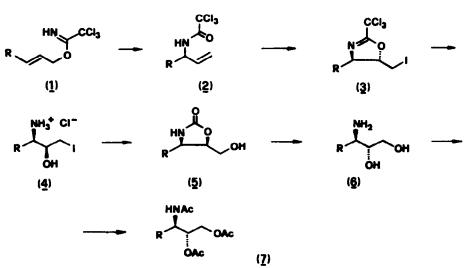
SYNTHESIS OF OXAZOLIDIN-2-ONES USING CARBONATE ION ON A POLYMERIC SUPPORT

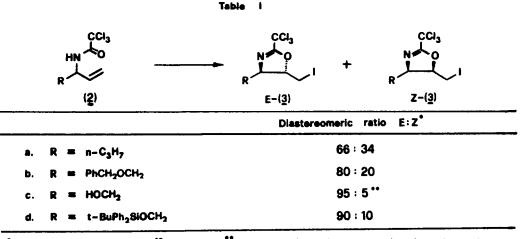
GIULIANA CARDILLO , MARIO ORENA, SERGIO SANDRI, CLAUDIA TOMASINI

Centro di Studio per la Fisica delle Macromolecole del C.N.R. Istituto Chimico "G. Ciamician " Via Selmi 2 - 40126 Bologna, Italy


(Received in UK 17 September 1984)

<u>Abstract</u> - Through the insertion of a carbon dioxide molecule, the oxazolidin-2-ones ($\underline{5a}$) and ($\underline{5b}$) were prepared by treatment of the salts ($\underline{4a}$) and ($\underline{4b}$) with carbonate anion on polymeric support. The hydrolysis under basic conditions of ($\underline{5a}$) and ($\underline{5b}$) afforded the erythro-3-amino-1,2-diols ($\underline{6a}$) and ($\underline{6b}$) which were fully acetylated: the 2-amino-2-deoxyerythritol derivative ($\underline{7b}$) was obtained in 91% yield.

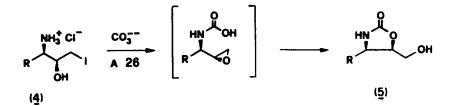
In a previous paper we reported the iodocyclization of allylic trichloroacetamides $(\underline{2})$ that afford, under proper conditions, 4,5-dihydro-1,3-oxazoles $(\underline{3})$.¹ The formation of the oxazole ring is a valuable reaction that results in a transfer of chirality from the secondary amide center to the carbon atom of the newly formed ring through the functionalization of the double bond.²


The major product $(E)-(\underline{3})$, isolated from a diastereomeric mixture, was hydrolyzed under acidic conditions with 6N HCl in methanol, to give the corresponding salt $(\underline{4})$ in a quantitative yield. We wish now to describe that on stirring the salts $(\underline{4})$ with an excess of carbonate anion on a polymeric support (Amberlyst A 26)³ in methanol at room temperature, the oxazolidin-2-one ($\underline{5}$) were obtained in a very good yield, with the insertion of a carbon dioxide molecule.

Scheme I

163

Thus, with the aim to synthesize aminosugars, a number of allylic trichloroacetamides $(\underline{2})$ was prepared in good yield by thermal rearrangement of trichloroacetimidates $(\underline{1})$.⁴ According to the reported procedure ¹, the iodocyclization of allylic trichloroacetamides was carried out with N-iodosuccinimide in CHCl₃ at room temperature and 4,5-dihydro-1,3-oxazoles ($\underline{3}$) were obtained in a quantitative yield. The diastereomeric ratio reported in Table 1 was determined by g.l.c. analysis and ¹³C NMR spectra of the reaction mixtures. The cyclization showed a good stereoselection for entries ($\underline{2b}$), ($\underline{2c}$) and ($\underline{2d}$), while a lower stereoselection was observed in ($\underline{2a}$) (R = n-C₃H₇). After silica gel chromatography of diastereomeric mixtures of 4,5-dihydro-1,3-oxazoles ($\underline{3}$), the pure (E)-isomers were obtained.



