Communications to the Editor

 $\textbf{SYNTHESES} \ \ \textbf{OF} \ \ \textbf{(+)-CYCLARADINE} \ \ \textbf{AND} \ \ \textbf{(+)-9-PSEUDO} - \beta-L-XYLOFURANOSYLADENINE, \ \textbf{TWO} \ \ \textbf{OPTICALLY} \ \ \textbf{ACTIVE} \ \ \textbf{CYCLOPENTANE}$ ANALOGS OF NUCLEOSIDE

Masayuki YOSHIKAWA, Takahiko NAKAE, Bae Cheon CHA, Yoshihiro YOKOKAWA, and Isao KITAGAWA*

Faculty of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565, Japan

Two optically active cyclopentane analogs of nucleoside, (+)-cyclaradine and (+)-9-pseudoβ-L-xylofuranosyladenine, were synthesized from N6-benzoyladenine and nitro-cyclopentenes derived from pseudo-nitrofuranoses through a Michael-type addition reaction.

(+)-cyclaradine; (+)-9-pseudo- β -L-xylofuranosyladenine; nucleoside cyclopentane analog optically active; pseudo-glycoside; nitro-cyclopentene; Michael-type addition reaction; antiviral agent; antitumor activity; D-glucose

(+)-Cyclaradine (7) has been known as a synthetic carbocyclic analog of a well known antiviral agent 9-β-D-arabinofuranosyladenine (Ara-A). Since (+)-cyclaradine (7) is resistant to adenosine deaminase, a serum enzyme which limits the clinical utility of Ara-A, it shows more superior activity against Herpes simplex virus than Ara-A. Furthermore, (+)-cyclaradine (7) is active against trifluorothymidine- or acycloguanosine(acyclovir)-resistant Herpes simplex virus mutants.2) On the other hand, the carbocyclic analogs of 9-β-D-xylofuranosyladenine have been synthesized in racemic forms and shown to exhibit significant in vivo antitumor activity.3)

Recently, we developed a method for synthesizing optically active pseudo-glycosides in which a Michaeltype addition reaction to nitro-cyclohexenes, prepared from pseudo-nitrohexopyranoses, 4) was utilized. this method, two optically active cyclohexane analogs of nucleoside, (-)-9-pseudo- β -D-glucopyranosyladenine and (-)-9-pseudo- β -L-idopyranosyladenine, have been synthesized from adenine and D-glucose.⁵⁾

As a continuing study of these synthesis approaches to pseudo-glycosides, we have synthesized two optically active cyclopentane analogs of nucleoside, (+)-cyclaradine (7) and (+)-9-pseudo-β-L-xylofuranosyladenine $\{(+)-9-[(1'S,2'R,3'R,4'S)-2',3'-dihydroxy-4'-(hydroxymethyl)cyclopentyl]$ adenine, $\underbrace{11}_{}\}$, from pseudonitropentofuranoses (1a, 1b, 8) which were common reaction intermediates in our previous pseudo-pentofuranose synthesis.6,7)

