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The radical induced regioselective ring-opening of gem-

difluorocyclopropanes via deoxygenation or deiodination gave (E)-

difluoroallylic compounds stereoselectively. 

The free-radical mediated carbon-framework transtormation is increasingly 

being used in organic synthesis, and highly regio-, stereo- and chemoselective 

radical processes are of current interest.1) It is known that cyclopropylmethyl 

radicals undergo ƒÀ-C-C bond cleavage to afford 3-butenyl radicals.2) The regio-

selectivity of their ring-openings depends on the substituent on the cyclopropane 

ring and reaction conditions (kinetic control vs. thermodynamic control).3) An 

E/Z-stereoisomeric mixture of the product is formed in relatively low selectivity 

when the substituent is present at the radical center formed initially.4) As part 

of a program directed at the ring-opening reactions of gem-difluorocyclopropanes,5) 

we made a detailed examination of their ring-opening under free-radical conditions, 

aiming to disclose the regio- and stereoselectivity of the ring-opening. To date, 

there has been only reported ring-opening of the most simple case, in which the 

reaction of 1, 1-difluoro-2-(bromomethyl) cyclopropane with tributyltin hydride 

(n-Bu3SnH) gave 3, 3-difluoro-1-butene, exclusively.6) The present paper reports 

the stereoselective synthesis of the (E)-difluoroallylic system via radical pro-

moted regioselective ring-opening of gem-difluorocyclopropane derivatives (1 or 2).

We chose O-thiocarbonylimidazolide derivatives (1) and iodides (2) as starting 

materials for our radical mediated ring-opening. Difluorocyclopropylmethanols (5) 

was prepared from the corresponding allyl acetates (4) by the addition of difluoro-

carbene (ClCF2COONa, 170•Ž) followed by alkaline hydrolysis.7) According to 

Barton's procedure,8) O-thiocarbonylimidazolides (1) were obtained in good yields
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Table 1. The Reaction of Difluorocyclopropanes (1 and 2) with n-Bu3SnH

a) cis: trans=83:17.
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(73%-95%) on treating 5 with 1, 1•Œ-thiocarbonyldiimidazole. The iodination of 

mesylates of 5 afforded iodides (2).9) 

When trans-difluorocyclopropane (1a) was reacted with n-Bu3SnH (1.1equiv.) in 

the presence of a catalytic amount of azobisisobutyronitrile (AIBN, 0.1equiv.) in 

benzene at reflux temperature for 4h, only (E)-3, 3-difluoro-7-phenyl-4-heptene 

(3a) was obtained in 83% yield.10) Under the same conditions, cis-cyclopropane 

(1b) underwent selective ring-opening to give (E)-3b in 77% yield. 11) Similar 

regio- and stereoselective ring-opening was also observed in the reaction of 

iodides (2) as the substrates. Both trand-2a and cis-2b provided good yields of 

(E)-difluoroallylic compounds (3a and 3b, respectively). The results are shown 

in Table 1. No regio- or stereoisomer was detected in any case. 

In contrast to the regiochemical complexity in the ring-opening of non-

fluorinated cis- and trans-cyclopropanes,3) a CF2 group shows the remarkable effect 

on the regioselectivity of homolytic cleavage of substituted gem-difluorocyclo-

propanes (C2-C3 scission). Neither substitution on C3 by an alkyl or aryl group 

nor the stereochemical relationship of the substituents between C2 and C3 affected 

the regioselectivity of ring-openings of 1 and 2.

The high (E)-stereoselectivity observed here can be rationalized by a consid-

eration of the favored transition state 6E: steric repulsion of R3 with the cyclo-

propane ring disfavors the transition state 6Z. Since the stereochemical relation-

ship of the substituents on C2 and C3 has no effect on the stereoselectivity of 

ring-opening, it is not likely that steric interactions between R2(R1) and R3 would 

contribute to transition state conformation.

In conclusion, a significant preference for ring-opening (C2-C3 scission) and 

the steric demands of the cyclopropane ring in the transition state permit this 

radical process to give the (E)-difluoroallylic system. Fluorine substitutions for 

hydrogens have been used to improve the biological activity of organic compounds 

in medicinal chemistry.12) Use of this radical induced ring-opening provides one 

means for the stereoselective introduction of fluorine substitutions to the allylic 

position, starting from allyl acetate with homologation and migration of the double 

bond. 
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