Neue Silber(I)-oxotellurate(IV/VI)

New Silver(I) Oxotellurates(IV/VI)

Wilhelm Klein, Jan Curda, Eva-Maria Peters und Martin Jansen*

Stuttgart, Max-Planck-Institut für Festkörperforschung

Bei der Redaktion eingegangen am 27. Mai 2005.

Professor Herbert W. Roesky zum 70. Geburtstag gewidmet

Abstract. Reactions of Ag₂O and TeO₂ at elevated oxygen pressures resulted in three new silver oxotellurates: Ag₂Te₄O₁₁ ($P\bar{1}$, a =7,287(4), b = 7,388(3), c = 9,686(7) Å, $\alpha =$ 95,67(3)°, $\beta =$ 94,10(3)°, $\gamma =$ 119,40(3)°, Z = 2, 1973 independent reflections, $R_1 =$ 2,51 %, $wR_2 =$ 5,42 %) and two modifications of AgTeO₃ (AgTeO₃-I: P2₁/n, a = 5,9099(5), b = 11,6831(8), c = 8,0305(7) Å, $\beta =$ 100,424(7)°, Z = 4, 1249 independent reflections, $R_1 =$ 7,72 %, $wR_2 =$ 13,24 %; AgTeO₃-II: P2₁/m, a = 5,4562(5), b = 7,4009(7), c = 6,9122(7) Å, $\beta =$ 101,237(2)°, Z = 2, 1221 independent reflections, $R_1 =$ 2,84 %, $wR_2 =$ 6,16 %). All the three compounds contain tellurium in the oxidation states +4 and +6. Te⁶⁺ is coordinated by distorted octahedra of oxygen atoms in each case, while the lone pair of Te⁴⁺ is stereochemically active, and the coordination numbers are 5 in Ag₂Te₄O₁₁ and AgTeO₃-II (distorted square pyramids, pseudo octahedra) and 4 in AgTeO₃-I (pseudo trigonal bipyramid). All compounds show diamagnetic and insulating behaviour.

Keywords: Silver; Tellurium; Silver tellurate; Mixedvalent tellurium compounds; Crystal structures

Einleitung

Heteropolare kollektive Festkörper, in denen die Kationen stereochemisch aktive nichtbindende Elektronenpaare aufweisen, sind potentielle Kandidaten für druckinduzierte Valenzwechsel [1-3]. Im Zuge eines solchen Vorgangs würden die am Kation lokalisierten freien Elektronenpaare aus dem Valenzband in das Leitungsband angehoben und damit delokalisiert. Damit verbunden wären strukturelle Rekonstruktionen oder aber zumindest eine Volumenabnahme und Veränderungen in den physikalischen Eigenschaften, etwa Halbleiter-Metall-Übergänge oder gar die Induzierung von Supraleitung. Besonders begünstigt sollten solche Übergänge in Verbindungen sein, die niedrig liegende Akzeptorniveaus aufweisen. Dies ist u. a. der Fall in silberreichen ternären Oxiden [4, 5], in denen die von Silber-5s- und -5d-Zuständen herrührenden Bänder unbesetzt und wegen der Ag⁺-Ag⁺-Wechselwirkungen abgesenkt sind [6]. Dieser Erwartung entsprechend weist z. B. Ag₂₅Bi₃O₁₈ [7, 8] einen reversiblen druckinduzierten Halbleiter-Metall-Übergang auf [9]. Analog sollten sich z. B. auch Silbertellurate mit vierwertigem oder (IV/VI)-gemischtvalentem Tellur verhalten. Hier berichten wir über erste Ergebnisse unserer Versuche zur Darstellung und Charakterisierung von Silber(I)-oxotelluraten(IV/VI).

Heisenbergstraße 1

D-70569 Stuttgart Fax: +49-711-6891502

E-Mail: M.Jansen@fkf.mpg.de

Für die Systeme Ag_2O/TeO_2 bzw. TeO_3 sind bisher nur Ag_2TeO_3 [10] und Ag_2TeO_4 [11] beschrieben.

Experimenteller Teil

Synthese: Die hier vorgestellten Silbertellurate wurden bei erhöhten Temperaturen und Sauerstoffdrücken in Edelstahlautoklaven [12] mit Reaktionszeiten von zwei bis drei Tagen hergestellt. Als Edukte dienen sorgfältig verriebene Mischungen von metallischem Silber oder frisch gefälltem Ag₂O und TeO₂ (Fluka, p. a.) im jeweils angestrebten Ag/Te-Verhältnis. Zur Zucht von Einkristallen aus Ag₂O und TeO₂ wurde jeweils etwa 1 ml dest. H₂O als Mineralisator zugegeben. Im einzelnen entstanden Ag₂Te₂O₆-I bei Synthesebedingungen von 380 °C und einem Sauerstoffdruck von 50 MPa und Ag₂Te₄O₁₁ bei 450 °C und 100 MPa. Einkristalle von Ag₂Te₂O₆-II konnten nach Experimenten bei einem niedrigeren Druck von ca. 12 MPa isoliert werden. Die Synthese einphasiger Proben von Ag₂Te₂O₆-II gelang bisher nicht.

Energiedispersive Mikroanalyse: Mit Hilfe von EDX-Analysen (XL30 ESEM, Philips, Eindhoven) wurden anhand der Integration der Ag-L- und Te-L-Emissionen die Ag/Te-Verhältnisse an kristallinen Proben bestimmt. Nach Mittelung über jeweils mehrere Proben beträgt das Ag/Te-Verhältnis in $Ag_2Te_2O_6$ -I 0,99:1, für $Ag_2Te_2O_6$ -II 1,05:1 und für $Ag_2Te_4O_{11}$ 0,50:1.

Röntgenographische Untersuchungen: Pulverdiffraktogramme zur Verfeinerung der Gitterkonstanten wurden mit einem StadiP-Diffraktometer (Stoe & Cie, Darmstadt, CuK α_1 , Ge-Monochromator, linearer PSD, Auflösung $\Delta 2\theta = 0.06^{\circ}$) aufgenommen. Die beobachteten Reflexdaten für Ag₂Te₂O₆-I und Ag₂Te₄O₁₁ sind in den Tabellen 1 und 2 aufgelistet.

^{*} Prof. Dr. Martin Jansen

Max-Planck-Institut für Festkörperforschung

Tabelle 1 Experimentell bestimmte Röntgenpulverdaten für
 $Ag_2Te_2O_6$ -I mit d > 1,44 Å.

Tabelle	2	Experimentell	bestimmte	Röntgenpulverdaten	für
Ag ₂ Te ₄ C)11	mit $d > 1,31$ Å.			

