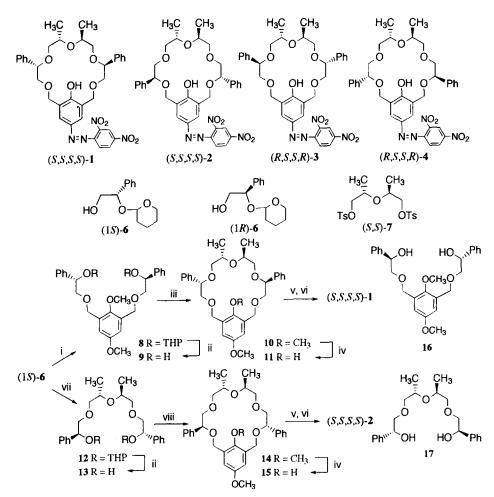


Preparation of homochiral azophenolic crown ethers containing 1phenylethane-1,2-diol and 2,4-dimethyl-3-oxapentane-1,5-diol as a chiral subunit: enantiomer recognition behaviour towards chiral 2aminoethanol derivatives

Koichiro Naemura,* Kazuko Ogasahara, Keiji Hirose[†] and Yoshito Tobe Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan


Abstract: Enantiomerically pure azophenolic crown ethers 1–4 containing (S)- or (R)-1-phenylethane-1,2-diol moieties and (2S,4S)-2,4-dimethyl-3-oxapentane-1,5-diol moiety as a chiral subunit were prepared; crown ethers (S,S,S,S)-1 showed high chiral recognition behaviour in complexation with 2-substituted 2-aminoethanol derivatives. © 1997 Published by Elsevier Science Ltd. All rights reserved.

A variety of chiral molecular receptors possessing a well-defined three dimensional cavity have recently been prepared and their characteristic complexation with chiral guests has been studied,¹ while chiral crown ethers possessing a planar binding cavity are still of interest for obtaining basic information on chiral recognition behaviour in complexation. We are also seeking a crown ether of 18-crown-6 type showing high chiral recognition and have prepared homochiral crown ethers using various types of chiral subunits.² Herein we report the preparation of enantiomerically pure azophenolic crown ethers 1-4 containing (S)- or (R)-1-phenylethane-1,2-diol moieties and (2S,4S)-2,4-dimethyl-3-oxapentane-1,5-diol moiety as a chiral subunit. These crown ethers also contain a phenol moiety possessing an intra-annular OH group as a binding site towards neutral amines, and an additional 2,4-dinitrophenylazo group was introduced at its *para*-position which also serves as a chromophore, enhancing the binding ability. Their chiral recognition behaviour in complexation with 2-aminoethanol derivatives is examined.

Chiral subunits (1*S*)-6 and (1*R*)-6 were prepared from (*S*)- and (*R*)-mandelic acid, respectively, as the mixture of the diastereoisomers³ and used without separation of diastereoisomers. Condensation of 2 mol equiv. of (1*S*)-6 with 1,3-bis(bromomethyl)-2,5-dimethoxybenzene in the presence of NaH in boiling THF gave 8, which was treated with methanol containing a small amount of hydrochloric acid to give (*S*,*S*)-9, $[\alpha]_D^{22}$ +39.3 (10⁻¹ deg cm² g⁻¹) (CHCl₃) in 57% overall yield. High-dilution condensation of (*S*,*S*)-9 with (*S*,*S*)-7, $[\alpha]_D^{29}$ +3.40 (CHCl₃), prepared from ethyl (*S*)-lactate,⁴ in the presence of NaH and KBF₄ in DMF at 100°C gave crown ether (*S*,*S*,*S*,*S*)-10, $[\alpha]_D^{22}$ +143 (CHCl₃) in 37% yield. Demethylation of (*S*,*S*,*S*,*S*)-10 with sodium ethanethiolate in DMF at 90°C⁵ gave phenolic crown ether (*S*,*S*,*S*,*S*)-11, $[\alpha]_D^{22}$ +133 (CHCl₃) in 80% yield. By oxidation with cerium(IV) ammonium nitrate (CAN) in acetonitrile followed by treatment with 2,4-dinitrophenylhydrazine and H₂SO₄ in a mixture of methylene dichloride and ethanol, (*S*,*S*,*S*,*S*)-11 was converted to azophenolic crown ether (*S*,*S*,*S*,*S*)-1⁶ in 81% yield after purification on silica gel column chromatography and preparative recycling HPLC. Similarly, condensation of 2 mol equiv. of (1*S*)-6 with (*S*,*S*)-7 followed by removal of the protecting group gave (*S*,*S*,*S*)-13, $[\alpha]_D^{25}$ +94.0 (CHCl₃) in 28% overall yield via 12. Highdilution condensation of (*S*,*S*,*S*,*S*)-15, $[\alpha]_D^{25}$ +133 (CHCl₃) in 25% overall yield via (*S*,*S*,*S*,*S*)-14, $[\alpha]_D^{25}$

^{*} Corresponding author.

