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Amphiphilic Bis-w-Allyl and Related Palladium Intermediates
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Abstract: Palladium-catalyzed three-component coupling of allyl-
stannane, allyl chloride and a functionalized diene is described. Re-
gioselective 1,4-functionalization of the Michael acceptor 1,3-diene
is accomplished by the amphiphilic bis-n-allylpalladium complex.
To the best of our knowledge, this is the first time a functionalized
1,3-butadiene has been used as a Michael acceptor. The scope of the
present strategy is further extended to 1,4-allylation—oxyallylation
of functionalized dienes.
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Strategies for 1,4-functionalization of 1,3-dienes through
classical methods include cycloaddition reactions involv-
ing singlet oxygen,' and heterodienophiles such as nitroso
compounds’ and azodicarboxylates.> Cycloadducts are
further transformed into target molecules through suitable
synthetic manipulations. Pioneering work on palladium-
catalyzed 1,4-functionalization of 1,3-dienes was reported
by Backvall and co-workers,* and transition-metal-cata-
lyzed transformations of 1,3-dienes have attracted the at-
tention of a number of organic chemists.> Synthetic
transformations of 1,3-dienes using nickel,® palladium,’
iron,® and rhodium’® have been reported, and Hilt et al.
have utilized the cobalt-catalyzed 1,4-hydrovinylation of
1,3-dienes for the synthesis of functionalized 1,4-dienes.!°
RajanBabu and co-workers have carried out detailed in-

vestigations on asymmetric hydrovinylation of linear and
cyclic 1,3-dienes.!! Very recently, Sigman and co-work-
ers achieved palladium-catalyzed 1,4-addition across the
commodity chemical 1,3-butadiene to afford skipped
polyene products.'?
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Figure 1 7-Allyl and bis-n-allyl palladium complexes

Bis-n-allylpalladium (Figure 1) and related intermediates
show amphiphilic reactivity on reaction with activated
olefins'3 and benzynes.'* Inter- and intramolecular reac-
tions of aldehydes, imines and activated olefins with bis-
n-allylpalladium complexes have paved the way toward
the synthesis of a number of highly functionalized organic
molecules.!*!® Recently we have reported the bis-func-
tionalization of isatylidenes by using the bis-n-allylpalla-
dium complex as a facile route toward spiro-indol-2-
ones.'® With the highly conjugated heptafulvene, the bis-
n-allylpalladium complex undergoes 1,8-conjugate addi-
tion leading to bis-functionalized cycloheptatriene deriv-
atives.!” A palladium-catalyzed deconjugative allylation
reaction of 1,3-diene was reported for the first time by
Sato and co-workers.!® Cheng et al. reported the reaction
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Scheme 1 Reports by Sato et al.!® (top) and Cheng et al.'® (bottom)
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of a bis-m-allylpalladium complex generated from allyl
chloride and allenylstannane with 1,3-diene, which af-
forded 1,2-addition products with exclusive regio- and
chemoselectivity (Scheme 1)."

As part of our continuing interest in utilizing the amphi-
philic nature of the bis-n-allylpalladium complex in or-
ganic synthesis, we undertook an investigation of its
reactivity with highly functionalized 1,3-butadienes.?
Our preliminary experiments involved the reaction of 1,3-
butadiene derivative 1a with allyl chloride (2) and allyltri-
butylstannane (3) in the presence of [PdCl,(PPhs),] in
THF at room temperature (Table 1, entry 1).2! The reac-
tion afforded 1,4-bis-allylated product 4a in 78% yield,
the structure of which was established on the basis of a
range of spectroscopic techniques.?

Table 1 Palladium-Catalyzed Bis-Allylation of 1,3-Butadiene®

The reaction was then optimized to establish the best cat-
alytic conditions (see the Supporting Information). Based
on these studies, the optimal conditions for the transfor-
mation was found to be diene (1.0 equiv.), allyl chloride
(2.0 equiv), allyltributylstannane (2.0 equiv), and 5 mol%
[PACIl,(PPh;),] in THF (2 mL) at room temperature.

The substrate scope for the bis-allylation strategy was in-
vestigated by utilizing various functionalized 1,3-butadi-
enes. It should be noted that a variety of the highly
functionalized 1,3-butadienes derived from substituted
benzylidine malononitriles (1b—d, 1g and 1h) and hetero-
aryl malononitriles (1e and 1f) can be used in this ap-
proach (Table 1). The use of highly substituted 1,3-
butadienes makes this method potentially valuable for the
synthesis of a number of biologically important targets.
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Table 1 Palladium-Catalyzed Bis-Allylation of 1,3-Butadiene® (continued)
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2 Reaction conditions: 1,3-diene 1 (1.0 equiv), allyl chloride 2 (2.0 equiv), allyl tributylstannane 3 (2.0 equiv), [PdCl,(PPh;),] (5 mol%), THF

(2mL), r.t., 8 h.