* Determined by g.i.c. and ¹³C NMR ** The E configuration was assigned to the major isomer on the basis of its ¹³C NMR spectrum⁷

Acidic cleavage with 6N HCl in methanol, removal of the solvent and washing of the residue with ethyl acetate afforded the salts ($\underline{4}$) in very good yield. Under these conditions the labile protecting group t-butyldiphenylsilyl in ($\underline{3d}$) ⁵ was removed to afford the salt ($\underline{4c}$). The successive conversion to oxazolidin-2-ones ($\underline{5}$) was carried out by treatment of ($\underline{4a}$) or ($\underline{4b}$) with an excess of Amberlyst A 26 in the CO₃⁻⁻⁻ form at room temperature in methanol. After stirring for 24 h, ($\underline{5a}$) and ($\underline{5b}$) were obtained in 84% and 87% yield, respectively, simply by filtering off the resin and evaporating the solvent. The presence of a five-membered cyclic urethane was evident from the i.r. spectra, that showed the carbonyl absorption at 1745 cm⁻¹. Moreover, starting from the threo-salts ($\underline{4a}$) and ($\underline{4b}$), only (Z)-oxazolidin-2-ones were obtained with invertion at C-5, as shown by ¹H NMR chemical shifts ($2-(\underline{5a})$: δ H-4, 4.0; H-5, 4.75; Z-($\underline{5b}$): δ H-4, 4.1; H-5, 4.7). ⁶ Thus assignment was further confirmed by ¹³C NMR chemical shifts of (E,Z)-diastereomeric mixtures of ($\underline{5a}$) and ($\underline{5b}$) ($E-(\underline{5a}$): δ_c 38.6 (\underline{CH}_2 CHN), 63.3 (\underline{CH}_2 OH); Z-($\underline{5a}$): δ_c 32.8 (\underline{CH}_2 CHN), 60.8 (\underline{CH}_2 OH). E-($\underline{5b}$): δ_c 63.5 (\underline{CH}_2 OH), 72.4 (\underline{CH}_2 OCH₂Ph); Z-($\underline{5b}$): δ_c 60.8 (\underline{CH}_2 OH), 69.4 (\underline{CH}_2 OCH₂Ph).

To explain this result we suggest that, in the presence of CO_3^{--} , the iodide displacement occurred first to give an amino epoxide which was successively opened to afford exclusively

oxazolidin-2-ones with inversion of the original C-5 configuration through the insertion of a carbon dioxide molecule:

This hypothesis was supported by the isolation, in the early step of the reaction carried out with (4b), of a raw product which showed absorptions at 1745 cm⁻¹ (-NH-COO-) in the i.r. spectrum and a characteristic oxirane pattern at δ 2.5 - 3.0 in the 1 H NMR spectrum.

Any attempt to obtain a oxazolidin-2-one from the salt (4c) failed, probably owing to the presence of a free hydroxyl group. The stereochemistry of $(\underline{5a})$ and $(\underline{5b})$ was successively exploited for the synthesis of a stereocontrolled 3-amino-1,2-diol moiety $\frac{9}{2}$. Thus the hydrolytic cleavage of $(\underline{5a})$ under basic conditions (KOH/MeOH) afforded quantitatively the aminodiol ($\underline{6a}$) which was directly acetylated to the erythro-($\underline{7a}$) in 93% yield. Following the same reaction sequence, on (5b), the derivative of 2-amino-2-deoxyerythritol $(\underline{7b})$ was obtained in 91% yield.

EXPERIMENTAL

General Methods.

