERGEQ	[4]
		8,9,10,12-I ₄ -1,2-Me ₂ -1,2- <i>closo</i> -C ₂ B ₁₀ H ₆	WUNFAN	[39]
		8,9,10,12-I ₄ -1,2-Ph ₂ -1,2- <i>closo</i> -C ₂ B ₁₀ H ₆	WUNFER	[39]
	Octa-iodinated	4,5,7,8,9,10,11,12-I ₈ -1,2- <i>closo</i> -C ₂ B ₁₀ H ₄	WUNDIT	[39]
	Nona-iodinated	3,4,5,7,8,9,10,11,12-I ₉ -1,2- <i>closo</i> -C ₂ B ₁₀ H ₃	HAFZOE	[48]
	Deca-iodinated	3,4,5,6,7,8,9,10,11,12-I ₁₀ -1,2- <i>closo</i> -C ₂ B ₁₀ H ₂	CEHWOC	[49]
		3,4,5,6,7,8,9,10,11,12-I ₁₀ -1,2- <i>closo</i> -C ₂ B ₁₀ H ₂	WUNDAL	[28]
		3,4,5,6,7,8,9,10,11,12-I ₁₀ -1,2- <i>closo</i> -C ₂ B ₁₀ H ₂	WUNDOZ	[39]
$[7,8-nido-C_2B_9]^-$ framework	Mono-iodinated	$[1-I-7,8-nido-C_2B_9H_{11}]^-$		[42]
		$[6-I-7,8-Ph_2-7,8-nido-C_2B_9H_9]^-$	BARBEC	[44]
		$[9-I-11-PPh_3-7.8-nido-C_2B_9H_{10}]^-$		1501
		[6-I-9-PPh ₃ -7.8- <i>nido</i> -C ₂ B ₉ H ₁₀]		1501
		$[5-I-6,9-(PPh_3)_2-7,8-nido-C_2B_9H_9]^-$		[50]
	Tetra-iodinated	$[1,5,6,10-I_4-7,8-nido-C_2B_9H_8]^-$	FAKGAB	[16]
	Octa-iodinated	$[1,2,4,5,6,9,10,11-I_8-7,8-nido-C_2B_9H_4]^-$	RICLUL	[33]

C₂B₉H₁₀] nor these at $\delta = -16.4$ and -33.9 ppm for [HNMe₃] [1,5,6,10-I₄-7,8-*nido*-C₂B₉H₈] split into doublets in the ¹¹B NMR spectra, thus indicating that they correspond to B–I vertexes, respectively. The iodo groups affect more importantly the ipso boron atoms. The average chemical shift value, $\langle \delta \rangle$, remains practically unaltered upon the increment of the number of B–I vertexes.

4.2. Influence on the acidity of nido derivatives when increasing the number of B–I vertexes

Treatment of $1,5,6,10-I_4-1,2$ -*closo*- $C_2B_{10}H_8$ with potassium hydroxide in ethanol yielded the corresponding tetraiodo *nido* cluster

Fig. 10. Raw ¹¹B(¹H)spectra with the peak assignments for unsubstituted [HNMe₃][7,8nido-C₂B₉H₁₂] and two iodinated derivatives [HNMe₃][5,6-I₂-7,8-nido-C₂B₉H₁₀] and [HNMe₃][1,5,6,10-I₄-7,8-nido-C₂B₉H₈] from solutions of the samples in acetone-d₆. Substitution of hydrogen with iodine causes significant shielding on boron atoms attached to the substituent.