$d_{\rm obs}$ [Å]	$I / I_0 h$	k	l	$d_{\rm obs} [{\rm \AA}]$	$I \mid I_0 h$	k l	$d_{\rm obs} [{\rm \AA}]$	$I / I_0 h$	k l
5,1453	8,6 -1	0	1	2,3596	8,3 -1	2 3	1,7892	16,0-3	2 2
4,7034	3,7 -1	1	1	2,3479	5,0 0	4 2	1,7699	8,0 -2	1 4
	0	2	1	2,3283	29,4 2	3 0	1,7477	5,9 0	5 3
3,8608	44,3 -1	2	1	2,2632	2,0 -1	4 2	1,7316	11,9 2	5 1
3,7395	5,3 0	1	2	2,2089	7,6 1	1 3	1,7169	5,0 2	2 3
3,4232	23,9 -1	1	2	2,1815	1,4 0	3 3	1,6359	8,1 0	4 4
3,2343	11,6 1	3	0	2,1673	2,3 1	5 0	1,6207	4,7 1	5 3
3,0528	100, 0 - 1	2	2	2,1505	14,3 2	3 1	1,6150	3,1 3	4 0
2,9290	17,2 1	1	2	2,0998	4,3 1	4 2	1,6044	6,5 1	7 0
2,9227	98,8 0	4	0	2,0553	5,8 1	5 1	1,5672	15,3 3	2 2
2,8931	22,0 1	3	1	2,0111	2,2 0	5 2	1,5548	5,1 -1	6 3
2,8193	59,6 2	1	0	1,9745	13,3 0	0 4	1,5251	3,3 0	2 5
2,7395	24,3 0	4	1	1,9548	12,0-1	1 4	1,5145	3,2 -3	1 4
2,6842	14,5 1	2	2	1,9471	5,9 0	1 4	1,5113	5,6 2	0 4
2,6359	15,1 - 1	3	2	1,9316	5,0 -2	4 2	1,4985	4,4 2	1 4
2,5750	8,6 -2	0	2	1,8554	6,8 -3	1 2	1,4788	7,2 -3	2 4
2,5690	9,4 0	1	3	1,8461	6,6 1	6 0	1,4530	3,4 4	0 0
2,5192	6,7 -1	1	3	1,8211	21,7-1	6 1	1,4469	2,8 -2	7 1
2 2072	20.6 1	2	2						

$d_{\rm obs} [{\rm \AA}]$	$I \ / \ I_0$	h	k	1	$d_{\rm obs}$ [Å]	I / I_0	h	k	l	$d_{\rm obs} [{\rm \AA}]$	I / I_0	h	k	1
4.7698	2.4	0	0	2	2.4092	2.5 -	2	0	3	1.6085	3.0	0	-4	1
3.6751	7.1 -	- 1	2	0	2.3956	1.8	1	2	0	1.5901	4.6	0	0	6
3.3224	0.8 -	- 1	2	1	2.3015	2.4 -	1	-2	2	1.5828	11.9-	-2	-2	4
3.1805	100.0	0	2	0	2.0950	7.6	0	2	3			0	$^{-4}$	2
3.1645	16.3	0	-2	1	2.0432	2.7 -	2	0	4	1.5719	8.6	4	0	0
3.1429	10.6	2	0	0	1.9175	9.4	2	-2	4	1.5585	6.0 -	-4	4	1
3.1177	32.2 -	-2	0	1	1.8504	29.0-	2	-2	1	1.5390	1.9	2	0	5
3.0650	1.7	1	-2	2	1.8374	33.8	2	$^{-4}$	1	1.5294	9.4	4	-2	3
3.0173	62.9	2	$^{-2}$	1	1.8170	19.3-	4	2	0			0	4	1
2.8868	12.2	0	2	1	1.8093	5.2 -	4	2	1			2	$^{-4}$	4
2.8701	10.4	2	0	1	1.7833	2.2	0	2	4	1.5183	3.3	0	-2	6
2.8562	6.2	0	-2	2	1.7729	3.1 -	2	4	1	1.5079	3.8	4	$^{-4}$	2
2.8121	16.3 -	-2	0	2	1.7482	1.9	3	$^{-4}$	1	1.4944	5.3 -	-4	0	3
2.6544	2.4	2	-2	2	1.7421	3.8 -	2	0	5	1.3924	1.2 -	-2	4	4
2.6240	18.3 -	-2	2	2	1.6622	9.3 -	2	4	2	1.3374	1.7	4	0	3
2.4737	8.1	2	0	2	1.6157	4.4	2	2	2	1.3110	1.4 -	-4	4	4
2.4447	10.9	0	-2	3										

Für die Strukturanalysen wurden die Einkristalle in Glaskapillaren eingeschmolzen. Einkristalldatensätze von $Ag_2Te_4O_{11}$ wurden mit einem IPDS-II-Diffraktometer (Stoe & Cie, Darmstadt, MoK α , Graphitmonochromator), von $Ag_2Te_2O_6$ -I/II mit einem AXS-Diffraktometer mit SMART-CCD (APEX) (Bruker, Karlsruhe, MoK α , Graphitmonochromator, semi-empirische Absorptionskorrektur mit dem Programm SADABS [13]) aufgenommen. Die Strukturlösungen gelangen mit Hilfe Direkter Methoden mit dem Programmpaket SHELXTL 5.1 [14], mit dem auch die Verfeinerung der ermittelten Strukturmodelle über das Least-Squares-Verfahren erfolgte. Zur graphischen Darstellung der Kristallstruktur wurde das Programm Diamond [15] eingesetzt. Details zu den Kristallstrukturuntersuchungen sind in Tab. 3 angegeben, Atomkoordinaten und isotrope bzw. anisotrope Temperaturfaktoren sind in den Tabellen 4 und 5 aufgeführt. Weitere Einzelheiten können beim Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummern, der Autoren und des Zeitschriftenzitats angefordert werden.

Thermische Analyse: Ag₂Te₂O₆-I und Ag₂Te₄O₁₁ wurden mit Argon als Spülgas bei einer Heizrate von 10 °C/min thermisch zersetzt

Tabelle 3 Parameter der Datensammlung und kristallographische Daten für $Ag_2Te_2O_6$ -I, $Ag_2Te_2O_6$ -II und $Ag_2Te_4O_{11}$ (außer für $Ag_2Te_2O_6$ -II alle Gitterkonstanten aus Pulverdaten).