Tetrahydrofuran (THF) was distilled from LiAlH or sodium/benzophenone immediately prior to use. All reactions involving organometallic $\ddot{\tau}$ reagents were carried out under an argon atmosphere. Melting points (Pyrex capillary) were determined on a Buchi 510 hot stage apparatus and are uncorrected. I.r. spectra were obtained with a Perkin-Elmer Model 682 spectrophotometer either on film or, for solids, as Nujol mull. ¹H N.m.r. spectra were recorded on either a Perkin-Elmer R 12B (60 MHz) or a Varian XL-100 (100 MHz) or a Bruker WH 300 (300 MHz) for solutions in deuteriochloroform (tetramethylsilane as internal reference), unless otherwise reported. All chemical shifts were reported as p.p.m. downfield from the tetramethylsilane position on the δ scale. C N.m.r. spectra (25 MHz) were from the tetramethylsilane position on the δ scale. ¹³C N.m.r. spectra (25 MHz) were recorded using a Varian FT 80-A spectrometer. All chemical shifts, δ (p.p.m.), were measured relative to tetramethylsilane assigned at zero. Mass spectra were obtained with a double focusing Varian MAT 112 at an ionizing voltage of 70 eV. Mass spectral data are tabulated as m/z values. Analytical g.l.c. was carried out on a Carlo Erba capillary gas chromatograph (Fractovap 4160) equipped with a SE-52 flexible glass capillary column (25 m x 0.3 mm i.d.; carrier gas He, $p_{He} = 0.6 \text{ kg/cm}^2$). Chromatograms, peak areas and retention times were obtained by using a Perkin-Elmer Sigma 10 data processor. Thin-layer chromatography (t.l.c.) and column chromatography were carried out on Kieselgel GF (Merck). Solvent ratios are in volumes before mixing. Solutions were dried over anhydrous magnesium sulphate.

(E)-1-Trichloroacetimido-2-hexene (1a)

92% yield; colorless oil; i.r. (neat) 3340 and 1660 cm⁻¹; δ 0.95 (t, 3H, CH₃), 1.1 - 1.8 (m, 4H, CH₂), 4.8 (d, 2H, CH₂OC(CCl₃)=NH; J = 7 Hz), 5.6 - 6.1 (m, 2H, CH=CH), 8.3 (bs, 1H. C±NH).

(2)-4-Benzyloxy-1-trichloroacetimidobut-2-ene (1b)

90% yield; colorless oil; i.r. (neat) 3300 and 1650 cm⁻¹; δ 4.15 (m, 2H, CH_OCH_Ph), 4.5 (s, 2H, PhCH₂0), 4.85 (m, 2H, CH₂OC(CCl₃)=NH), 5.85 (m, 2H, CH≖CH), 7.3 (m, 5H, ArH), 8.3 (bs, 1H, Č≍NH).

(2)-4-Trichloroacetimidobut-2-en-1-ol (<u>1c</u>)

 $\begin{array}{c} (10) \\ (1$ (m, 2H, CH = CH), 8.4 (bs, 1H, C=NH).

 $\frac{(Z)-4-t-Butyldiphenylsilyloxy-1-trichloroacetimidobut-2-ene}{83\%}$ yield; colorless oil; i.r. (neat) 3340 and 1660 cm⁻¹; S 4.35 (d, 2H, CH₂OSi; J = 6Hz),