[†] Email: hirose@chem.es.osaka-u.ac.jp

Scheme 1. Reagents: i, 1,3-bis(bromomethyl)-2,5-dimethoxybenzene, NaH; ii, MeOH, HCl; iii, (S,S)-7, NaH, KBF4; iv, C2H5SH, NaH; v, CAN; vi, 2,4-dinitrophenylhydrazine; vii, (S,S)-7, NaH; viii, 1,3-bis(bromomethyl)-2,5-dimethoxybenzene, NaH, KBF4.

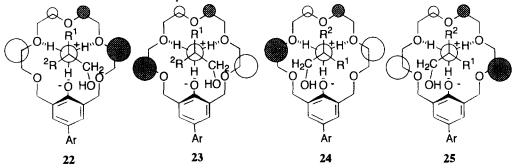
+143 (CHCl₃). Azophenolic crown ether (S,S,S,S)-2⁶ was prepared from (S,S,S,S)-15 in 74% overall yield by treating successively with CAN and with 2,4-dinitrophenylhydrazine.

Using (1*R*)-6 and (*S*,*S*)-7 as a chiral subunit, (*R*,*S*,*S*,*R*)-3⁶ and (*R*,*S*,*S*,*R*)-4⁶ were prepared via (*R*,*R*)-16, $[\alpha]_D^{25} - 37.3$ (CHCl₃) and (*R*,*S*,*S*,*R*)-17, $[\alpha]_D^{25} - 59.6$ (CHCl₃), respectively, by a similar sequence of reactions to that described in Scheme 1.

Since crown ethers 1–4 showed rather large binding ability towards amines having a bulky substituent, the association constants for their complexes with chiral 2-aminoethanol derivatives were determined by the Rose–Drago method⁷ on the basis of the absorption in the UV–visible spectrum in chloroform at 25°C. The observed Ka-values together with the λ max-values for complexes are summarized in Table 1.

The data listed in Table 1 demonstrate that the arrangement of chiral barriers on the polyether framework affected markedly the enantiomer selectivity towards 2-substituted 2-aminoethanol derivatives 19, 20 and 21; the enantiomer selectivities of crown ethers (S,S,S,S)-1 and (R,S,S,R)-3 possessing phenyl barriers located near the diethylene glycol bridge were higher than those of crown ethers

crown ether	amine"	$Ka^{R} (\lambda max/nm)^{b}$	Ka ^s (λmax/nm) ^b	Ka ^R /Ka ^S	$\Delta\Delta G^{\circ}$ kcal mol ⁻¹
(S,S,S,S)-1	18	5.95x10 ³ (560)	2.54x10 ³ (564)	2.3	0.50
(<i>S</i> , <i>S</i> , <i>S</i> , <i>S</i>)-1	19	9.55x10 ³ (558)	1.55x10 ³ (570)	6.2	1.1
(S,S,S,S)-1	20	1.57x10 ³ (564)	3.06x10 ² (569)	5.1	0.97
(<i>S</i> , <i>S</i> , <i>S</i> , <i>S</i>)-1	21	4.76x10 ³ (558)	4.10x10 ² (567)	11.6	1.5
(<i>S</i> , <i>S</i> , <i>S</i> , <i>S</i>)-2	18	3.96x10 ³ (565)	1.69x10 ³ (563)	2.3	0.50
(<i>S</i> , <i>S</i> , <i>S</i> , <i>S</i>)- 2	19	4.63x10 ³ (561)	2.77x10 ³ (565)	1.7	0.30
(<i>S</i> , <i>S</i> , <i>S</i> , <i>S</i>)- 2	20	8.66x10 ² (569)	7.30x10 ² (566)	1.2	0.10
(<i>S</i> , <i>S</i> , <i>S</i> , <i>S</i>)- 2	21	1.27x10 ³ (564)	4.10×10^2 (561)	3.1	0.67
(R,S,S,R)-3	18	1.50x10 ³ (565)	3.12x10 ³ (562)	0.48	0.43
(<i>R</i> , <i>S</i> , <i>S</i> , <i>R</i>)- 3	19	1.68x10 ³ (565)	4.70x10 ³ (562)	0.36	0.61
(R,S,S,R)-3	20	2.18x10 ² (567)	9.47x10 ² (566)	0.23	0.87
(<i>R</i> , <i>S</i> , <i>S</i> , <i>R</i>)- 3	21	4.72x10 ² (573)	2.75x10 ³ (559)	0.17	1.0
(R,S,S,R)- 4	18	6.08×10^2 (564)	1.42x10 ³ (559)	0.43	0.50
(R,S,S,R)-4	19	9.19x10 ² (563)	1.67x10 ³ (560)	0.55	0.35
(R,S,S,R)-4	20	1.94x10 ² (563)	3.23x10 ² (564)	0.66	0.30
(R,S,S,R)-4	21	2.69x10 ² (574)	4.17x10 ² (560)	0.65	0.26


