Published on 01 January 1989. Downloaded by University of Western Ontario on 28/10/2014 12:03:56.

A New Chelating Ligand: Co-ordination Chemistry of [W(CO)(Ph₂PC=CPPh₂)(S₂CNEt₂)₂]

Thomas M. Nickel, Simon Y. W. Yau, and Michael J. Went*

University Chemical Laboratory, Canterbury, Kent CT2 7NH, U.K.

The adoption of a *cis*-bent structure by bis(diphenylphosphino)acetylene (dppa) in [W(CO)(dppa)(S₂CNEt₂)₂] facilitates the formation of [(Et₂NCS₂)₂(OC)W(μ -dppa)Co₂(μ -CO)₂(CO)₄], in which the dppa moiety bridges a cobalt–cobalt bond, and [(Et₂NCS₂)₂(OC)W(μ -dppa)Mo(CO)₄], in which the dppa moiety is chelated to a molybdenum centre.

It is well established that co-ordination of an alkyne to a transition metal results in two basic structural modifications of the carbon skeleton.¹ The acetylenic bond distance increases, reflecting the weakening of the bond upon co-ordination, and the skeleton distorts to give a *cis*-bent structure.² The bend-back angle usually lies in the range 130—170° and there is apparently little correlation between this deviation from linearity and the nature of the bonding interaction with the metal.³ In this Communication we demonstrate that this geometric change can have significant effects upon chemical reactivity.

Bis(diphenylphosphino)acetylene (dppa) forms a variety of transition metal complexes *via* co-ordination of the two phosphorus centres.⁴ The linear nature of dppa precludes chelation to a mono- or poly-nuclear metal centre and the ligand links non-bonded metals.⁵ For example, dppa reacts with $[Co_2(CO)_8]$ to form $[\{Co_2(CO)_7\}_2$ dppa] in which two $Co_2(CO)_7$ moieties are linked by dppa.⁶ Less commonly dppa co-ordinates through the acetylenic bond as observed in (1) in which the dppa is no longer linear.⁷

Reaction of $(1)^7$ with $[Co_2(CO)_8]$ in CH₂Cl₂ at room temperature affords yellow (2) in *ca.* 46% yield. The distortion caused by ligation of the acetylenic bond has enabled dppa to span the Co–Co bond in an analogous fashion to bis(diphenylphosphino)methane and related ligands.⁸ The carbonyl i.r. absorptions of $(2)^{\dagger}$ are analogous to those

⁺ Selected spectroscopic data for compound (2): i.r. v_{CO} (toluene) 2038s, 2003s, 1982vs, 1966m, 1938m, 1824m, 1814m, and 1791w cm⁻¹; n.m.r.: ¹³C-[{]1H}(CD₂Cl₂-CH₂Cl₂), δ 235.8 (s, WCO), 218.6 (s, C=C), 215.2 (s, CoCO), 212.2, 200.0 (2 × s, S₂CNEt₂) 136–128 (m, Ph), 46.4, 44.9, 44.7, 44.6 (4 × s, CH₂), and 13.1, 12.6 (×2), 12.2 (4 × s, CH₃); ³¹P-[{]1H} (CD₂Cl₂-CH₂Cl₂), 213 K, δ +31.4 (d, *J*_{PP} 91 Hz) and +21.3 (d, *J*_{PP} 91 Hz) p.p.m.

Compound (3): i.r. v_{CO} (toluene) 2020s, 1950m, 1923s, 1914vs, and 1890m cm⁻¹; n.m.r.: ¹³C-{¹H} (CD₂Cl₂), δ 236.1 (d, C \equiv C, J_{PC} 9 Hz, J_{WC} 37 Hz), 233.3 (WCO, J_{WC} 135 Hz), 217.5 [dd, *trans*-Mo(CO)₂, J_{PC} 7 and 29 Hz], 211.9 (S₂CNEt₂), 209.1 [t, *cis*-Mo(CO)₂, J_{PC} 9 Hz], 198.8 (S₂CNEt₂), 135—127 (m, Ph), 45.8, 44.2, 44.0, 43.7 (4 × s, CH₂), and 12.1, 11.4, 11.3, 11.2 (4 × s, CH₃), ³¹P-{¹H}(CD₂Cl₂, 213 K), δ +48.5 (d, J_{PP} 4 Hz) and +44.2 (d, J_{PP} 4 Hz) p.p.m.

Compound (4): i.r. v_{CO} (toluene) 2047s, 1978sh, 1964s, 1947vs, and 1933s cm⁻¹; n.m.r.: ¹³C-{¹H} (CD₂Cl₂-CH₂Cl₂), δ 238.2 (s, WCO) 217.9 (d, C=C, J_{PC} 14 Hz), 214.8 (d, FeCO, J_{PC} 15 Hz), 211.6, 199.4 (2 × s, S₂CNEt₂), 138–128 (m, Ph), 46.4, 45.1, 44.9, 44.8 (4 × s, CH₂), and 13.3, 12.7 (×2), 12.3 (4 × s, CH₃); ³¹P-{¹H} (CD₂Cl₂-CH₂Cl₂, 182 K), δ +81.9 (s) and +74.0 (s) p.p.m.