4.7 (d, 2H, $CH_0OC(CCl_0)=NH$; J = 6Hz), 5.4 - 6.2 (m, 2H, CH=CH), 7.1 - 7.9 (m, 10H, ArH), 8.25 (bs, 1H, C=NH). <u>3-Trichloroacetamidohex-1-ene</u> (2a) 83% yield; colorless oil; i.r. (neat) 3420, 3340, 1710, 1510 and 930 cm⁻¹; δ 0.95 (t, 3H, CH₂), 1.2 - 1.9 (m, 4H, CH₂), 4.25 - 4.80 (m, 1H, CHNH), 5.1 - 6.3 (m, 3H, CH=CH₂), 6.75 (m, 1H, NH). <u>4-Benzyloxy-3-trichloroacetamido-1-butene</u> (2b) 88% yield; colorless oil; i.r. (neat) 3420, 3340, 1710, 1505 and 925 cm⁻¹; & 3.6 (d, 2H, CH_0CH_Ph ; J = 6 Hz), 4.2 - 4.7 (m, 1H, CHNH), 4.55 (s, 2H, PhCH_O), 5.0 - 6.0 (m, 3H, CH=CH_, 7.35 (m, 6H, ArH + NH). 2-Trichloroacetamido-3-buten-1-ol (2c) 75% yield; colorless oil; i.r. (neat) 3400, 3330, 1700, 1510 and 925 cm⁻¹; \mathcal{S} 2.8 (bs, 1H, OH), 3.8 (d, 2H, CH_OH; J = 5 Hz), 4.35 - 4.75 (m, 1H, CHNH), 5.1 - 6.3 (m, 3H, CH=CH_), 7.25 (d, 1H, NH). 4-t-Butyldiphenylsilyloxy-3-trichloroacetamido-1-butene (<u>2d</u>) 85% yield; colorless oil; i.r. (neat) 3410, 3335, 1705, 1505 and 930 cm⁻¹; δ 1.1 (s, 9H, $C(CH_{j})$, 3.85 (d, 2H, CH₂OSi; J = 6 Hz), 3.75 - 4.4 (m, 1H, CH₂NH), 5.1 - 6.1 (m, 3H, 2) CH=CH₂), 7.1 - 7.9 (m, 10H, ArH), 8.2 (m, 1H, NH). General procedure for preparation of (3) To a stirred solution of (2) (25 mmol) in $CHCl_{a}$ (100 ml), N-iodosuccinimide (27 mmol) was added at room temperature. After 8 h the reaction mixture was diluted with CHCl₂ (150 ml) and successively washed with 10% aqueous Na S 0 and water, and then dried. The solvent was removed under reduced pressure to afford (3) in very good yield. (E)- and (Z)-4-Propy1-5-iodomethy1-2-trichloromethy1-4,5-dihydro-1,3-oxazole (3a) 98% yield; colorless oil; (E):(Z) ratio 66:34; i.r. (neat): 1660 cm⁻¹; (Z)-isomer: δ 1.0 (t, 3H, CH₃), 1.4 - 1.9 (m, 4H, CH₂), 3.35 (d, 2H, CH₁; J = 7 Hz), 3.8 - 4.3 (m, 1H, CH_NH), 4.85 - 5.35 (dt, 1H, CHO; J = 7, J = 9 Hz); (E)-isomer: 1.0 (t, 3H, CH₃), 1.4 - 1.9 $(m, 4H, CH_2)$, 3.35 (d, 2H, CH_2I ; J = 7 Hz), 3.8 - 4.3 (m, 1H, CHN), 4.4 - $\frac{3}{4.7}$ (dt, 1H, CHO; J = 7, $^{c}J = 6$ Hz). (E)- and (Z)-4-Benzyloxymethyl-5-iodomethyl-2-trichloromethyl-4,5-dihydro-1,3-oxazole (3b) 96% yield; m.p. 81 - 83 °C; (E):(Z) ratio 80:20; (E)-isomer: i.r. (neat) 1660 cm⁻¹ 6 3.35 (d, 2H, CH₁; J = 6 Hz), 3.6 (m, 2H, CH₂OCH₂Ph), 4.2 (m, 1H, CHN), 4.55 (s, 2H, PhCH₀), 4.8 (q, 1 Å, CHO; J = 6 Hz), 7.3 (m, 5H, ArH).