Fig. 11. ¹¹B{¹H} (black lines) and ¹¹B (red lines) NMR spectra of the acid/base pair [1,5,6,10-l₄-7,8-*nido*-C₂B₉H₈]⁻/[1,5,6,10-l₄-7,8-*nido*-C₂B₉H₇]²⁻ in water. The highest field peak in the spectra at pH = 3 (-33.9 ppm) is assigned to the overlapped signals of B(1) and B(10). At pH = 10, the peak of B(1) is shifted to higher field, whereas that of B(10) is shifted to low field (*ca.* -8.0 and + 12.0 ppm, respectively). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. ¹¹B{¹H} NMR spectra of the acid/base pairs: a) $[7.8-nido-C_2B_9H_{12}]^{-}[7.8-nido-C_2B_9H_{11}]^{2-}$; b) $[5.6-I_2-7.8-nido-C_2B_9H_{10}]^{-}[5.6-I_2-7.8-nido-C_2B_9H_{9}]^{2-}$; c) $[1.5.6,10-I_4-7.8-nido-C_2B_9H_{9}]^{-}[1.5.6,10-I_4-7.8-nido-C_2B_9H_{9}]^{-}[1.5.6,10-I_4-7.8-nido-C_2B_9H_{9}]^{-}]^{-}$ in EtOH: H₂O at the pH range 11–1.

 Table 4

 ¹H NMR chemical shift of bridge BHB protons in iodinated *nido*-carboranes derivatives related to the parent *nido-o*-carborane. Spectra were run in acetone-d₆.

Entry	Compounds	δ ¹ H NMR of bridge BHB protons (ppm)	$\Delta\delta$ relative to <i>o</i> -carborane
1	[7,8- <i>nido</i> -C ₂ B ₉ H ₁₂] ⁻	-2.90	-
2	[9-I-7,8- <i>nido</i> -C ₂ B ₉ H ₁₀] ⁻	-2.98	-0.08
3	[3-I-7,8- <i>nido</i> -C ₂ B ₉ H ₁₁] ⁻	-2.67 [16]	+0.23
4	[5-I-7,8- <i>nido</i> -C ₂ B ₉ H ₁₁] ⁻	-2.41 [11]	+0.49
5	[9,11-I ₂ -7,8- <i>nido</i> -C ₂ B ₉ H ₉] ⁻	-1.62	+1.28
6	$[5,6-I_2-7,8-nido-C_2B_9H_{10}]^-$	-2.15 [16]	+0.75
7	[5,6,9-I ₃ -7,8- <i>nido</i> -C ₂ B ₉ H ₉] ⁻	-2.25 [11]	+0.65
8	[1,5,6,10-I ₄ -7,8-nido-C ₂ B ₉ H ₈] ⁻	-0.09 [16]	+2.81
9	[7-Me-7,8- <i>nido</i> -C ₂ B ₉ H ₁₁] ⁻	-2.68	+0.22
10	[7-Me-5,6-I ₂ -7,8- <i>nido</i> -C ₂ B ₉ H ₉] ⁻	-1.89 [11]	+1.01
11	[7-Me-1,5,6,10-I ₄ -7,8- <i>nido</i> -C ₂ B ₉ H ₇] ⁻	+0.19 [11]	+3.09
12	[7-Ph-7,8- <i>nido</i> -C ₂ B ₉ H ₁₁] ⁻	-2.40	+0.50
13	[7-Ph-5,6-I ₂ -7,8- <i>nido</i> -C ₂ B ₉ H ₉] ⁻	-1.58 [11]	+1.32
14	[7-Ph-1,5,6,10-I ₄ -7,8- <i>nid</i> o-C ₂ B ₉ H ₇] ⁻	+0.40 [11]	+3.30

 $[1,5,6,10-I_4-7,8-nido-C_2B_9H_8]^-$, able to generate η^5 -ligands for sandwich type compounds. It was isolated for characterization as the trimethylammonium salt of the protonated monoanion, $[NHMe_3][1,5,6,10-I_4-7,8-nido-C_2B_9H_8]$. The bridging proton in pristine $[7,8-nido-C_2B_9H_{12}]^-$ anion is relatively acidic and can be removed by the addition of strong base.