	Ag ₂ Te ₂ O ₆ -I	Ag ₂ Te ₂ O ₆ -II	$Ag_2Te_4O_{11}$
Raumgruppe	$P2_1/n$ (Nr. 14)	$P2_1/m$ (Nr. 11)	<i>P</i> 1 (Nr. 2)
a	5,9099(5) Å	5,4562(5) Å	7,287(4) Å
b	11,6831(8) Å	7,4009(7) Å	7,388(3) Å
С	8,0305(7) Å	6,9122(7) Å	9,686(7) Å
α	90°	90°	95,67(3)°
β	100,424(7)°	101,237(2)°	94,10(3)°
γ	90°	90°	119,40(3)°
Zellvolumen V	545,32(8) Å ³	273,77(5) Å ³	447,7(2)Å ³
Zahl der Formeleinheiten Z	4	2	2
Molmasse	566,94 g/mol	566,94 g/mol	902,14 g/mol
Dichte (berechnet)	6,905 g/cm ³	6,878 g/cm ³	6,692 g/cm ³
Absorptionskoeffizient μ	$17,630 \text{ mm}^{-1}$	$17,559 \text{ mm}^{-1}$	$17,206 \text{ mm}^{-1}$
Meßbereich 2θ	6,22-58,98°	6,00-69,96°	4,26-54,59°
hkl-Grenzen	$-9 \le h \le 9$	$-8 \le h \le 8$	$-9 \le h \le 9$
	$-18 \le k \le 18$	$-11 \le k \le 11$	$-8 \le k \le 9$
	$-12 \le l \le 12$	$-10 \le l \le 10$	$-12 \le l \le 12$
gemessene Reflexe	6593	4349	3747
R(int)	3,30 %	2,84 %	4,09 %
unabhängige Reflexe	1591	1221	1973
unabhängige Reflexe $(I > 2\sigma(I))$	1490	1083	1293
Parameter	92	56	155
Restraints	0	0	12
$R(F) \ (I \ge 2\sigma(I))$	2,74 %	2,84 %	2,51 %
$R_w(F^2) \ (I \ge 2\sigma(I))$	5,86 %	6,16 %	5,42 %
R(F) (alle Daten)	3,13 %	3,40 %	4,81 %
$R_w(F^2)$ (alle Daten)	6,00 %	6,37 %	6,13 %
Goodness-of-fit	1,190	1,098	0,868
Extinktionskoeffizient	0	0,0010(3)	0,0023(1)
max./min. Restelektronendichte	$1,34 / -1,24 e^{-}A^{-3}$	$1,75 / -2,31 e^{-A^{-3}}$	1,39 / −1,96 e [−] A ^{−3}
Wichtung w	$q_1 = 0,022$	$q_1 = 0,027$	$q_1 = 0.031$
	$q_2 = 2,566$	$q_2 = 1,117$	$q_2 = 0$
Hinterlegungsnummer	CSD-415471	CSD-415472	CSD-415473

 Tabelle 4
 Atomkoordinaten und isotrope Temperaturfaktoren

Ag ₂ Te ₂ O ₆ -I	Wyckofflage	x	у	Z	U_{eq}
Ag(1)	4 <i>e</i>	0,35184(8)	0,17231(4)	0,77476(6)	0,01736(12)
Ag(2)	4 <i>e</i>	0,91973(9)	0,14448(4)	0,52816(7)	0,02248(13)
Te(1)	4e	0,40085(6)	0,37696(3)	0,49156(4)	0,00873(10)
Te(2)	4e	0,38047(6)	0,07583(3)	0,31130(4)	0,01060(10)
O(1)	4e	0,1461(7)	0,3149(4)	0,5609(5)	0,0154(8)
O(2)	4e	0,6702(7)	0,4641(3)	0,4441(5)	0,0121(7)
O(3)	4e	0,5246(7)	0,2436(3)	0,4100(5)	0,0137(8)
O(4)	4e	0,5833(7)	0,3535(4)	0,7221(5)	0,0140(8)
O(5)	4e	0,2431(7)	0,4142(3)	0,2637(5)	0,0143(8)
O(6)	4 <i>e</i>	0,2880(7)	0,0443(3)	0,5160(5)	0,0131(8)
Ag ₂ Te ₂ O ₆ -II	Wyckofflage	x	у	Z	U_{eq}
Ag(1)	2 <i>a</i>	0	0	0	0,0334(2)
Ag(2)	2e	0,45005(11)	1/4	0,18808(8)	0,02190(13)
Te(1)	2c	0	0	1/2	0,00665(9)
Te(2)	2e	0,51543(7)	1/4	0,68189(6)	0,00851(10)
O(1)	2e	0,6657(8)	1/4	0,9431(6)	0,0131(8)
O(2)	2e	-0.0989(8)	1/4	0,4380(7)	0,0110(8)
O(3)	4f	0,2305(6)	0,0125(4)	0,3288(4)	0,0108(5)
O(4)	4 <i>f</i>	0,2600(5)	0,0645(4)	0,7240(4)	0,0100(5)
Ag ₂ Te ₄ O ₁₁	Wyckofflage	X	у	Ζ	U_{eq}
Ag(1)	2 <i>i</i>	-0,00196(14)	0,18385(14)	0,35112(9)	0,0186(2)
Ag(2)	2 <i>i</i>	0,7703(2)	0,27899(15)	0,01330(9)	0,0173(2)
Te(1)	2 <i>i</i>	0,50562(11)	0,30576(11)	0,68614(7)	0,0064(2)
Te(2)	2 <i>i</i>	0,49254(11)	0,19063(11)	0,31118(7)	0,0062(2)
Te(3)	2 <i>i</i>	-0.00416(11)	0,31531(11)	0,67227(7)	0,0074(2)
Te(4)	2i	0,22841(11)	0,21430(11)	0,99769(7)	0,0083(2)
O(1)	2i	0,6067(10)	0,3204(10)	0,5054(7)	0,0142(15)
O(2)	2i	0,3932(11)	0,3950(10)	0,2967(7)	0,0114(14)
O(3)	2i	0,4077(10)	0,0065(10)	0,6651(7)	0,0098(13)
O(4)	2i	0,2241(10)	0,2278(10)	0,6213(7)	0,0104(13)
O(5)	2i	0,7917(10)	0,3915(10)	0,7609(6)	0,0088(13)
O(6)	2i	0,2203(10)	0,0084(10)	0,3575(7)	0,0124(14)
O(7)	2 <i>i</i>	0,2233(10)	0,6336(10)	0,7255(7)	0,0120(14)
O(8)	2 <i>i</i>	0,4659(11)	0,3109(11)	0,8813(7)	0,0132(14)
O(9)	2 <i>i</i>	0,4038(11)	0,0970(10)	0,1140(6)	0,0107(13)
O(10)	2 <i>i</i>	0,0642(11)	0,3077(10)	0,8630(7)	0,0132(14)
O(11)	2i	0,0775(10)	-0,0603(10)	0,8981(7)	0,0099(13)

(STA 409, Netzsch, Selb). Als Zersetzungsprodukte wurden jeweils Ag₂TeO₃ und TeO₂ röntgenographisch identifiziert. Die Zersetzungstemperatur sowie der Massenverlust an Sauerstoff betragen für Ag₂Te₂O₆-I: 570 °C/2,71 % (berechnet 2,82 %) und für Ag₂Te₄O₁₁: 580 °C/3,35 % (ber. 3,55 %).

Magnetismus: Magnetische Messungen wurden an einem SQUID-Magnetometer (MPMS 5.5, Quantum Design) zwischen 5 and 350 K in magnetischen Feldern bis zu 5 T durchgeführt. Sämtliche vermessenen Proben von Ag₂Te₂O₆-I und Ag₂Te₄O₁₁ zeigen diamagnetisches Verhalten.