Table 1. Association constants Ka (M^{-1}) and λ max for the complexes with chiral amines in CHCl₃ at 25°C

a) 18: 1-amino-2-propanol; 19: 2-amino-1-propanol; 20: 2-amino-3-methyl-1-butanol;

21: 2-amino-2-phenylethanol b) Ka^R for the complex with (R)-amine and Ka^S for the complex with (S)-amine c) $\Delta\Delta G = RT \ln (Ka^{\text{more stable}} / Ka^{\text{less stable}})$ at T=298 K

(S,S,S,S)-2 and (R,S,S,R)-4 in which the phenyl barriers are placed near the phenol moiety. Especially, (S,S,S,S)-1 showed good enantiomer selectivity towards 2-amino-2-phenylethanol 21.

Next we interpreted the enantiomer selectivities observed at 25°C in terms of steric interactions between the substituents of the amine and the crown ether. Using the assumption described in the previous paper,⁸ the predicted geometries 22, 23, 24 and 25 [for the (*R*)-enantiomer; R^1 =Ph, R^2 =H and for the (*S*)-enantiomer; R^1 =H, R^2 =Ph] are illustrated for the complexes of (*S*,*S*,*S*,*S*)-1, (*S*,*S*,*S*,*S*)-2, (*R*,*S*,*S*,*R*)-3 and (*R*,*S*,*S*,*R*)-4 with 2-amino-2-phenylethanol 21, respectively, by an examination of CPK molecular models of the complexes.

Judging from the steric requirements of CPK molecular models of the diastereoisomeric complexes, the observed *R*-selectivity of (S,S,S,S)-1 towards 21 would be due to steric interactions between the phenyl substituent of the amine and the C-2 and the C-4 methylene groups destabilising the (S,S,S,S)-1-(S)-21 complex with the geometry 22 in which the phenyl substituent of (S)-21 is placed at the narrow space over the oxygen atom at the 8 o'clock position. Similarly, the *S*-selectivity in complexation of (R,S,S,R)-3 with 21 is interpreted from the geometry 24; the phenyl substituent of (R)-21 is placed at the narrow space near the C-14 and the C-16 methylene groups. The *R*-selectivity of (S,S,S,S)-2 towards 21 is straightforwardly interpreted from the geometry 23; a steric repulsion between the phenyl substituent of the amine and the phenyl steric barrier destabilized the (S,S,S,S)-2-(S)-21 complex in which the phenyl substituent occupies the hindered area near the phenyl barrier. From the geometry 25, the S-selectivity of (R,S,S,R)-4 towards 21 is rationalized in terms of a similar steric interaction.