Although it is possible to approximately calculate *nido*-carborane pK_a values from DFT methods [30], there exists few experimental data in the literature [31]. We undertook a study in order to determine the acidity of the anion [1,5,6,10-I₄-7,8-*nido*-C₂B₉H₈]⁻. We wanted to avoid a typical titration to be able to observe structural changes upon the pH modification. The ¹¹B NMR spectra of its potassium salt in aqueous solution could be very informative as a function of *p*H. Significant shifts were observed from acidic to basic solutions. Fig. 11 shows a comparison of two spectra of K[1,5,6,10-I₄-7,8-*nido*-C₂B₉H₈] recorded at *p*H 3 and 10. The former is identical to that of [NHMe₃][1,5,6,10-I₄-7,8-*nido*-C₂B₉H₈] in acetone, indicating that the monoanion is present. The one at pH 10 shows a quite different pattern; but importantly, however, is that both the monoanion [1,5,6,10-I₄-7,8-*nido*-C₂B₉H₈]⁻ and the dianion [1,5,6,10-I₄-7,8-*nido*-C₂B₉H₇]²⁻ are stable in aqueous media. Upon deprotonation, the B(10) resonance is shifted to low field, whereas that of B(1) is shifted upfield, as occurs for [7,8-*nido*- $C_2B_9H_{11}]^{2-}$ [32], [7,8- μ -SCH₂CH₂S-7,8-*nido*- $C_2B_9H_9]^{2-}$ [32] and [1,2,3,4,5,6,9,10,11-I₉-7,8-*nido*- $C_2B_9H_2]^{2-}$ [33].

For a matter of comparison [7,8-nido-C₂B₉H₁₂]⁻, [5,6-I₂-7,8nido-C₂B₉H₁₀]⁻ and [1,5,6,10-I₄-7,8-nido-C₂B₉H₈]⁻ have been studied by ¹¹B{¹H}-NMR in a mixture of EtOH: H₂O in a range of pH between 11 and 1 (Fig. 12). At the lowest pH (higher concentration of acid), it was assumed that all three anions had the bridging proton on the open face, thus they were monoanions. In Fig. 12a, dedicated to [7,8-nido-C₂B₉H₁₂]⁻, it is definitely observed that the ¹¹B{¹H}-NMR is invariant through all pH values. When the number of B-iodinated vertexes increases, case of [5,6-I2-7,8-nido- $C_2B_9H_{10}$]⁻, the situation is different. As can be seen in Fig. 12b, the ¹¹B{¹H}-NMR spectrum is identical from pH = 1 to pH = 8 indicating that within this pH interval the bridging proton is on the open face, but the spectrum shows signs of alteration at pH = 11suggesting that two species, most probably $[5,6-I_2-7,8-nido-C_2B_9H_{10}]^-$ and $[5,6-I_2-7,8-nido-C_2B_9H_9]^{2-}$ coexist at pH = 11. Finally, the same studies were performed in a higher iodo containing anion, $[1,5,6,10-I_4-7,8-nido-C_2B_9H_8]^-$, see Fig. 12c. In this case, the ¹¹B{¹H}-

NMR at a very low pH (between 1 and 3) show identical spectra, but this dramatically changes at pH = 5 at which pH the two species, monoanionic $[1,5,6,10-I_4-7,8-nido-C_2B_9H_8]^-$ and dianion $[1,5,6,10-I_4-7,8-nido-C_2B_9H_7]^{2-}$, coexist. At pH 8, only the dianionic species is present. The new and very distinct resonance near -43 ppm appears at the same chemical shift as the new resonance found in $[5,6-I_2-7,8-nido-C_2B_9H_9]^{2-}$.

Expectedly, a higher number of B–I groups on the $[7,8-nido-C_2B_9]^-$ framework would lower the pH at which the dianionic species is more stable, or alternatively indicating that a higher number of B–I units produce a lower pK_a species, and also a less η^5 coordinating open face. These experiments are in agreement with the experimental pK_a of $[7,8-nido-C_2B_9H_{12}]^-$ that is at 14.25 in water [31].