Leitfähigkeit: Die Leitfähigkeit wurde mit der Vier-Punkt-Meßmethode nach Van der Pauw bestimmt. Zur Messung wurden die Proben zu Presslingen von 5 mm Durchmesser und einer Dicke von 1 mm verarbeitet. Ag₂Te₂O₆-I und Ag₂Te₄O₁₁ sind Isolatoren.

Ergebnisse und Diskussion

Durch festkörperchemische Umsetzung von Ag_2O und TeO_2 unter kontrollierten Sauerstoffdrücken gelang die erstmalige Synthese von $AgTeO_3$ (in zwei polymorphen Modifikationen) und von $Ag_2Te_4O_{11}$, sowohl als mikro-kristalline Pulver als auch in Form von Einkristallen.

Die beiden Modifikationen von $AgTeO_3$ sind gelb transparent und enthalten Tellur in den Oxidationsstufen +4

Tabelle 5Anisotrope Temperaturfaktoren [$\mathring{A}^2 \times 10^3$]

Ag-Te-O-I	U.,	<i>U</i>	U.	<i>U</i> .	U.	<i>U</i> .,
	011	022	033	023	013	012
Ag(1)	0,0158(2)	0,0192(2)	0,0168(2)	0,0026(2)	0,0021(2)	0,0002(2)
Ag(2)	0,0178(2)	0,0218(3)	0,0279(3)	0,0039(2)	0,0044(2)	-0,0050(2)
Te(1)	0,0094(2)	0,0073(2)	0,0086(2)	-0,00009(11)	-0,00055(12)	-0,00019(11)
Te(2)	0,0121(2)	0,0107(2)	0,0082(2)	0,00006(12)	-0,00024(12)	-0,00010(12)
O(1)	0,012(2)	0,018(2)	0,017(2)	0,000(2)	0,004(2)	-0,006(2)
O(2)	0,013(2)	0,009(2)	0,015(2)	-0,0005(15)	0,0022(15)	-0,0011(14)
O(3)	0,012(2)	0,011(2)	0,017(2) ·	-0.0035(15)	0,0002(15)	0,0005(15)
O(4)	0,017(2)	0,014(2)	0,011(2)	0,0025(15)	-0,0008(15)	-0.004(2)
O(5)	0,017(2)	0,010(2)	0,014(2)	-0.0013(15)	-0.003(2)	0,001(2)
O(6)	0.017(2)	0,014(2)	0,009(2)	0,0025(14)	0,0036(15)	-0,004(2)
Ag ₂ Te ₂ O ₆ -II	U_{II}	<i>U</i> ₂₂	U33	U ₂₃	U_{I3}	<i>U</i> ₁₂
Ag(1)	0.0295(3)	0.0575(4)	0.0112(2)	0.0042(3)	-0.0006(2)	0.0189(3)
Ag(2)	0.0256(3)	0.0228(3)	0.0200(3)	0	0.0113(2)	0
Te(1)	0.00725(15)	0.0050(2)	0.0080(2)	-0.00025(11)	0.00221(11)	-0.00012(10)
Te(2)	0.0085(2)	0.0087(2)	0.0081(2)	0	0.00085(11)	0
0(1)	0.013(2)	0.017(2)	0.008(2)	0	0.0000(15)	0
0(2)	0.012(2)	0.005(2)	0.015(2)	0	0.000(2)	0
0(3)	0.0125(13)	0.0106(13)	0.0110(13)	0.0015(10)	0.0065(10)	-0.0003(10)
O(4)	0,0104(12)	0,0101(12)	0,0092(13)	0,0004(10)	0,0016(10)	-0,0011(10)
Ag ₂ Te ₄ O ₁₁	U_{II}	<i>U</i> ₂₂	<i>U</i> ₃₃	U_{23}	<i>U</i> ₁₃	<i>U</i> ₁₂
Ag(1)	0.0166(4)	0.0213(5)	0.0175(4)	-0.0004(4)	0.0023(3)	0.0099(4)
Ag(2)	0.0208(5)	0.0203(5)	0.0155(4)	0.0023(3)	0.0039(3)	0.0138(4)
Te(1)	0.0064(3)	0.0059(3)	0.0072(3)	0.0008(2)	0.0012(2)	0.0033(3)
Te(2)	0.0062(3)	0.0046(3)	0.0071(3)	0.0008(2)	0.0013(2)	0.0021(3)
Te(3)	0.0067(3)	0.0069(3)	0.0083(3)	0.0011(2)	0.0009(2)	0.0032(3)
Te(4)	0.0080(3)	0,0068(3)	0.0079(3)	0.0009(2)	0.0010(2)	0.0023(3)
O(1)	0,011(3)	0,011(3)	0,012(3)	-0.001(3)	-0.002(3)	-0.001(3)
0(2)	0.019(4)	0.007(3)	0.009(3)	-0.003(2)	0.002(3)	0.008(3)
0(3)	0.010(2)	0.011(2)	0.012(2)	0.005(2)	0.001(2)	0.008(2)
O(4)	0,009(3)	0,007(3)	0,012(3)	-0.003(2)	0,004(2)	0,002(3)
0(5)	0.007(2)	0.011(2)	0.010(2) ·	-0.002(2)	0.001(2)	0.006(2)
O(6)	0,009(3)	0,007(3)	0,015(3)	0,000(3)	0,003(3)	0,000(3)
O(7)	0,007(3)	0,006(3)	0,024(4)	0,005(3)	0,007(3)	0,003(3)
O(8)	0,007(3)	0,017(3)	0,013(3)	-0.002(3)	0,003(3)	0,004(3)
O(9)	0,017(4)	0,012(3)	0,006(3)	-0,003(2)	-0.005(2)	0,011(3)
O(10)	0,017(3)	0,013(3)	0,015(3)	0,007(3)	0,000(3)	0,010(3)
O(11)	0,015(3)	0,006(3)	0,013(3)	0,007(2)	0,007(3)	0,007(3)

und +6 jeweils im Verhältnis 1:1. Im Folgenden werden sie als $Ag_2Te_2O_6$ -I und -II bezeichnet.