reported for a range of $[Co_2(\mu-L_2)(\mu-CO)_2(CO)_4]$ complexes⁹ with the addition of a band at 1938 cm^{-1} corresponding to the tungsten carbonyl which appears at 1931 cm⁻¹ in the spectrum of (1). N.m.r. spectra[†] of (2) are also easily interpreted by comparison with those of (1) and various $[Co_2(\mu-L_2)(\mu CO_2(CO)_4$ complexes.¹⁰ The ¹³C-{¹H} n.m.r. resonance of the tungsten carbonyl occurs at δ 235.8 [δ 237.9 in (1)] while a single broad peak is observed for the fluxional cobalt carbonyls at δ 215.2. The alkyne is rotating on the n.m.r. timescale at room temperature in analogous fashion to (1) and a single broad resonance for the acetylenic carbons is observed at δ 218.6.7 This fluxional process is also observed in the ³¹P- $\{^{1}H\}$ n.m.r. spectra. At room temperature a single broad resonance is observed at δ +23.7 p.p.m. which upon lowering the temperature to 213 K becomes two sharp doublets at δ +31.4 and +21.3 p.p.m. (J_{PP} 91 Hz).

In order to establish whether it is possible for the co-ordinated dppa to act as a chelating ligand, in an analogous manner to bis(diphenylphosphino)ethane, complex (1) was reacted with *cis*-[Mo(CO)₄(piperidine)₂].¹¹ In CH₂Cl₂ at room temperature the reaction affords pale green (3) in *ca*. 69% yield. The carbonyl i.r. absorptions of (3)[†] are analogous to those reported for *cis*-[Mo(Ph₂PCH₂CH₂PPh₂)(CO)₄] (2020, 1925, 1912, 1894 cm⁻¹)¹² with the addition of a band at 1950 cm⁻¹ corresponding to the tungsten carbonyl. The ¹³C-{¹H} n.m.r. spectrum of (3)[†] contains a resonance due to the

tungsten carbonyl at δ 233.3 (J_{WC} 135 Hz) and resonances due to the molybdenum carbonyls, analogous to those reported for [Mo(Ph₂PCH₂CH₂PPh₂)(CO)₄].¹³ The acetylenic carbons produce a resonance at δ 236.1 (J_{PC} 9, J_{WC} 37 Hz) indicating alkyne rotation, which is again confirmed by recording the ³¹P-{¹H} n.m.r. spectrum. At room temperature a single broad resonance is observed at δ +47.8 p.p.m. which upon lowering the temperature to 213 K becomes two sharp doublets at δ +48.5 and +44.2 p.p.m. (J_{PP} 4 Hz).

Compound (1) also reacts with $[Fe_2(CO)_9]$ to afford yellow (4) in *ca.* 69% yield which has been characterised by comparison of its spectroscopic[†] characteristics with (1) and $[Fe_2(\mu-dppm)(CO)_8]$.¹⁴ The latter compound undergoes photolysis to form $[Fe_2(\mu-dppm)(\mu-CO)(CO)_6]$, containing an Fe–Fe bond.^{14,15} Photolysis of (4) does not afford an analogous compound and is the subject of further investigation.

Received, 10th October 1988; Com. 8/04031A

References

- 1 S. D. Ittel and J. A. Ibers, Adv. Organomet. Chem., 1976, 14, 33.
- 2 E. A. Robinson, J. Chem. Soc., Dalton Trans., 1981, 2373.
- 3 J. L. Davidson, in 'Reactions of Coordinated Ligands,' vol. 1, ed. P. S. Braterman, Plenum Press, 1986, p. 825.
- 4 O. Orama, J. Organomet. Chem., 1986, 314, 273, and references therein; H. C. Clark, G. Ferguson, P. N. Kapoor, and M. Parvez, Inorg. Chem., 1985, 24, 3924; M. I. Bruce, M. L. Williams, J. M. Patrick, and A. H. White, J. Chem. Soc., Dalton Trans., 1985, 1229; J.-C. Daran, E. Cabrera, M. I. Bruce, and M. I. Williams, J. Organomet. Chem., 1987, 319, 239.
- 5 J. C. J. Bart, Acta Crystallogr., Sect. B, 1969, 25, 489.
- 6 A. J. Carty and T. W. Ng, J. Chem. Soc., Chem. Commun., 1970, 149.
- 7 B. C. Ward and J. L. Templeton, J. Am. Chem. Soc., 1980, 102, 1532.
- 8 R. J. Puddephatt, Chem. Soc. Rev., 1983, 12, 99.
- 9 D. J. Thornhill and A. R. Manning, J. Chem. Soc., Dalton Trans., 1973, 2086.
- 10 E. C. Lisic and B. E. Hanson, Inorg. Chem., 1986, 25, 812.
- 11 D. J. Darensbourg and R. L. Kump, Inorg. Chem., 1978, 17, 2680.
- 12 R. T. Jernigan, R. A. Brown, and G. R. Dobson, J. Coord. Chem., 1972, 2, 47.
- 13 P. S. Braterman, D. W. Milne, E. W. Randall, and E. Rosenberg, J. Chem. Soc., Dalton Trans., 1973, 1027.
- 14 P. A. Wegner, L. F. Evans, and J. Haddock, *Inorg. Chem.*, 1975, 14, 192.
- 15 F. A. Cotton and J. M. Troup, J. Am. Chem. Soc., 1974, 96, 4422.