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

References

- 1. J.-M. Lehn, Supramolecular Chemistry, VCH Verlagsgesellschaft, Weinheim, 1995 and references cited therein.
- K. Naemura, K. Ueno, S. Takeuchi, K. Hirose, Y. Tobe, T. Kaneda and Y. Sakata, J. Chem. Soc., Perkin Trans. 1, 1996, 383; K. Naemura, S. Takeuchi, K. Hirose, Y. Tobe, T. Kaneda and Y. Sakata, J. Chem. Soc., Perkin Trans. 1, 1995, 213 and references cited therein.
- 3. P. Huszthy, J. S. Bradshaw, C. Y. Zhu and R. M. Izatt, J. Org. Chem., 1991, 56, 3330.
- 4. K. Naemura, M. Asada, K. Hirose and Y. Tobe, Tetrahedron: Asymm., 1995, 6, 1873.
- 5. G. I. Feutrill and R. N. Mirrington, Tetrahedron Lett., 1970, 16, 1327.
- 6. All new compounds gave satisfactory analytical and spectral data and the spectral data of azophenolic crown ethers are listed as follows; (S,S,S,S)-1: $\lambda \max (CHCl_3)/nm (\epsilon dm^3 mol^{-1})$ cm⁻¹) 405 (2.34×10⁴); δH (CDCl₃) 1.12(6H, d, J 6.6, CH₃), 3.27(2H, dd, J 2.5, 9.5, OCH₂), 3.46(2H, dd, J 9.1, 9.5, OCH₂), 3.70(2H, t, J 10.3, OCH₂), 3.84(2H, dd, J 2.6, 10.3, OCH₂), 4.11-4.50(2H, m, CHMe), 4.60 (2H, dd, J 2.5, 9.1, CHPh), 4.78(2H, d, J 11.1, CH₂Ar), 4.88(2H, d, J 11.1, CH₂Ar), 7.28–7.37(10H, m, C₆H₅), 7.83(1H, d, J 8.9, HAr(NO₂)₂), 7.85(2H, s, HAr(OH)), 8.49(1H, dd, J 2.3, 8.9, HAr(NO₂)₂), 8.75(1H, d, J 2.3, HAr(NO₂)₂), 9.45(1H, s OH); m/z (FAB⁺) 687 (M+1)⁺. (S,S,S,S)-2: λmax (CHCl₃) 406 (2.38×10⁴); δH (CDCl₃) 1.22(6H, d J 6.6, CH₃), 3.40(2H, dd J 4.5, 9.6, OCH₂), 3.55(2H dd, J 2.7, 10.9, OCH₂), 3.69(2H, t, J 9.6, OCH₂), 3.71(2H, dd, J 5.8, 10.9, OCH2), 4.28-4.39(2H, m, CHMe), 4.60(2H, dd, J 2.7, 10.9, CHPh), 4.61(2H, d, J 11.1, CH₂Ar), 4.71(2H, d, J 11.1, CH₂Ar), 7.34–7.47(10H, m, C₆H₅), 7.78(1H, d, J 8.9, HAr(NO₂)₂), 7.71(2H, s, HAr(OH)), 8.46(1H, dd, J 2.5, 8.9, HAr(NO₂)₂), 8.73(1H, d, J 2.5, HAr(NO₂)₂), 9.53(1H, s OH); m/z (FAB⁺) 687 (M+1)⁺. (R,S,S,R)-3: λmax (CHCl₃) 400 (2.46×10⁴); δH (CDCl₃) 1.16(6H, d, J 6.3, CH₃), 3.28(2H, dd, J 7.3, 8.9, OCH₂), 3.54(2H, dd, J 4.0, 8.9, OCH₂), 3.70(2H dd, J 8.9, 11.2, OCH₂), 3.77(2H, dd, J 3.0, 11.2, OCH₂), 4.00–4.70(2H, m, CHMe), 4.68(2H, dd, J 3.0, 8.9, CHPh), 4.82(2H, d, J 10.6, CH₂Ar), 4.87(2H, d, J 10.6, CH_2Ar), 7.29–7.41(10H, m, C_6H_5), 7.81(1H, d, J 8.9, $HAr(NO_2)_2$), 7.84(2H, s, HAr(OH)), 8.48(1H, dd, J 2.5, 8.9, HAr(NO2)2), 8.75(1H, d, J 2.5, HAr(NO2)2), 9.53(1H, s, OH); m/z (FAB⁺) 687 (M+1)⁺. (R,S,S,R)-4: λmax (CHCl₃) 404 (2.23×10⁴); δH (CDCl₃) 1.12(6H, d, J 6.4, CH₃), 3.46(2H, dd, J 4.9, 9.2, OCH₂), 3.58-3.77(6H, m, OCH₂), 4.07-4.11(2H, m, CHMe), 4.73-4.76(6H, m, CHPh and CH₂Ar), 7.33-7.42(10H, m, C₆H₅), 7.72(2H, s, HAr(OH)), 7.79(1H, d, J 8.9, HAr(NO₂)₂), 8.47(1H, dd, J 2.5, 8.9, HAr(NO₂)₂), 8.74(1H, d, J 2.5, HAr(NO₂)₂), 9.53(1H, s, OH); m/z (FAB⁺) 687 (M+1)⁺.
- 7. N. J. Rose and R. S. Drago, J. Am. Chem. Soc., 1959, 81, 6138.
- K. Naemura, K. Ueno, S. Takeuchi, Y. Tobe, T. Kaneda and Y. Sakata, J. Am. Chem. Soc., 1993, 115, 8475.

(Received in Japan 16 October 1996)