In Ag₂Te₂O₆-I ist das sechswertige Tellur oktaedrisch von Sauerstoff koordiniert. Jedes Oktaeder teilt eine Kante mit einem benachbarten Oktaeder, drei weitere Ecken (O(3), O(4), O(5)) verbrücken zu vierwertigem Tellur (siehe Abb. 1). Te⁴⁺ ist von vier Sauerstoffatomen umgeben; unter Berücksichtigung des freien Elektronenpaares resultiert für Te4+ eine pseudotrigonale Bipyramide, in der das Elektronenpaar erwartungsgemäß eine äquatoriale Position einnimmt. Eine Kante der trigonalen Bipyramide überbrückt zugleich die Spitzen zweier benachbarter Te⁶⁺O₆-Oktaeder. Auf diese Weise werden Te₄O₁₄-Baueinheiten gebildet (vgl. Abb. 1). Die Elektronenpaare sind in freie Kanäle der Struktur gerichtet. Das Verknüpfungsmuster der über freie Ecken verknüpften Doppeloktaeder ist bereits aus Ag₂TeO₄ bekannt, dort sind diese ausschließlich aus Te6+O6-Oktaedern bestehenden Gruppen zu isolierten unendlichen Ketten verknüpft [11]. In der hier vorliegenden Verbindung sind die Te4O14-Einheiten über Ecken zu Schichten verknüpft, die durch Ag⁺ voneinander separiert werden (Abb. 2). Die Silberatome sind unregelmäßig von sechs bzw. sieben Sauerstoffatomen umgeben (Tab. 6). Zwischen den Silberatomen werden mit 2,935 bzw. 2,951 Å relativ kurze Abstände in der Größenordnung derer des metallischen Sil-

Abbildung 1 Te₄O₁₄-Baueinheiten in Ag₂Te₂O₆-I. Diese sind über O(5) und O(6) zu $\frac{2}{2}$ [TeO₃]⁻-Schichten verknüpft. Schwingungsellipsoide mit einer Aufenthaltswahrscheinlichkeit von 50 %. Symmetrieoperatoren: (i) -x+1, -y+1, -z+1; (ii) x+1/2, -y+1/2, z+1/2; (iii) -x+1/2, y+1/2, -z+1/2.

Abbildung 2 Kristallstruktur von $Ag_2Te_2O_6$ -I, angedeutet ist der schichtweise Aufbau aus TeO_4/TeO_6 -Polyedern und Ketten aus Silberatomen.

bers gefunden, die auf schwache Wechselwirkungen zwischen den d¹⁰-konfigurierten Ionen hindeuten könnten [5]. Dies ist insofern bemerkenswert, als derartig kurze Abstände ansonsten nur in silberreichen Verbindungen vorkommen.

Einkristalle einer zweiten, ebenfalls monoklinen Modifikation ($P2_1/m$) von $Ag_2Te_2O_6$ konnten nach Experimenten bei relativ niedrigen Sauerstoffdrücken von 12 MPa isoliert werden. Auch hier ist das sechswertige Tellur oktaedrisch von Sauerstoff umgeben, die Te⁶⁺O₆-Oktaeder sind über gemeinsame, trans-ständige Ecken zu Zickzackketten verknüpft. Wie in Abb. 3 zu erkennen ist, werden diese Ketten durch vierwertiges Tellur zu Schichten verbunden, welche

Tabelle 6 Ausgewählte Bindungen/Å und Winkel/° in Ag₂Te₂O₆-I.

Atome	Abstand	Atome	Abstand
Te(1)-O(1)	1,828(14)	Ag(1)-O(1)	2,539(4)
Te(1) - O(3)	1,887(14)	$Ag(1) - O(3)^{vi}$	2,578(4)
Te(1) - O(5)	1,949(13)	Ag(1) - O(4)	2,596(4)
Te(1) - O(2)	1,978(14)	$Ag(1) - O(1)^{ii}$	2,623(4)
Te(1) - O(4)	1,991(14)	$Ag(2) - O(1)^{viii}$	2,387(4)
$Te(1) - O(2)^{i}$	2,001(14)	$Ag(2) - O(5)^{ii}$	2,419(4)
Te(2) - O(6)	1,850(13)	$Ag(2) - O(6)^{viii}$	2,488(4)
$Te(2) - O(4)^{iv}$	1,951(14)	$Ag(2) - O(6)^{ix}$	2,518(4)
$Te(2) - O(5)^{v}$	2,081(13)	Ag(2) - O(3)	2,625(4)
Te(2) - O(3)	2,223(13)	$Ag(2) - O(4)^{x}$	2,799(4)
$Ag(1) - O(2)^{vi}$	2,463(4)	$Ag(1)-Ag(2)^{vi}$	2,9306(7)
Ag(1) - O(6)	2,532(4)	$Ag(1) - Ag(2)^{vii}$	2,9527(7)
$Ag(1) - O(5)^{ii}$	2,539(4)		
Atome	Winkel	Atome	Winkel
O(1) - Te(1) - O(2)	170,5(2)°	$O(5)^{v} - Te(2) - O(3)$	175,8(2)°
$O(3) - Te(1) - O(2)^{i}$	166,4(2)°	$O(6) - Te(2) - O(4)^{iv}$	91,1(2)°
O(5) - Te(1) - O(4)	173,8(2)°	$O(6) - Te(2) - O(5)^{v}$	86,1(2)°
O(1) - Te(1) - O(3)	99,7(2)°	O(6) - Te(2) - O(3)	90,8(2)°
O(1) - Te(1) - O(5)	95,3(2)°	$O(4)^{iv} - Te(2) - O(5)^{v}$	91,9(2)°
O(1) - Te(1) - O(4)	90,0(2)°	$O(4)^{iv} - Te(2) - O(3)$	91,1(2)°
$O(1) - Te(1) - O(2)^{i}$	93,8(2)°		
O(3) - Te(1) - O(5)	90,4(2)°	$Te(1) - O(2) - Te(1)^{i}$	102,4(2)°
O(3) - Te(1) - O(2)	89,0(2)°	Te(1) - O(3) - Te(2)	134,7(2)°
O(3) - Te(1) - O(4)	91,8(2)°	$Te(1) - O(4) - Te(2)^{ii}$	125,7(2)°
O(5) - Te(1) - O(2)	88,2(2)°	$Te(1) - O(5) - Te(2)^{xi}$	124,0(2)°
$O(5) - Te(1) - O(2)^{i}$	87,0(2)°		
O(2) - Te(1) - O(4)	86,0(2)°	Ag(2)vi-Ag(1)-Ag(2)vii	122,63(2)°
$O(2) - Te(1) - O(2)^{i}$	77,6(2)°	$Ag(1)-Ag(2)^{vii}-Ag(1)^{iv}$	112,23(2)°
$O(4) - Te(1) - O(2)^{i}$	89,5(2)°		

Symmetrieoperationen: (i) -x+1, -y+1, -z+1; (ii) x+1/2, -y+1/2, z+1/2; (iii) -x+1/2, y+1/2, -z+1/2; (iv) x-1/2, -y+1/2, z-1/2; (v) -x+1/2, y-1/2, -z+1/2; (vi) x-1/2, -y+1/2, z+1/2; (vii) x-1, y, z; (viii) x+1, y, z;(ix) -x+1, -y, -z+1; (x) x+1/2, -y+1/2, z-1/2; (xi) -x+1/2, y+1/2, -z+1/2.

wiederum durch Schichten von Silberatomen separiert werden (Abb. 4). Die Te⁴⁺-Atome sind in Form einer angenähert quadratischen Pyramide von Sauerstoff koordiniert, unter Einbeziehung des freien Elektronenpaares ergibt sich ein Pseudooktaeder. Die äquatorialen Sauerstoffliganden der TeO₅-Pyramide werden von den Spitzen von je zwei benachbarten Oktaedern zweier Ketten gebildet, während das Elektronenpaar in die Lücken zwischen den Ketten gerichtet ist. Die anionische Teilstruktur erinnert an das Verknüpfungsmuster in AgAsO₃ [16], wo das Kation (Arsen) ebenfalls in zwei verschiedenen Koordinationspolyedern vorliegt (genauer: hier werden benachbarte AsO₆-Oktaeder in ähnlichen Zickzackketten durch seitlich angelagerte AsO₄-Tetraeder über gemeinsame Ecken verbunden).