(Z)-isomer: i.r. (neat) 1660 cm⁻¹;3.3 - 4.0(m, 4H, CH_I, CH_OCH_Ph), 4.0 - 4.5 (m, 1H, CHN), 4.55 (s, 2H, PhCH_O), 5.3 (dt, 1H, CHO; J = 4, J = 10 Hz, 7.35 (m, 5H, ArH). (E)- and (Z)-4-Hydroxymethyl-5-iodomethyl-2-trichloromethyl-4,5-dihydro-1,3-oxazole (3c) 90% yield; colorless oil;(E):(Z) ratio 95:5; i.r. (neat): 3360 and 1655 cm⁻¹; (E)-isomer: 6 3.1 (bs, 1H, OH), 3.85 - 4.9 (m, 6H, CH₂I, CH₂OH, CHO, CHN); δ₋ 6.0, 63.6, 74.1, 83.3. (E)- and (Z)-4-t-Butyldiphenylsilyloxy-5-iodomethyl-2-trichloromethyl-4,5-dihydro-1,3-oxazole (3d) 93% yield; colorless oil; (E):(Z) ratio 90:10; i.r. (neat) 1660 cm⁻¹; (E)-isomer: δ 1.0 (s, 9H, C(CH₃)₃, 3.35 (d, 2H, CH₁; J = 6 Hz), 3.5 - 4.4 (m, 3H, CH₂OSi, CHN), 5.0 (q, 1H, CHO; J = 6 Hz), 7.3 - 8.0 (m, 10H, ArH); δ_{c} 6.2, 26.8, 64.3, 74.0, 83.1, 127.8, 129.8, 135.5; (Z)-isomer: δ_{c} -1.8, 59.9, 69.0, 86.0, 127.8, 129.8, 135.5. General procedure for preparation of (4) A stirred solution of (3) (10 mmol) in methanol (5 ml) was treated with 6N HCl (3 ml) and stirred for 24 h at room temperature. After removal of the solvent under reduced pressure, the residue was washed with ether and $(\underline{4})$ was obtained in a quantitative yield as a viscous oil. $\frac{(\text{Threo})-3-\text{amino}-1-\text{iodohexan}-2-\text{ol hydrochloride}}{(1 \text{ (Intreo})-3-\text{amino}-1-\text{iodohexan}-2-\text{ol hydrochloride}}$ (4a) i.r. 3330, 1610 and 1590 cm⁻¹; δ 1.0 (t, 3H, CH₃), 1.3 - 1.9 (m, 4H, CH₂), 3.1 - 3.8 (m, 4H, CH₂I, CHO, CHN), 4.85 (bs, 4H, OH, NH₃⁺). (<u>Threo)-3-amino-4-benzyloxy-1-iodobutan-2-ol hydrochloride</u> (4b) i.r. (neat) 3350 and 1600 cm⁻¹; δ 2.8 (bs, 4H, OH, NH₃⁺), 3.2 - 3.5 (m, 2H, CH₂I), 3.5 - 4.0 (m, 4H, CH₂OCH₂Ph, CHO, CHN), 4.6 (s, 2H, PhCH₂O), 7.4 (m, 5H, ArH). $\frac{(\text{Threo})-3-\text{amino}-1-\text{iodobutan}-2, 4-\text{diol}}{\text{i.r. (neat) 3250 and 1600 cm}^{-1}; \frac{5}{3.2}} \frac{3.2}{\text{CHOH, CHN}, 4.8 (bs, 5H, OH, NH_3^{+})}.$ $\overline{3.2} - 3.5$ (m, 2H, CH₂I), 3.5 - 4.1 (m, 4H, CH₂OH, General procedure for preparation of (5) To a stirred solution of (three)-(4) (10 mmol) in methanol (40 ml), Amberlyst A 26 (CO₂⁻⁻) (11 g; 3.8 mequiv/g) was added and the suspension stirred for 48 h at room temperature. The resin was filtered off, the solvent removed under reduced pressure and (2)-(5) was obtained in good yield after chromatography through silica gel (ethyl acetate as eluant). (Z)-4-Propyl-5-hydroxymethyloxazolidin-2-one (5a) 84% yield; colorless oil; i.r. (neat) 3330 and 1745 cm⁻¹; δ 0.95 (t, 3H, CH₂), 1.2 - 1.7