4.3. Influence on the chemical shift of the bridging hydrogen in the ¹H NMR spectrum of nido derivatives when increasing the number of B-I vertexes

We previously reported that a continuous C_c -H downfield chemical shift in the ¹H NMR, in acetone-d₆, was observed parallel to an increasing number of iodine atoms in the *closo* cluster [28]. This data indicates that the acidic character of the C_c -H hydrogen atom linearly increases with the number of B-bonded iodine atoms and that the effect is additive [28].

In this paper we report on a continuous H_{bridge} downfield chemical shift in the ¹H NMR, in acetone-d₆ (Table 4) that is parallel to an increasing number of iodine atoms in the cluster: [7,8-*nido*-C₂B₉H₁₂]⁻ (-2.90 ppm), [5-I-7,8-*nido*-C₂B₉H₁₁]⁻ (-2.41 ppm), [9,11-I₂-7,8-*nido*-C₂B₉H₁₀]⁻ (-1.62 ppm), [1,5,6,10-I₄-7,8-*nido*-C₂B₉H₈]⁻ (-0.09 ppm) indicating an increase of its acidic character. To notice is that the presence of iodine substituents on boron vertexes at the C₂B₃ open face produces larger deshielding effect than at the second layer B₅ (entries 5 and 6). In addition, the presence of a methyl or phenyl group bonded to the C_c in *B*-iodinated *nido* carboranes increase the deshielding effect on the H_{bridge} (entries 1 and 9; entries 1 and 12; entries 6 and 10; entries 6 and 13; entries 8 and 11; entries 8 and 14).

5. Conclusions

In this work the preparation of C_c-monosubstituted closo carborane derivatives, mono-, di-, tri- and tetraiodinated is reported by using green solvent-free methods that allow for the recovery of the unused I₂ reagent. Spectroscopy and some crystal structures endorse the procedure. Deboronation of these closo species with the conventional KOH/EtOH method leads to the corresponding iodinated nido anions, in which the two carbon atoms remain adjacent, and the number of iodo groups in the starting closo compound remains invariant in the *nido* derivative. Again spectroscopy and some crystal structures ratify the value of the deboronation process. Some of these mono-to poly-iodinated nido carboranes are studied in terms of the acidity of the open face bridging proton, their chemical shift position in the ¹H NMR, and the lesser tendency to η^5 -coordination in parallel to a larger number of iodo groups. Comparison with non-iodo containing similar nido compounds has been paramount to interpret the consequences of increasing B-I moieties in the molecules.

Acknowledgement

This research has been financed by MEC (CTQ2013-44670-R) and Generalitat de Catalunya (2014/SGR/149). M. Lupu and A. Zaulet are enrolled in the PhD program of the UAB. M.L. thanks MICINN for FPU predoctoral grant.