Die Silberatome sind unregelmäßig von je sechs Sauerstoffatomen koordiniert. Kurze Abstände zwischen Silberatomen, wie sie in $Ag_2Te_2O_6$ -I gefunden werden, treten hier nicht auf, die kürzesten Ag-Ag-Abstände liegen bei 3,146 Å (Tab. 7).

 $Ag_2Te_2O_6$ -II wurde nur bei einigen Experimenten als Nebenprodukt gefunden. Weitere Modifizierungen der Reaktionsbedingungen ergaben keine Erhöhung des $Ag_2Te_2O_6$ -II-Anteils in den Proben. $Ag_2Te_2O_6$ -II entsteht bei niedrigeren Drücken als Modifikation I, was aufgrund der im Vergleich zu $Ag_2Te_2O_6$ -I geringeren Dichte auch zu erwarten ist. Eine Umwandlung der beiden Formen ineinander

Abbildung 3 Ausschnitt aus der Kristallstruktur von $Ag_2Te_2O_6$ -II. Blick auf eine Schicht aus TeO₆-Oktaederketten und TeO₅-Polyedern senkrecht zu [001].

Abbildung 4:Perspektivische Ansicht der Kristallstruktur von $Ag_2Te_2O_6$ -II entlang [100], angedeutet ist der schichtweise Aufbau aus TeO_5/TeO_6 -Polyedern und Silberatomen.

konnte bisher nicht festgestellt werden, vielmehr zersetzt sich die Hochdruckmodifikation beim Erhitzen in Heizguinier- und DTA-Experimenten auf etwa 570 °C unter Abgabe von Sauerstoff direkt zu Ag₂TeO₃ und TeO₂.

Tabelle 7 Ausgewählte Bindungen/Å und Winkel/° in Ag₂Te₂O₆-II.

Atome	Abstand	Atome	Abstand
Te(1)-O(3)	1,890(3)	Ag(1)-O(3)	2,375(3)
$Te(1) - O(3)^{i}$	1,890(3)	$Ag(1) - O(3)^{v}$	2,375(3)
Te(1) - O(4)	1,945(3)	$Ag(1) - O(1)^{iv}$	2,574(3)
$Te(1) - O(4)^{i}$	1,945(3)	$Ag(1) - O(1)^{vi}$	2,574(3)
Te(1) - O(2)	1,951(3)	$Ag(1) - O(4)^{i}$	2,633(3)
$Te(1) - O(2)^{i}$	1,951(3)	$Ag(1) - O(4)^{vii}$	2,633(3)
Te(2) - O(1)	1,832(4)	$Ag(2) - O(1)^{vii}$	2,242(4)
Te(2) - O(4)	2,017(3)	Ag(2) - O(3)	2,434(3)
$Te(2) - O(4)^{ii}$	2,017(3)	$Ag(2) - O(3)^{ii}$	2,434(3)
$Te(2) - O(3)^{iii}$	2,396(3)	$Ag(2) - O(2)^{viii}$	2,717(3)
$Te(2) - O(3)^{iv}$	2,396(3)	$Ag(2) - O(4)^{iii}$	2,813(3)
Ag(1)-Ag(2)	3,146(1)	$Ag(2)-O(4)^{iv}$	2,813(3)
Atome	Winkel	Atome	Winkel
$O(3) - Te(1) - O(3)^{i}$	180°	$O(4) - Te(2) - O(3)^{iii}$	167,50(11)°
$O(4) - Te(1) - O(4)^{i}$	180°	$O(4)^{ii} - Te(2) - O(3)^{iv}$	167,50(11)°
$O(2) - Te(1) - O(2)^{i}$	180°	O(1) - Te(2) - O(4)	92,68(13)°
O(3) - Te(1) - O(4)	90,88(13)°	$O(1) - Te(2) - O(4)^{ii}$	92,68(13)°
$O(3) - Te(1) - O(4)^{i}$	89,12(13)°	$O(1) - Te(2) - O(3)^{iii}$	83,10(11)°
O(3) - Te(1) - O(2)	90,30(16)°	$O(1) - Te(2) - O(3)^{iv}$	83,10(11)°
$O(3) - Te(1) - O(2)^{i}$	89,70(16)°	$O(4) - Te(2) - O(4)^{ii}$	85,77(17)°
$O(3)^{i} - Te(1) - O(4)$	89,12(13)°	$O(4) - Te(2) - O(3)^{iv}$	82,69(11)°
$O(3)^{i} - Te(1) - O(4)^{i}$	90,88(13)°	$O(4)^{ii} - Te(2) - O(3)^{iii}$	82,69(11)°
$O(3)^{i} - Te(1) - O(2)$	89,70(16)°	$O(3)^{iii} - Te(2) - O(3)^{iv}$	108,35(14)°
$O(3)^{i} - Te(1) - O(2)^{i}$	90,30(16)°		
O(4) - Te(1) - O(2)	94,00(15)°	$Te(1) - O(4) - Te(2)^{v}$	142,93(24)°
$O(4) - Te(1) - O(2)^{i}$	86,00(15)°	$Te(1) - O(3) - Te(2)^{iv}$	116,05(13)°
$O(4)^{i} - Te(1) - O(2)$	86,00(15)°	Te(1) - O(4) - Te(2)	117,99(14)°
$O(4)^{i} - Te(1) - O(2)^{i}$	94,00(15)°		

Symmetrieoperationen: (i) -x, -y, -z+1; (ii) x, -y+1/2, z; (iii) -x+1, y+1/2, -z+1; (iv) -x+1, -y, -z+1; (v) -x, -y, -z; (vi) x-1, y, z-1; (vii) x+1, y, z; (viii) x+1, y, z.

Abbildung 5 Perspektivische Ansicht der Kristallstruktur von $Ag_2Te_4O_{11}$ mit vier $Te^{6+}O_6$ -Oktaederdoppelketten entlang [010], die von $Te^{4+}O_5$ -Pyramiden verbunden werden.