166

(m, 4H, CH₂), 3.8 (d, 2H, CH₂OH; J = 7 Hz), 4.0 (dt, 1H, CHN; J = 5, J = 7 Hz), 4.75 (dt, 1H, CHO; J = 5, J = 7 Hz), 4.9 (bs, 2H, OH, NH); δ_{C} 14.2, 20.5, 32.8, 55.6, 60.8, 81.2, 161.9. Found: C, 52.79; H, 8.21%. C₇H₁₃N₃ requires C, 52.81; H, 8.23%. (<u>2</u>)-4-Benzyloxy-5-hydroxymethyloxazolidin-2-one (5b)

 $\frac{1}{1000} = \frac{1}{1000} = \frac{1$

General procedure for preparation of (7)

To a solution of (5) (5 mmol) in ethanol (20 ml), KOH (10 mmol) dissolved in ethanol (15 ml) was added and the mixture refluxed for 3 h. The solvent was evaporated under reduced pressure and the residue (6) was treated with pyridine (2 ml) and Ac₂O (3 ml). After 12 h the excess pyridine and Ac₂O were removed under reduced pressure and the residue was chromatographed through silica gel (ethyl acetate as eluant) to afford the triacetate (7). (Erythro)-3-acetamido-1,2-diacetoxyhexane (7a)

 $\frac{12FytnF0}{3} = acetam100-1, 2-alacetoxyhexane} (7a)$ 93% yield; colorless oil; i.r. (neat) 3270, 1745, 1655 and 1540 cm⁻¹; & 0.95 (t, 3H, CH₃), 1.1 - 1.7 (m, 4H, CH₂), 2.0 (s, 3H, CH₃CO), 2.05 (s, 3H, CH₃CO), 2.1 (s, 3H, CH₃CO), 3.95 - 4.45 (m, 3H, CHN, CH₂O), 4.85 - 5.25 (m, 1H, CHO), 6.1 (d, 1H, NH, J = 8 Hz); 13.8, 19.0, 20.8, 21.0, 23.2, 32.7, 48.8, 63.2, 73.3, 170.2, 170.7, 170.8; MS(m/e) 259 (M⁺), 214, 156, 139, 114, 72. Found: C, 55.55, H, 8.14%. C₁₂H₂₁NO₅ requires C, 55.58, H, 8.16%. (Erythro)-3-acetamido-1,2-diacetoxy-4-benzyloxybutane (7b)

Acknowledgement - This work was supported by the Italian C.N.R. (Progetto Finalizzato Chimica Fine e Secondaria)

REFERENCES

1. G. Cardillo, M. Orena, S. Sandri, J. Chem. Soc., Chem. Comm., 1983, 1489

2. P.A. Bartlett, Tetrahedron, 1980, 36, 3

3. G. Cardillo, M. Orena, G. Porzi, S. Sandri, Synthesis, 1981, 793

4. (a) L.A. Overman, J. Am. Chem. Soc., 1976, <u>98</u>, 2901

(b) Y. Yamamoto, H. Shimoda, J. Oda, Y. Inouye, Bull. Soc. Jpn., 1976, <u>49</u>, 3247

5. S. Hanessian, P. Lavallee, Can. J. Chem., 1975, <u>53</u>, 2975

- 6. T.A. Foglia, D. Swern, J. Org. Chem., 1969, 34, 1680
- 7. H.J. Schneider, N. Nguyen-Ba, R. Thomas, Tetrahedron, 1982, 38, 2327
- (a) J. Schubert, R. Schwesinger, H. Prinzbach, Angew. Chem. Int. Ed. Engl., 1984, <u>23</u>, 167

(b) N. Minami, S.S. Ko, Y. Kishi, J. Am. Chem. Soc., 1982, <u>104</u>, 1109

9. (a) H. Tucker, J. Org. Chem., 1979, 44, 2493

(b) J.E. Backvall, S.E. Bystrom, ibid., 1982, <u>47</u>, 1126

10. S. Knapp, D.V. Patel, J. Am. Chem. Soc., 1983, 105, 6985