Treatment of a pseudo-nitrofuranose, $1a^{6}$ or $1b^{7}$, with Ac₂0 in the presence of p-TsOH·H₂0 yielded a nitro-olefin 2a (69%), colorless oil, $[\alpha]_D^{22}$ -17° (CHCl3), $C_{21}H_{19}NO_7$, 8) IR (CHCl3): 1719, 1558, 1343, 1518 cm⁻¹, EI-MS (m/z): 397 (M+) or 2b (67%), unstable colorless oil, IR (CHCl₃): 1722, 1540, 1352 cm⁻¹, EI-MS (m/z): 335 Subsequent treatment of $\overset{2a}{\sim}$ with N⁶-benzoyladenine (3) in THF in the presence of KF and 18-crown-6 (2°C, 2 h) provided $\frac{4a}{80}$ (80%), a white powder, $[\alpha]_D^{22}$ +36° (CHC13), $C_{33}H_{28}N_60_8$, IR (CHC13): 1720, 1693, 1598, 1558, 1350 cm⁻¹. Deformylation of 4a with 28 % aq.NH40H in 95 % EtOH (23°C, 15 min) gave 5 (quant.), a white powder, $[\alpha]_D^{20}$ +45° (CHCl₃), $C_{32}H_{28}N_{6}O_7$, UV λ_{max}^{MeOH} nm (ϵ): 280 (24700), IR (CHCl₃): 3388, 1720, 1703, 1593, 1557, 1338 cm⁻¹. The detailed ¹H NMR decoupling experiments (500 MHz, CDCl₃) of ⁴a and ⁵ resulted in the following assignments: 4a, 63.38 (m, 4'-H), 4.16 (d, J=5 Hz, 2'-H), 4.67 (dd, J=5, 11 Hz), 4.75 (dd, J=6, 11 Hz) (6'-H₂), 5.35 (d, J=3 Hz, 3'-H), 5.73 (dd, J=8, 11 Hz, 5'-H), 5.87 (dd, J=5, 11 Hz, 1'-H), 8.15 (s, -OCHO), 8.29, 8.71 (both s, 2,8-H); 5, 63.08 (m, 4'-H), 4.21 (dd, J=3, 3 Hz, 2'-H), 4.58 (dd, J=3, 6 Hz, 3'-H), 4.68 (dd, J=5, 12 Hz), 4.75 (dd, J=7, 12 Hz) (6'-H₂), <math>5.75 (dd, J=9, 9 Hz, 5'-H), 5.90 (dd, J=3, 9 Hz, 1'-H), 8.12, 8.53 (both s, 9 Hz, 1'-H)2,8-H). The NOE's appeared between the following pairs of protons 9: 5, $\frac{1'\alpha - H}{\alpha} & 2'\alpha - H$ (8%), $\frac{1'\alpha - H}{\alpha} & 4'\alpha - H$ (3%), $2'\alpha - H$ & 1'\alpha - H (8%), $2'\alpha - H$ & 4'\alpha - H (2%), $3'\beta - H$ & 5'\beta - H (5%), $4'\alpha - H$ & 1'\alpha - H (6%), $4'\alpha - H$ & 2'\alpha - H (3%). Based on this spectral evidence, the stereostructures of $\frac{4}{4}$ and $\frac{5}{2}$ were determined. Treatment of $\frac{5}{2}$ with ethyl vinyl ether in CH2Cl2 in the presence of d-camphorsulfonic acid (CSA) (23°C, 0.5 h) followed by reductive

(a) Ac₂O / p-TsOH·H₂O (b) KF / 18-crown-6 / THF (c) KF / 18-crown-6 / THF; 28 % aq.NH₄OH / EtOH; Ac₂O / p-TsOH·H₂O (d) 28 % aq.NH₄OH / EtOH (e) 0 / CSA / CH₂Cl₂; n-Bu₃SnH / AIBN / toluene (f) 10 % aq.AcOH; 1 % NaOMe-MeOH; Na / 11q.NH₃ / THF (g) n-Bu₃SnH / AIBN / toluene; 1 % NaOMe-MeOH; Na / 11q.NH₃ / THF

elimination of the nitro group (denitrohydrogenation) with n-Bu₃SnH in toluene in the presence of α,α' -azobis-iso-butyronitrile (AIBN) (110°C, 2 h), yielded 6 (43 %), a white powder, $[\alpha]_D^{20}+13^\circ$ (CHCl₃), C₃₆H₃₇N₅O₆, IR (CHCl₃): 1718, 1704, 1607, 1584 cm⁻¹. After removal of the ethoxyethyl group in 6 with 10 % aq.AcOH (23°C, 12 h), the product was subjected to debenzoylation with 1 % NaOMe-MeOH (23°C, 8 h) and subsequent debenzylation with Na-liq.NH₃ in THF (-78°C, 45 min) to provide (+)-cyclaradine (7, 91 %), 10) a white powder, $[\alpha]_D^{22}+18^\circ$ (MeOH), C₁₁H₁₅N₅O₃, UV $\lambda_{\rm max}^{\rm H20}$ nm (ϵ): 261 (11200), IR (KBr): 3330, 1640, 1595 cm⁻¹. On the other hand, treatment of 2b with N⁶-benzoyladenine (3) as described above for 2a followed by deformylation (28 % aq.NH₄OH-95 % EtOH, 23°C, 15 min) and acetylation(Ac₂O, p-TsOH·H₂O, 23°C, 2 h), provided 4b (72 %), 11) colorless oil, $[\alpha]_D^{20}+57^\circ$ (CHCl₃), C₂₉H₂₈N₆O₈, IR (CHCl₃): 1740, 1709, 1611, 1588, 1559, 1366 cm⁻¹. Denitrohydrogenation of 4b with n-Bu₃SnH followed by deacylation (1 % NaOMe-MeOH, 23°C, 8 h) and debenzylation (Na-liq.NH₃, THF, -78°C, 40 min) finally furnished 7 (40 %). (+)-Cyclaradine (7) synthesized via both procedures was identified by direct comparison and the structure was corroborated by its spectral data. 10)