Die zitronengelbe Verbindung $Ag_2Te_4O_{11}$ stellt das Silbertellurat mit dem bislang geringsten Silbergehalt dar. Wie $Ag_2Te_2O_6$ ist auch $Ag_2Te_4O_{11}$ gemischtvalent und enthält Tellur in vier- und sechswertigem Zustand im Verhältnis 1:1. Das beherrschende Strukturmotiv sind Doppelketten entlang [010] aus ausschließlich eckenverknüpften Te⁶⁺O₆-Oktaedern (Abb. 5). Diese werden durch pseudooktaedrisch koordiniertes Te⁴⁺ dreidimensional verbunden, wobei die Spitzen der Te⁶⁺O₆-Oktaeder auf die Te⁴⁺-Ionen gerichtet sind und eine alternierende Verkippung der Oktaederketten resultiert. Die beiden kristallographisch unabhängigen TeO5-Pyramiden verbrücken dabei auf unterschiedliche Weise, Te(3) liegt zwischen zwei Ketten, so daß die äquatorialen Sauerstoffliganden gleichzeitig Ecken zweier Oktaederketten sind, während zwei über eine gemeinsame Kante verbundene Te(4)O₅-Pyramiden insgesamt vier Doppelketten verknüpfen, wie in Abb. 5 angedeutet ist. Über die verbleibenden freien Ecken, einen äquatorialen Liganden an Te(4) sowie die Pyramidenspitze an Te(3), sind die Te⁴⁺-Polyeder miteinander verbrückt. Durch die hier verwirklichte Packung der Polyeder wird vornehmlich eine für den maximalen Abstand zwischen den relativ hochgeladenen Telluratomen günstige Eckenverknüpfung erreicht, in der jedes Sauerstoffatom an genau zwei Tellurnachbarn gebunden ist. Die Silberkationen in den Hohlräumen der Polyederpackung sind auch hier unregelmäßig von sieben bzw. acht Sauerstoffatomen koordiniert (s. Tab. 8).

Allen hier vorgestellten, neuen Verbindungen einschließlich des bereits kürzlich gefundenen Silbertellurats Ag₂TeO₄ ist das Strukturmerkmal des oktaedrisch koordinierten Te⁶⁺ gemeinsam, ebenfalls wird in allen Te⁴⁺-enthaltenden Strukturen eine deutlich strukturdirigierende Wirkung des freien Elektronenpaares beobachtet. Dies äußert sich neben den großen Lücken in der Kristallstruktur auch in der mit steigendem Te4+-Anteil an der Gesamtverbindung abnehmenden Symmetrie. Silber übt offensichtlich nur einen schwach strukturbestimmenden Einfluß aus und dient hier vor allem dem Ladungsausgleich. Dafür, daß es hier die Rolle eines "normalen" geschlossenschaligen Kations übernimmt, spricht auch seine unregelmäßige und hohe Sauerstoffkoordination, die hier durchweg den sonst für Silber häufig beobachteten kleineren Koordinationszahlen vorgezogen wird. Gleichwohl deutet einiges auf einen "weichen" steuernden Einfluß von Silber hin, wie z. B. die teils deutliche Separierung in kationische und anionische Teilstrukturen einhergehend mit dem Auftreten kurzer Ag-Ag-Abstände nahe denen des metallischen Silbers sowie schließlich die Tatsache, daß sämtliche Oxotelluratteilstrukturen vorher noch nicht beobachtet wurden. Die hier vorgestellten Verbindungen sind damit weitere Belege für die reichhaltige und ungewöhnliche Strukturchemie, wie sie von ternären Silberoxiden entfaltet wird.

Im Fall von Tellur wird eine besonders große Zahl stabiler Verbindungen angetroffen [17]. Neben dem Auftreten zweier Oxidationsstufen dürfte ein wesentlicher Grund dafür sein, daß die für die vorliegenden Zusammensetzungen AgTeO₃ und Ag₂TeO₄ besonders günstigen Strukturtypen, z. B. Perowskit, Spinell oder Thenardit, hier aus naheliegenden Gründen nicht realisiert werden können. Eine ähnlich große Zahl von Verbindungen ist ansonsten nur im ternären System Ag-Bi-O bekannt [18–21], wo die Verhältnisse den hier gefundenen gleichen mit Bismut in zwei Oxidationsstufen, teilweise auch nebeneinander in einer Verbindung, sowie einer Reihe von Beispielen mit ansonsten unbekannten Strukturmotiven für die Oxobismutatanionen. Die ange-

Tabelle 8 Ausgewählte Bindungen/Å und Winkel/° in $Ag_2Te_4O_{11}$.