References

- [1] P.J. Ell, S. Gambhir, Nuclear Medicine in Clinical Diagnosis and Treatment, third ed., Churchill Livingstone, Oxford, UK, 2004.
- [2] S.-B. Yu, A.D. Watson, Chem. Rev. 99 (1999) 2353.
- [3] a) R.R. Srivastava, D.K. Hamlin, D.S. Wilbur, J. Org. Chem. 61 (1996) 9041;
 b) PCT Int Appl. (1995) W09526353; Eur. Pat. Appl. (1996) EP0700918.
- [4] A. Vaca, F. Teixidor, R. Kivekäs, R. Sillanpää, C. Viñas, Dalton Trans. (2006) 4884.
- [5] G. Barberà, A. Vaca, F. Teixidor, R. Sillanpää, R. Kivekäs, C. Viñas, Inorg. Chem. 47 (2008) 7309.
- [6] a) M.D. Newton, F.P. Boer, W.N. Lipscomb, J. Am. Chem. Soc. 88 (1966) 2353;
 b) F.P. Boer, J.A. Potenza, W.N. Lipscomb, Inorg. Chem. 5 (1966) 1301.
- 7] J.A. Potenza, W.N. Lipscomb, Inorg. Chem. 5 (1966) 1483.
- [8] a) M.E. El-Zaria, N. Janzen, M. Blacker, J.F. Valliant, Chem. Eur. J. 18 (2012) 11071;
- b) A.E.C. Green, S.K. Parker, J.F. Valliant, J. Organometal. Chem. 694 (2009) 1736.
- [9] E.A. Mizusawa, M.R. Thompson, M.F. Hawthorne, Inorg. Chem. 24 (1985) 1911.
- [10] F.P. Olsen, M.F. Hawthorne, Inorg. Chem. 4 (1965) 1839.
- [11] G.K. Semin, L.I. Zakharkin, S.I. Kuznetsov, G.G. Zhigareva, E.V. Bryukhova, Russ. J. Gen. Chem. 68 (1998) 919.
- [12] M.A. Fox, K. Wade, J. Organometal. Chem. 573 (1999) 279.
- M. Lupu, A. Zaulet, F. Teixidor, E. Ruiz, C. Viñas, Chem. Eur. J. 21 (2015) 6888.
 R.H. Pak, R.R. Kane, C.B. Knobler, M.F. Hawthorne, Inorg. Chem. 33 (1994) 5355.
- [15] E.C. Santos, A.B. Pinkerton, S.A. Kinkead, P.K. Hurlburt, S.A. Jasper, C.W. Sellers, J.C. Huffman, LJ. Todd, Polyhedron 19 (2000) 1777.
- [16] A. Pepiol, F. Teixlor, R. Sillanpää, M.s Lupu, C. Viñas, Angew. Chem. Int. Ed. 50 (2011) 12491.
- [17] G.M. Sheldrick, SADABS, University of Göttingen, Germany, 2008.
- [18] a) R.C. Clark, J.S. Reid, Acta Cryst. A51 (1995) 887;
- b) CrysAlis PRO, Agilent Technologies, Yarnton, England, 2012.
 [19] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori, R. Spagna, SIR 97: a new tool for crystal structure determination and refinement, J. Appl. Cryst. 32 (1999) 115.
- [20] G.M. Sheldrick, ActaCrystallogr., Sect. A: Found. Crystallogr. A64 (2008) 112.
 [21] LJ. Farrugia, WinGX suite for small-molecule single-crystal crystallography,
- J. Appl. Cryst 32 (1999) 837.
- [22] A. Jankowaik, P. Kasynski, Inorg. Chem. 53 (2014) 8762.
- [23] a) CSD consulted in May 19th, 2015. b) For CSD see F.H. Allen, Acta Crystallogr. B58 (2002) 380;
 c) For ConQuest program see J. Bruno, J.C. Cole, P.R. Edgington, M. Kessler, C.F. Macrae, P. McCabe, J. Pearson, R. Taylor, Acta Crystallogr. B58 (2002) 389.
- [24] R.N. Grimes, Carboranes, second ed., Academic Press, Burlington, MA, 2011.
 [25] S. Hermanek, J. Plesek, B. Stibr, V. Grigor, J. Chem. Soc. Chem. Commun. (1977)
- 561.
