Published on 01 January 1991. Downloaded by Carnegie Mellon University on 22/10/2014 11:14:44.

Novel Synthesis of Phenol Derivatives by Palladium-catalysed Cyclocarbonylation of Penta-2,4-dienyl Acetates

Youichi Ishii, Chao Gao, Masakazu Iwasaki and Masanobu Hidai*

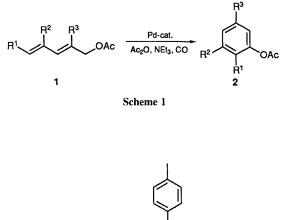
Department of Synthetic Chemistry, Faculty of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Palladium-catalysed cyclocarbonylation of penta-2,4-dienyl acetates in the presence of NEt₃ and Ac₂O selectively gives phenyl acetates in good yields.

Catalytic cyclocarbonylation has been attracting much attention in recent years because of its potentiality as a synthetic tool.^{1–3}. We have recently developed palladium-catalysed cyclocarbonylation of 3-arylallyl acetates and bromides such as cinnamyl acetate to give fused aromatic compounds *via* acylation of the aryl group forming a new six-membered ring.^{4–6} During the course of our extensive study on the palladium-catalysed cyclocarbonylation, we have now found a new type of cyclocarbonylation of penta-2,4-dienyl acetates 1 to give selectively phenyl acetates 2 as six-membered cyclization products (Scheme 1).

In the presence of NEt₃, Ac₂O and a catalytic amount of $PdCl_2(PPh_3)_2$, 5-phenylpenta-2,4-dienyl acetate **1a** was smoothly cyclocarbonylated to give 2-acetoxybiphenyl **2a**.[†]

No other identifiable product was detected by GC analysis. Reaction temperatures of 120–140 °C were adequate for the reaction, and Ac₂O and NEt₃ were both essential to obtain the carbonylation product in a high yield.[‡] Palladium and platinum phosphine complexes such as $PdCl_2(PPh_3)_2$ and $PtCl_2(PPh_3)_2$ proved to be effective catalysts, whereas some ruthenium complexes such as $RuCl_2(PPh_3)_3$ showed low catalytic activities. Other group 8 metal compounds including $NiBr_2(PPh_3)_2$ and $RhCl(PPh_3)_3$ were inactive. It should be noted that the acetate **1a** was converted to **2a** in much higher yield than the corresponding chloride (33%) or ethyl carbonate (29%), although allylic acetates have been claimed to be poor substrates for carbonylation reactions.^{7–9}


[†] All the substrates and products of the cyclocarbonylation were fully characterized by ¹H NMR, ¹³C NMR and IR spectroscopy, and high-resolution electron-impact mass spectrometry.

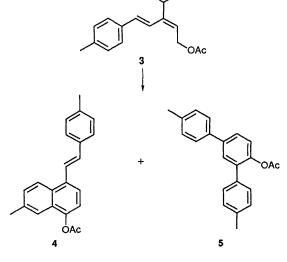
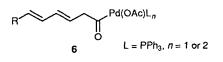

 $[\]ddagger$ A reaction in the absence of Ac₂O gave biphenyl-2-ol in 16% and 2 in 11% yield (conv. 100%) as identifiable products, while a reaction in the absence of NEt₃ gave 2 in 9% (based on the starting substrate 1, conv. 52%).

Table 1 Cyclocarbonylation of substituted penta-2,4-dienyl acetates^a

Run	Substrate	R ¹	R ²	R ³	Yield ^b (%)
1	1a	Ph	Н	Н	69 (74)
2	1b	p-MeO-C ₆ H ₄	Н	Н	73
3	1c	o-Cl-C ₆ H ₄	Η	Н	84
4	1d	Ph	Me	Н	57
5	1e	Ph	Н	Me	46
6	1f	1-Naphthyl	Н	Н	79
7	1g	2-Furyl	Н	Н	57
8	1ĥ	Me	Н	Н	51¢
9	1j	Н	Me	Me	40
10	1j	BunCH=CH	Н	Н	52 ^d


^{*a*} Reaction conditions: Substrate 3 mmol, PdCl₂(PPh₃)₂ 0.09 mmol, Ac₂O 6 mmol, NEt₃ 6.6 mmol, benzene 5 ml, CO 50 atm, 140 °C, 3 h. ^{*b*} Isolated yield; GC yield in parentheses. ^{*c*} Benzene (2 ml) was used as the solvent. ^{*d*} trans: cis ratio = 79:21.