Atome	Abstand	Atome	Abstand
Te(1) - O(4)	1,876(7)	Te(2) - O(6)	1,890(6)
Te(1) - O(5)	1,915(6)	$Te(2) - O(7)^{1}$	1,912(6)
Te(1) - O(8)	1,932(6)	Te(2) - O(9)	1,915(6)
Te(1) - O(1)	1,939(7)	$Te(2) - O(3)^{n}$	1,945(6)
$Te(1) - O(2)^{i}$	1,942(6)	Te(2) - O(1)	1,946(7)
Te(1) - O(3)	1,944(6)	Te(2) - O(2)	1,980(7)
Te(3) - O(10)	1,892(7)	Te(4) - O(11)	1,878(7)
$Te(3) - O(5)^{iii}$	2,043(6)	Te(4) - O(8)	2,000(6)
Te(3) - O(7)	2,087(6)	Te(4) - O(10)	2,092(7)
$Te(3) - O(6)^{iv}$	2,094(6)	$Te(4) - O(9)^{v}$	2,174(7)
Te(3) - O(4)	2,130(7)	$Te(4) - O(11)^{vi}$	2,311(6)
$Ag(1) - O(11)^{iv}$	2,417(7)	$Ag(2) - O(7)^{i}$	2,540(7)
Ag(1) - O(6)	2,524(7)	$Ag(2) - O(11)^{ii}$	2,545(7)
$Ag(1) - O(3)^{iv}$	2,560(7)	$Ag(2) - O(9)^{viii}$	2,547(7)
Ag(1) - O(2)	2,641(7)	$Ag(2) - O(8)^{ix}$	2,604(7)
$Ag(1) - O(7)^{vii}$	2,671(7)	$Ag(2) - O(10)^{x}$	2,610(7)
$Ag(1) - O(4)^{iv}$	2,707(7)	Ag(2) - O(9)	2,645(7)
Ag(1) - O(4)	2,891(7)	$Ag(2) - O(5)^{ix}$	2,650(7)
	, , ,	$Ag(2) = O(10)^{i}$	2,770(7)
Atome	Winkel	Atome	Winkel
O(4) - Te(1) - O(5)	177,2(3)°	$O(6) - Te(2) - O(7)^{i}$	175,6(3)°
O(8) - Te(1) - O(1)	168,0(3)°	O(9) - Te(2) - O(1)	172,8(3)°
$O(2)^{i} - Te(1) - O(3)$	178,7(3)°	$O(3)^{ii} - Te(2) - O(2)$	177,3(3)°
O(4) - Te(1) - O(8)	94,5(3)°	O(6) - Te(2) - O(9)	93,4(3)°
O(4) - Te(1) - O(1)	97,5(3)°	$O(6) - Te(2) - O(3)^{ii}$	93,3(3)°
$O(4) - Te(1) - O(2)^{i}$	94,0(3)°	O(6) - Te(2) - O(1)	92,6(3)°
O(4) - Te(1) - O(3)	86,4(3)°	O(6) - Te(2) - O(2)	86,2(3)°
O(5) - Te(1) - O(8)	83,0(3)°	$O(7)^{i} - Te(2) - O(9)$	89,3(3)°
O(5) - Te(1) - O(1)	85.0(3)°	$O(7)^{i} - Te(2) - O(3)^{ii}$	83.0(3)°
$O(5) - Te(1) - O(2)^{i}$	84.9(3)°	$O(7)^{i} - Te(2) - O(1)$	84.9(3)°
O(5) - Te(1) - O(3)	94.8(3)°	$O(7)^{i} - Te(2) - O(2)$	97,4(3)°
$O(8) - Te(1) - O(2)^{i}$	90.4(3)°	$O(9) - O(4) - O(3)^{ii}$	94.1(3)°
O(8) - Te(1) - O(3)	90.9(3)°	O(9) - O(3) - O(2)	88.6(3)°
$O(1) - Te(1) - O(2)^{i}$	88.2(3)°	$O(3)^{ii} - O(4) - O(1)$	89.6(3)°
$O(1)^{i} - Te(1) - O(3)$	90.5(3)°	O(1) - Te(2) - O(2)	87.8(3)°
$O(5)^{iii} - Te(3) - O(4)$	168.5(3)°	$O(8) - Te(4) - O(11)^{vi}$	170.8(3)°
$O(7) - Te(3) - O(6)^{iv}$	173.2(3)°	$O(10) - Te(4) - O(9)^{v}$	172.8(3)°
$O(10) - Te(3) - O(5)^{iii}$	79.6(3)°	O(11) - Te(4) - O(8)	94.3(3)°
O(10) - Te(3) - O(7)	83 4(3)°	O(11) - Te(4) - O(10)	90 4(3)°
$O(10) - Te(3) - O(6)^{iv}$	89.8(3)°	$O(11) - Te(4) - O(9)^{v}$	84 5(3)°
O(10) - Te(3) - O(4)	89 0(3)°	$O(11) - Te(4) - O(11)^{vi}$	77 1(3)°
$O(5)^{iii} - Te(3) - O(7)$	86.2(3)°	O(8) - Te(4) - O(10)	90.6(3)°
$O(5)^{iii} - Te(3) - O(6)^{iv}$	93 7(3)°	$O(8) - Te(4) - O(9)^{v}$	84 7(3)°
O(7) - Te(3) - O(4)	93 4(3)°	$O(10) - Te(4) - O(11)^{vi}$	86 3(3)°
$O(6)^{iv} - Te(3) - O(4)$	85 3(3)°	$O(9)^{v} - Te(4) - O(11)^{vi}$	97 6(2)°
Te(1) - O(1) - Te(2)	138.3(4)°	$Te(1)^{i} - O(2) - Te(2)$	142.3(4)°
$Te(1) - O(3) - Te(2)^{ii}$	141 9(4)°	Te(1) - O(4) - Te(3)	138 1(3)°
$Te(1) = O(5) = Te(3)^{xi}$	127 5(3)°	$Te(2) = O(6) = Te(3)^{iv}$	$137.6(4)^{\circ}$
$Te(2)^{i} - O(7) - Te(3)$	135 4(4)°	Te(1) - O(8) - Te(4)	139 1(4)
$Te(2) = O(9) - Te(3)^{ix}$	120 0(3)°	Te(3) - O(10) - Te(4)	143 4(4)°
$Te(4) - O(11) - Te(4)^{vi}$	102,9(3)°		1,12,1(4)

Symmetrieoperationen: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) x-1, y, z; (iv) -x, -y, -z+1; (v) x, y, z+1; (vi) -x, -y, -z+2; (vii) -x, -y+1, -z+1; (viii) -x+1, -y, -z; (ix) x, y, z-1; (x) x+1, y, z-1; (xi) x+1, y, z.

wandte Synthesemethode bietet hierbei einen vorteilhaften Zugang, da sich die angestrebte Oxidationsstufe von Tellur durch Variieren von Sauerstoffdruck und Temperatur einstellen läßt. In dieser Eigenschaft besteht ein deutlicher Unterschied zu anderen ternären Systemen, in denen bei Druckerniedrigung Silber (teil-)reduziert wird, so daß Verbindungen mit subvalentem Silber resultieren.

Wir danken B. I. Hinrichsen, H. und Dr. J. Nuss für die Einkristalldatensammlungen.

Literatur

- T. Atou, H. Faqir, M. Kikuchi, H. Chiba, Y. Syono, *Mater. Res. Bull.* **1998**, *33*, 289.
- [2] V. P. Itkin, C. B. Alcock, J. Phase Equil. 1996, 17, 533.
- [3] R. E. Dinnebier, S. Carlson, M. Hanfland, M. Jansen, Am. Mineral. 2003, 88, 996.
- [4] M. Jansen, J. Less-Common Met. 1980, 76, 285.
- [5] M. Jansen, Angew. Chem. 1987, 99, 1136; Angew. Chem. Int. Ed. Engl. 1987, 26, 1098.
- [6] S. Ahlert, W. Klein, O. Jepsen, O. Gunnarsson, O. K. Andersen, M. Jansen, *Angew. Chem.* 2003, 115, 4458; *Angew. Chem. Int. Ed. Engl.* 2003, 42, 4322.
- [7] M. Bortz, M. Jansen, Angew. Chem. 1991, 103, 841; Angew. Chem. Int. Ed. Engl. 1991, 30, 883.
- [8] M. Bortz, M. Jansen, Z. Anorg. Allg. Chem. 1992, 612, 113.
- [9] S. Deibele, M. Jansen, HASYLAB Jahresbericht Teil II, HASYLAB, DESY, Hamburg, 1995.

- [10] R. Masse, J. C. Guitel, I. Tordjman, Mater. Res. Bull. 1980, 15, 431.
- [11] W. Klein, J. Curda, E.-M. Peters, M. Jansen, Z. Anorg. Allg. Chem. 2005, 631, 723.
- [12] C. Linke, M. Jansen, Z. Anorg. Allg. Chem. 1997, 623, 1441.
- [13] SADABS, G. M. Sheldrick, Bruker AXS Inc., Madison, WI, 2000.
- [14] SHELXTL Version 5.1, Bruker AXS Inc., Madison, Wisconsin, USA, 1997.
- [15] Diamond 2.1e, K. Brandenburg, Crystal Impact GbR, Bonn 2001.
- [16] J. Curda, E.-M. Peters, M. Jansen, Z. Anorg. Allg. Chem. 2004, 630, 491.
- [17] W. Klein, J. Curda, E.-M. Peters, M. Jansen, Z. Anorg. Allg. Chem. in Vorbereitung.
- [18] R. Scholder, H. Stobbe, Z. Anorg. Allg. Chem. 1941, 247, 392.
- [19] M. Bortz, M. Jansen, Z. Anorg. Allg. Chem. 1993, 619, 1446.
- [20] M. Jansen, S. Deibele, Z. Anorg. Allg. Chem. 1996, 622, 539.
- [21] S. Deibele, M. Jansen, J. Solid State Chem. 1999, 147, 117.