A plausible mechanistic pathway for bis-allylation is il-
lustrated in Scheme 2. The initial event involves oxidative
addition of allyl chloride 2 to a palladium(0) species to
produce the n3-allylpalladium intermediate A. This inter-
mediate undergoes ligand exchange with allyltributylstan-
nane 3 to generate bis-n3-allylpalladium intermediate B,
which subsequently undergoes nucleophilic 1,4-addition
with diene 1 to form intermediate C, which, on reductive
elimination, forms 1,4-bis-allylated product 4.

To demonstrate the use of related n-allyl palladium inter-
mediates, we initiated our investigations with the al-
lylation-oxyallylation reaction of 1a and diallylcarbonate
5 by the use of [Pd(PPhs,),] as the catalyst and THF as the
solvent. To our delight, the desired allylated-oxyallylated
product 6a was obtained in 71% yield (Table 2, entry 1).

© Georg Thieme Verlag Stuttgart - New York

The structure of the allylated-oxyallylated product was
unambiguously confirmed by single-crystal X-ray analy-
sis of 6b (from the reaction of 1b and 5; Figure 2).23 The
reaction presumably proceeds through oxidative addition
of palladium to the diallyl carbonate, followed by loss of
CO, to give intermediate D. Nucleophilic 1,4-addition
followed by reductive elimination results in the formation
of product 6.

To develop conditions that were suitable for this transfor-
mation, we surveyed a variety of palladium catalysts and
solvents (see the Supporting Information) and found that
the optimal conditions for this reaction were: a mixture of
1,3-diene/diallyl carbonate (1:2) with 5 mol% [Pd(PPh;),]
in THF (2 mL) with a reaction time of 8 hours.
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Scheme 2 Mechanistic rationale of palladium-catalyzed bis-al-
lylation of 1,3-butadiene

A detailed study to expand the 1,4-allylation—oxyal-
lylation strategy to other 1,3-dienes (1b—f) was undertak-
en, the results of which demonstrated that a wide range of
substitution patterns are tolerated (Table 2).

In conclusion, we have developed a simple and efficient
strategy for the bis-functionalization of 1,3-butadiene de-

Figure 2 Single-crystal X-ray structure of 6b

rivatives by a palladium-catalyzed three-component cou-
pling reaction. To the best of our knowledge, this is the
first report on a palladium-catalyzed 1,4-conjugate addi-
tion reaction of 1,3-butadiene derivatives via amphiphilic
bis-n-allylpalladium and related complexes. Further syn-
thetic manipulations of the synthesized trienes and inves-
tigations on the scope of other related palladium
intermediates are under way and will be reported in due
course.

Table 2 Palladium-Catalyzed Allylation—-Oxyallylation Reaction of 1,3-Dienes®
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Table 2 Palladium-Catalyzed Allylation-Oxyallylation Reaction of 1,3-Dienes®
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# Reaction conditions: 1,3-diene 1 (1.0 equiv.), diallyl carbonate 5 (2.0 equiv.), [Pd(PPhs),] (5 mol%), THF (2 mL), r.t., 8 h
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Typical Procedure (Compound 4a): To a degassed
solution of [PdCl,(PPh;),] (4.4 mg, 0.0064 mmol) in
anhydrous THF (2 mL) in a Schlenk tube, allyltributyl-
stannane 3 (85.2 mg, 0.25 mmol) was added followed by
allyl chloride 2 (19.6 mg, 0.25 mmol). To this, 1a (42.02 mg,
0.12 mmol) was added (in THF) and the mixture was stirred
at room temperature for 8 h. After the completion of the
reaction (as evident by TLC), the solvent was removed under
reduced pressure and the residue was purified by using silica
gel (100-200 mesh) column chromatography (EtOAc—
hexane, 12%) to afford 4a (41.1 mg, 78%).

Spectral Data of 4a: R,= 0.46 (EtOAc-hexane, 4:6); IR
(neat): 3079, 2955, 2919, 2850, 2313, 2246, 1734, 1604,
1510, 1461, 1376, 1290, 1248, 1177, 1118, 1032 cm™'; 'H
NMR (500 MHz, CDCl;): 6 = 7.26-7.24 (m, 1 H), 7.08 (d,
J=28.5Hz, 1 H), 6.98-6.94 (m, 2 H), 5.94-5.86 (m, 1 H),
5.56-5.47 (m, 1 H), 5.42-5.35 (m, 2 H), 5.05-4.98 (m, 2 H),
3.89(s,3 H),3.84(s,3 H),3.72 (s, 3 H), 3.18-3.15 (m, 1 H),
2.87-2.75 (m,2 H), 2.63-2.58 (m, 1 H),2.27-2.21 (m, 1 H);
13C NMR (125 MHz, CDCl,): 6 = 171.0, 166.0, 160.4,
137.4,136.6, 134.0, 131.1, 130.1, 128.7, 126.0, 123.5,
118.1,114.5,114.3,113.7 (2C), 55.3, 52.6, 52.5, 48.2,42.7,
42.5, 33.8; HRMS (ESI): m/z [M + Na]" calcd for
C;H,,N,NaOs: 431.15829; found: 431.15646.
CCDC-933875.
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