Next, a pseudo-nitrosugar 8^{7}) was treated with Ac₂0 in the presence of p-TsOH·H₂0 to provide a nitro-olefin 9 (67%), unstable colorless oil, IR (CHCl₃): 1735, 1523, 1363 cm⁻¹, EI-MS (m/z): 335 (M+). Treatment of 9 with 3 as described above for the treatment of 2a or 2b and subsequent deformylation (28% aq.NH₄OH-95% EtOH, 23°C, 15 min) and acetylation (Ac₂0, p-TsOH·H₂0, 23°C, 2h), furnished 10 (73%), colorless oil,

[α] $_{0}^{20}$ +42° (CHC13), C₂₉H₂₈N₆O₈, IR (CHC13): 3402, 1740, 1708, 1610, 1586, 1557, 1366 cm⁻¹. The 1 H NMR decoupling experiments (500 MHz, CDC13) of 1 O resulted in the following assignments: 6 3.38 (m, 4'-H), 4.37 (dd, J=6, 12 Hz), 4.40 (dd, J=6, 12 Hz) (6'-H₂), 4.72 (dd, J=5, 8 Hz, 2'-H), 5.16 (dd, J=8, 9 Hz, 1'-H), 5.37 (dd, J=5, 8 Hz, 3'-H), 5.81 (dd, J=9, 9 Hz, 5'-H), 8.34, 8.73 (both s, 2,8-H). The detailed comparisons of the 1 H NMR and 13 C NMR¹²) data for 10 with those for 4b and 5 led us to assign the structure 10, the stereostructure of which was corroborated by examination of the NOE's. 12) Elimination of the nitro group of 10 followed by removal of the protecting groups, as mentioned above for the treatment of 4b, yielded (+)-9-pseudo- 6 -L-xylo-furanosyladenine (11, 41%), a white powder, 6 0 10 0 10 0 (MeOH), C₁₁H₁₅N₅O₃, UV 12 0 12 0 12 0 12 0 12 0 (E): 260 (12000), IR (KBr): 3332, 1643, 1598 cm⁻¹, 11 H NMR (500 MHz, d₆-DMSO): 6 1.68 (ddd, J=6, 6, 15 Hz), 2.15 (ddd, J=6, 10, 15 Hz) (5'-H₂), 2.43 (m, 4'-H), 3.71 (dd, J=6, 11 Hz), 3.78 (dd, J=5, 11 Hz) (6'-H₂), 4.07 (dd, J=2, 3 Hz, 2'-H), 4.18 (dd, J=3, 6 Hz, 3'-H), 5.11 (ddd, J=2, 6, 10 Hz, 1'-H), 8.19, 8.27 (both s, 2,8-H), 13 C NMR (125 MHz, D₂O): 6 0 32.6 (5'-C), 46.4 (4'-C), 53.9 (1'-C), 59.5 (6'-C), 65.8 (3'-C), 74.8 (2'-C), 118.8 (5-C), 142.0 (8-C), 152.7 (4-C), 153.1 (2-C), 159.0 (6-C).

We are currently working on the further application of this method to the synthesis of other types of pseudo-glycosides.

ACKNOWLEDGEMENT The authors are grateful to the Ministry of Education, Science, and Culture of Japan for a Grant-in-Aid for Special Project Research (Grant No. 62114007).

