Received: October 1, 1990; accepted: November 15, 1990

PRELIMINARY NOTE

Addition of 1,2-Dibromotetrafluoroethane to Alkynes by means of a Redox System

CHANG-MING HU*, YAO-LING QIU and FENG-LING QING

Shanghai Institute of Organic Chemistry, Academic Sinica, 345 LingLing Lu, Shanghai 200032 (China)

SUMMARY

The addition of 1,2-dibromotetrafluoroethane (1) to various terminal alkynes (2a - 2j) was performed in DMF with a redox system $(NH_4)_2S_2O_8/HCO_2Na\cdot 2H_2O$ at 40°C. The products (3) were 1:1 adducts reductively debrominated under the reaction conditions, with the E isomers in predominance, and were obtained in excellent yields (82 - 93%).

Polyfluoroalkylation of carbon-carbon multiple bonds is effected by photolysis, pyrolysis, electrolysis, free radical initiators or transition-metal complexes as catalysts [1]. Though redox systems have been used extensively in the telomerization and polymerization of fluorine-containing monomers [2], few additions of polyhalofluoroalkanes to multiple bonds initiated by redox systems are known. Burton <u>et al</u> found that copper chloride - ethanolamine could catalyze the addition of polyfluoroalkyl iodides or bromides to alkenes in t-butanol, but no addition adducts could be obtained when such a redox system was applied to the polyfluoroalkylation of simple alkynes [3].

0022-1139/91/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

In recent years our work [4] shows that redox systems are very effective in such additions. Here the addition of 1,2-dibromotetrafluoroethane (1) to alkynes (2) initiated by the ammonium peroxydisulfate - sodium formate redox couple is reported. Such an addition reaction can be performed under mild conditions and it offers a simple and effective method for the synthesis of many organofluorine compounds containing various active functional groups.

 $(NH_4)_2S_2O_8/HCO_2Na$ $CF_2BrCF_2Br + HCECR \longrightarrow CF_2BrCF_2CH-CHR$ (1)
(2)
(3)
(Z/E)

A typical procedure is as follows: A mixture of (1) (2.60g, 10mmol), propargyl methyl ether (2e) (0.42m, 5mmol), $(NH_4)_2S_2O_8$ (2.5g, 11mmol) and $HCO_2Na \cdot 2H_2O$ (1.0g, 10mmol) in 20ml DMF was stirred at 40°C for 5h. Then the mixture was poured into water and extracted with ether. The extract was washed and dried. Distillation under reduced pressure gave 1.31g (87.6% yield) of $CF_2BrCF_2CH-CHCH_2OCH_3$ (3e). Anal. for $C_6H_7F_4OBr$: Calcd: C, 28.71; H, 2.81; F, 30.27. Found: C, 28.78; H, 2.67; F, 30.53. IR(film): $1680(m, CH-CH)cm^{-1}$. ¹H NMR(net, TMS as external standard): 5.8-6.8(m, 2H, CH-CH), 4.0-4.4(m, 2H, CH₂), 3.50(s, 3H, OCH₃)ppm. ¹⁹F NMR(net, TFA as external standard and positive for upfield shifts): $-10(s, 2F, CF_2Br)$, $30(s, CF_2CH-CH, Z-isomer)$, $33(s, CF_2CH-CH, E-isomer)$ ppm. MS m/e(fragment); relative intensity): 249(M-1, 38.1), 171(M-Br, 12.9), 91(CF_2CH-CHCH_2+1, 22.52), 45 (CH₂OCH₃, 100).

As shown in Table 1, by controlling the molar ratio of the reactants, 1:1 adducts (3), reductively debrominated, were obtained in excellent yields with the E-isomers in predominance. In most cases, the reaction was completed within a few hours. If the hydroxyl group in propargyl alcohol (Entry 3) was pro-

296

TABLE 1

Entry	R	Time (h)	Conv. ^b (%)	Adduct (Z:E)	Yield ^d (%)
1	n-C4H9(2a)	3.5	100	32:68 ^c	91.3
2	SiMe ₃ (2b)	6.5	80	61:39 ^b	82
3	CH ₂ OH(2c)	8.5	60	16:84 ^b	91
4	CH ₂ CH ₂ OH(2d)	4	100	34:66 ^b	90
5	CH ₂ OCH ₃ (2e)	5	100	17:83 ^{b,c}	87.6
6	CH ₂ OAc(2f)	3.5	100	21:79 ^b	87.8
7	CH ₂ C1(2g)	14	100	6 :94 ^c	88
8	CH ₂ Ph(2h)	4	100	27:73 ^b	88
9	- CH ₂ NEt ₂ (21)	e	_		
10	CH2-(2	j) 3	100	35:65 ^c	86

Addition of CF_2BrCF_2Br (1) to alkynes $CH \blacksquare CR$ (2) to give adducts $CF_2BrCF_2CH=CHR$ (3) a

^a The structure was confirmed by spectra and elemental analysis.

- ^b Determined by ¹⁹F NMR.
- ^c Determined by GC.

d Isolated yield based on alkynes.

^e Polymeric substance was obtained.

tected as in entries 5-6, the conversion could be markedly improved. Thus this method affords a convenient approach to the synthesis of many fluorine-containing synthons.

The reaction is likely to proceed through the following mechanism:

$$S_{2}O_{8}^{-} + 2HCO_{2}^{-} - 2HSO_{4}^{-} + 2CO_{2}^{-}$$

(1) + $CO_{2}^{-} - CF_{2}BrCF_{2} \cdot + Br^{-} + CO_{2}$
(2)
 $CF_{2}BrCF_{2}CH - CR - H^{''}$
(3)

```
1 See references cited in: C. P. Andrieux, L. Gelis,
M. Medebielle, J. Pinson and J.-M. Saveant, J. Am. Chem.
Soc., <u>112</u> (1990) 3509.
```

298

- 2 A. Battais, B. Boutevin, Y. Pietrasanta, R. Bertocchio and A. Lantz, J. Fluorine Chem., <u>42</u> (1989) 215.
- 3 D. J. Burton and L. J. Kehoe, J. Org. Chem., <u>35</u> (1970) 1339 Idem., ibid., <u>36</u> (1971) 2596.
- 4 C. M. Hu and F. L. Qing, Tetrahedron Lett., <u>31</u> (1990) 1307.