- [26] a) S. Hermanek, V. Gregor, B. Stibr, J. Plesek, Z. Janousek, V.A. Antonovich, Collect. Czech. Commun. 41 (1976) 1492;
 b) V.I. Stanko, T.A. Babushkina, T.P. Klimova, Y.U. Goltyapin, A.I. Klimova,
- A.M. Vasilev, A.M. Alymov, V.V. Khrapov, Zh. Obshch. Khim 46 (1976) 1071. [27] F. Teixidor, C. Viñas, R.W. Rudolph, Inorg. Chem. 25 (1986) 3339.
- [28] A.V. Puga, F. Teixidor, R. Sillanpää, R. Kivekäs, M. Arca, G. Barberà, Clara Viñas, Chem. Eur. J. 15 (2009) 9755.
- [29] J. Buchanan, E.M. Hamilton, D. Reed, A.J. Welch, J. Chem. Soc. Dalton Trans. (1990) 677.
- [30] P. Farràs, F. Teixidor, V. Branchadell, Inorg. Chem. 45 (2006) 7947.
- [31] G.G. Hlatky, D.J. Crowther, Inorg. Synth. 32 (1998) 229.
- [32] G. Barberà, C. Viñas, F. Teixidor, G.M. Rosair, A.J. Welch, J. Organomet. Chem. 663 (2002) 221.
- [33] F. Teixidor, G. Barberà, R. Kivekäs, R. Sillanpää, C. Viñas, Dalton Trans. (2007) 1668.
- [34] V.M. Ionov, M. Yu Subbotin, V.V. Grushin, T.P. Tolstaya, I.N. Lisichkina, L.A. Aslanov, Zh. Strukt. Khim. (Russ.) (J.Struct.Chem.) 24 (1983) 139.
- [35] R. Tiwari, A. Toppino, H.K. Agarwal, T. Huo, Y. Byun, J. Gallucci, S. Hasabelnaby, A. Khalil, A. Goudah, R.A. Baiocchi, M.V. Darby, R.F. Barth, W. Tjarks, Inorg. Chem. 51 (2012) 629.
- [36] S.R. Wang, Z. Qiu, Z. Xie, J. Am. Chem. Soc. 133 (2011) 5760.
- [37] T.D. McGrath, M.A. Fox, A.J. Welch, Acta Crystallogr., Sect.C: Cryst. Struct. Commun. 56 (2000) 487.
- [38] X. Yang, C.B. Knobler, Z. Zheng, M.F. Hawthorne, J. Amer. Chem. Soc. 116 (1994) 7142.
- [39] A.V. Puga, F. Teixidor, R. Sillanpää, R. Kivekäs, C. Viñas, Chem.-Eur.J. 15 (2009) 9764.
- [40] V.G. Andrianov, V.I. Stanko, Yu T. Struchkov, A.I. Klimova, Zh. Strukt. Khim. (Russ.) J. Struct. Chem.) 8 (1967) 707.
- [41] F. Teixidor, G. Barbera, A. Vaca, R. Kivekäs, R. Sillanpää, J. Oliva, C. Viñas, J. Am. Chem. Soc. 127 (2005) 10158.
- [42] A.V. Safranov, Y.V. Sevryugina, S.S. Jalisatgi, R.D. Kennedy, C.L. Barnes, M.F. Hawthorne, Inorg. Chem. 51 (2012) 2629.
- [43] A.S. Batsanov, M.A. Fox, J.A.K. Howard, A.K. Hughes, A.L. Johnson, S.J. Martindale, Acta Crystallogr., Sect.C: Cryst. Struct. Commun. 59 (2003) 074.
- [44] S. Robertson, D. Ellis, T.D. McGrath, G.M. Rosair, A.J. Welch, Polyhedron 22 (2003) 1293.

- [45] A.V. Puga, F. Teixidor, R. Sillanpää, R. Kivekäs, C. Viñas, Chem. Commun. 47 (2011) 2252.

- [46] Z. Qiu, L. Deng, H.-S. Chan, Z. Xie, Organometallics 29 (2010) 4541.
 [47] H. Lee, C.B. Knobler, M.F. Hawthorne, Angew. Chem. Int. Ed. 40 (2001) 2024.
 [48] G. Barbera, F. Teixidor, C. Vinas, R. Sillanpää, R. Kivekäs, Eur. J. Inorg. Chem.

- (2003) 1511. [49] F. Teixidor, G. Barbera, C. Viñas, R. Sillanpää, R. Kivekäs, Inorg. Chem. 48 (2008) 139.
- [50] K.Z. Kabytaev, A.V. Safranov, Y.V. Sevryugina, C.L. Barnes, S.S. Jalisatgi, M.F. Hawthorne, Inorg. Chem. 53 (2014) 10045.