REFERENCES AND NOTES

- 1) T.L.Nagabhushan, P.Reichert, H.Tsai, M.Ortrander, M.Lieberman, J.Schwartz, R.Vince, and G.H.Miller, Program Abstr. Am. Chem. Soc. Natl. Meet. 185, Seattle, Wash., Abstr. No. CARB 27, 1983.
- 2) a) R. Vince and S. Daluge, J. Med. Chem., 20, 612 (1977);
 - b) R.Vince, S.Daluge, H.Lee, W.M.Shannon, G.Arnett, T.W.Schafer, T.L.Nagabhushan, P.Reichert, and H.Tsai, Science, 221, 1405 (1983);
 - c) W.M.Shannon, L.Westbrook, G.Arnett, S.Daluge, H.Lee, and R.Vince, Antimicrob. Agents Chemother., 24, 538 (1983);
 - d) J.Schwartz, M.Ostrander, N.J.Butkiewicz, M.Lieberman, C.Lin, J.Lim, and G.H.Miller, Antimicrob. Agents Chemother., 31, 21 (1987).
- 3) R. Vince, J. Brownell, and S. Daluge, J. Med. Chem., 27, 1358 (1984).
- 4) a) M. Yoshikawa, B.C. Cha, T. Nakae, and I. Kitagawa, Chem. Pharm. Bull., 36, 3714 (1988).
 - b) M.Yoshikawa, B.C.Cha, Y.Okaichi, Y.Takinami, Y.Yokokawa, and I.Kitagawa, Chem. Pharm. Bull., 36, 4236 (1988).
- 5) I.Kitagawa, B.C.Cha, T.Nakae, Y.Okaichi, Y.Takinami, and M.Yoshikawa, the preceding paper.
- 6) M. Yoshikawa, B.C. Cha, Y. Okaichi, and I. Kitagawa, Chem. Pharm. Bull., 36, 3718 (1988).
- 7) lb, colorless oil, IR (CHCl₃): 1729, 1557, 1369 cm⁻¹, EI-MS (m/z): 353 (M+) and 8, colorless oil, IR (CHCl₃): 1735, 1552, 1369 cm⁻¹, EI-MS (m/z): 353 (M+), were prepared from D-glucose as described for the synthesis of la.⁶)
- 8) The molecular composition of the compound given with the chemical formula was determined either by elemental analysis or by high resolution mass spectrometry.
- 9) The magnitude of NOE (%) given in the parenthesis was observed when the underlined proton was irradiated.
- 10) (+)-Cyclaradine (7), ¹H NMR (500 MHz, d₆-DMSO): δ 1.98 (m, 4'-H), 2.02 (ddd, J=3, 9, 15 Hz), 2.25 (ddd, J=4, 8, 15 Hz) (5'-H₂), 3.48 (dd, J=7, 10 Hz), 3.58 (dd, J=6, 10 Hz) (6'-H₂), 3.75 (dd, J=2, 6 Hz, 3'-H), 3.87 (dd, J=2, 5 Hz, 2'-H), 4.95 (ddd, J=3, 5, 8 Hz, 1'-H), 8.01, 8.29 (both s, 2,8-H), ¹³C NMR (125 MHz, D₂0): δc 32.4 (5'-C), 47.3 (4'-C), 57.6 (1'-C), 65.5 (6'-C), 79.4 (3'-C), 81.3 (2'-C), 121.1 (5-C), 144.5 (8-C), 152.1 (4-C), 155.2 (2-C), 158.1 (6-C), EI-MS (m/z): 265 (M+).
- 11) 4b, ${}^{1}H$ NMR (500 MHz, CDCl₃): δ 3.20 (m, 4'-H), 4.10 (dd, J=3, 4 Hz, 2'-H), 4.40 (dd, J=6, 12 Hz), 4.51 (dd, J=8, 12 Hz) (6'-H₂), 5.10 (dd, J=3, 3 Hz, 3'-H), 5.50 (dd, J=8, 11 Hz, 5'-H), 5.87 (dd, J=4, 11 Hz, 1'-H), 8.36, 8.74 (both s, 2,8-H), NOE (%): $1'\alpha$ -H & $2'\alpha$ -H (9%), $1'\alpha$ -H & $4'\alpha$ -H (5%), $2'\alpha$ -H & $1'\alpha$ -H & $1'\alpha$ -H (7%), $2'\alpha$ -H & $3'\beta$ -H (5%), $3'\beta$ -H & $2'\alpha$ -H & $5'\beta$ -H & $5'\beta$ -H (2%), $4'\alpha$ -H & $1'\alpha$ -H & $1'\alpha$ -H & $3'\beta$ -H & $3'\beta$ -H (2%), 13C NMR (125 MHz, CDCl₃): δ c 47.8 (4'-C), 58.9 (1'-C), 63.1 (6'-C), 72.6 (2'-C), 80.1 (3'-C), 87.8 (5'-C), 122.7 (5-C), 141.9 (8-C), 150.0 (4-C), 152.4 (2-C), 152.6 (6-C), 165.1 (-NHCO- ϕ).
- 12) 10, 13c NMR (22.5 MHz, CDC1₃): δc 42.5 (4'-C), $\delta 0.5$ (1'-C), $\delta 3.6$ (6'-C), 73.0 (2'-C), 80.5 (3'-C), 84.6 (5'-C), 123.9 (5-C), 143.2 (8-C), 150.0 (4-C), 151.3 (2-C), 152.2 (6-C), 164.6 (-NHCO- ϕ), $\frac{1}{H}$ NMR, NOE (%): $\frac{1'\beta-H}{5'\alpha-H}$ & 4' β -H (5%), $\frac{2'\alpha-H}{5'\alpha-H}$ & 5' α -H (3%), $\frac{2'\alpha-H}{5'\alpha-H}$ & 3' β -H (3%), $\frac{3'\beta-H}{5'\alpha-H}$ & 2' α -H (8%), $\frac{4'\beta-H}{5'\alpha-H}$ & 1' β -H (3%), $\frac{5'\alpha-H}{5'\alpha-H}$ & 2' α -H (5%).

(Received December 7, 1988)