Scheme 2

As shown in Table 1, various substituted phenyl esters were obtained in moderate to high yields by this unique cyclocarbonylation.[†] Especially, 5-arylpenta-2,4-dienyl acetates are good substrates for this reaction and substitutents at the 2- or 4-position of the substrates seem to lower the yields of the products. In the reaction of *trans,trans,trans*-undeca-2,4,6-trienyl acetate 1j, the six-membered ring formation again exclusively occurred to give o-(hex-1-enyl)phenyl acetate 2j, but the product was a mixture of the *cis* and *trans* isomers (run 10). It is noteworthy that the present carbonylation is

applicable to the synthesis of 3,5- and 2,3-disubstituted phenyl acetates (runs 4 and 9), which are difficult to prepare by conventional electrophilic substitution reactions of phenol. This exemplifies the effectiveness of our cyclocarbonylation as a synthetic method for substituted phenols. However, when (2E,4E)-3,5-di(*p*-tolyl)penta-2,4-dienyl acetate **3** was carbonylated under similar reaction conditions, cyclization towards the tolyl group at the 3-position⁴ competed with the phenyl acetate formation to give naphthyl acetate **4** (17%) concurrent with the expected 2,4-di(*p*-tolyl)phenyl acetate† **5** (38%) in spite of *E* configuration of the substrate (Scheme 2).

Previously, Negishi reported that palladium-catalysed cyclocarbonylation of *cis*-penta-2,4-dienyl chlorides in the presence of MeOH and NEt₃ yields cyclopentenone derivatives, and that the *cis* configuration of the substrates is required for the cyclization.¹⁰ Although the catalytic systems are closely related to each other, the cyclocarbonylation described here is in sharp contrast to Negishi's reaction in that only the six-membered products, but not the five-membered ones, are selectively obtained and that substrates of the *trans* configuration undergo smoothly the cyclization. The latter point is especially advantageous from a synthetic point of view. As expected, carbonylation of **1a** under Negishi's conditions resulted in the formation of methyl (3E,5E)-6-phenylhexa-3,5-dienoate (60%) and methyl (2E,4E)-6-phenylhexa-2,4-dienoate (13%).

The present reaction is considered to proceed *via* a hexadienoylpalladium complex **6**, which is generated by oxidative addition of a pentadienyl acetate to a Pd⁰ species followed by CO insertion. In the absence of a nucleophile such as MeOH, the hexadienoylpalladium complex would undergo *cis-trans* isomerization of the internal double bond and intramolecular insertion of the terminal C=C double bond into the Pd-C bond. Subsequent β -elimination gives a cyclohexadienone, which tautomerizes to afford the corresponding phenol and is finally acetylated by Ac₂O. We must await further investigation to elucidate the reason why the hexadienoyl palladium species selectively cyclizes to form a six-membered ring but not a five-membered one under the present reaction conditions.

We are grateful for financial support from a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

Received, 20th February 1996; Com. 1/00817J

References

- 1 P. Hong, B. Cho and H. Yamazaki, Chem. Lett., 1979, 339.
- 2 G. G. Arzoumanidis and F. C. Rauch, J. Mol. Catal., 1980, 9, 335.
- 3 K. Doyama, K. Fujiwara, T. Joh, K. Maeshima and S. Takahashi, *Chem. Lett.*, 1988, 901.
- 4 H. Matsuzaka, Y. Hiroe, M. Iwasaki, Y. Ishii, Y. Koyasu and M. Hidai, J. Org. Chem., 1988, 53, 3832.
- 5 M. Iwasaki, H. Matsuzaka, Y. Hiroe, Y. Ishii, Y. Koyasu and M. Hidai, *Chem. Lett.*, 1988, 1159.
- 6 M. Iwasaki, J.-P. Li, Y. Kobayashi, H. Matsuzaka, Y. Ishii and M. Hidai, J. Org. Chem., 1991, 56, 1922.
 7 S. Murahashi, Y. Imada, Y. Taniguchi and S. Higashiura,
- 7 S. Murahashi, Y. Imada, Y. Taniguchi and S. Higashiura, *Tetrahedron Lett.*, 1988, **29**, 4945.
- 8 L. S. Hegedus, R. Tamura, Organometallics, 1982, 1, 1188.
- 9 J. Tsuji, K. Sato and H. Okumoto, J. Org. Chem., 1984, 49, 1341.
- 10 E. Negishi, G. Wu and J. M. Tour, Tetrahedron Lett., 1988, 29, 6745.