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The @mtocbemicalbehavicur of the title canpmd,newly synthesized 
fran 2-trifluorawthykycl&exancme by a branination/dehydrdxanination se- 
quence, is canpared to that of 6-mthyl-2-cycldmcenone.Botbc~be- 
have similarly rsgardingphotocyclodimerizaticnandaddition to 2-mthylpro- 

pene. High-yields of reductim (electxm transfer) prcdmts fmtbe tri- 
flUxui&byl- vs. tbermkhylemne arecbtained in the irraJiations in the 
presence of 2,3*thyl-2-butem or in 2-propano1, respectively. 

Inprevicuspa~swebave describedtbe@mtocbe&calbebaviavof 
2-trifluorawthylcyclchexanme (la) [l] ,of other 2-(perflu0rcalkyl)cycl0- - 
alkanmes [2] ,as well as that of 1 ,I,1 -triflumo-3-alkyn-2-s 131. The 

substituticn of aCH3 by am3 grmp in sucbc~sbadledtoan enban- 
ted formation of photoreduction prcducts [4]. We now report comparative 
studies on light induced reactims of 6-trifluorcmetbyl-2-cyclchexenone (2a) - 
and of the non-fluorinated enone 2b. - 

RESULTSANDDISCUSSION 

lhe previmsly unknm 6-trifluorawthyl-2-cyclobexenow (2a) wm syn- - 
thesized fran 2-trifluomnetbylcyclobexanone (la) in two steps. Braninaticm 
of la in CC14 affords tram-2-bram-6-trifluoranethylcycl&m - e (1) in 
70% yield.Iheccmfiguratimof~is pruvenbyits 'H-NMR spectnnn,tiich 
shows thehydmgenmC(2) -adjacenttobrcmine-tobeequatorial (two 
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smallvicinalcoupling constants) and the hydrogen on C(6) to be axial.Treatment 

of 3 with CaCO 
3 

in dimethylacetamide [5] gives 2a in 52% yield. - - 

6-Methyl-2-cycl~hxenone (2b) GLS obtained by dehydrqenation of 1-trirmzthyl- - 
silyloxy-2-methylcyclohxene (from .2~methylcycl&mone lb and TMSiCl) - 
with DDQ [61. 

la 1 2a 

We first investigated relative rates of convexsian forsandZ&onex- 
citaticm (E_= 350 nm) underdifferentreaction conditions. The results for 
IO-'M solutions of &or 2 in (i) benzene (plxhcyckdimrization, foma- 
tim of 4); (ii) in benzene saturated with 2*thylpropene or ccoltaining 
IM 2,3+in&hyl-2-butme (photocycloaddition or photoaddition to an aloe- 
ne, both types of products, e.g. 5 or 2, being formed frun a ccnmx 1,4- 
biradicalintemsdiate); and (iii) 2-pmpmol (photoreA&ion,~ elec- 
trontransfertothe~ited~follarnnedbyprntontransfer~either 
couplingordispraportionationof the resultingradicals,tith fonmtion 
of e.g. 13 or I, respectively), - as canpzed to the rate of conversion of 
IO-'M 2-cyclohex~one in benzene (relative rate = 1) under the sm irra- 
diationcmditions are sumarizedinTable1. Itcanbe seenthatboth 2a - 
and2bukhqo&okxXmrizationslowerthan2-cyclohexemne itself, nkxt - 
probablyduetostericreasons, the cF3 mme reactingabout 20% faster 
than tk methylczcqmld. Inthethreeother reactions the figures for 2a - 
areagainall_higherthanthecomzspmdingones for 2b. - 

TABLE I 

Relative rates of conversion of 2a or 2b (10-1~) on excitation, as compared -- 

to 2-cyclohexenone (10 
-1 

M in benzene, k = 1.0) 

C6H6 C6H6 saturated C6H6 containhq 2-propmol 
with 2-rm&xylpropene IM 2,3-dhthyl-2-butene 

2a 0.5 4.6 2.6 1.9 - 
zb 0.4 3.3 1.4 1.5 
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The#mtodWxizationof 2_cyclohexenanesandrelateda,8_unsaturated 

carbmyl ccqxamds has been thoraqhly investigated [7-111. Head-head (HH) 

and head-tail (HT.) dimars arise due to the tsmp~~sible orientations in the 

addition. The canfiguration of the two cycloalkanone rings fused to the cy- 

clcbutane ring canbe either syn or anti, and the ring fusions are generally 

cis. Fran 2-cyclchfxfmme itself the HEanti- and the HT-anti dimrs are for- 

nksd preferentially cxlt of fmr possible products in a variety of solvents, 

the relative aimmtof the HH-dimr increasing with increasing solventpola- 

rity [IO-I 21. The introduction of a substituent on C(6) of the 2-cyclchexe- 

none gives rise to a nuch higher number of diasterecaneric tricyclic diners, 

as these substituents canoccupy eitheraxialoreguatorial positions in the 

prcducts. Indeed, irradiatim of 2a in either benzene or acetonitrile gives - 
mixturesof tendiners 4aa - - 4aJ as analyzed by Gc. The product distributim 

aswell as theirmass spectioscopicdataare sumtexized in Table 2. In chan- 

ging solventfrombenzene toCH3CN the relative anKUItofg,4agand4aj 

increases while that of the otherdimrsdecreases, suggesting the former to 

beHt+dim.rs and the latter ~T-dimers.~his assumption is supportedby the 

fact that the mass spectra of these three dirmars are very similar (type A) 

anddistinctly different to those ofg,e,4afaud4&anthe one side 

(type B) and *, 4ac and 4ai on the other side (type C). Furthex evidence - 
ccm-es fran the isolation of 3 by fractional crystallization, the analysis 

of its 'H-NMR spectrum (Table 3) indicating an HH-anti-structure. Finally 

this samdiner~was shcxmto split intoanti@desonachiralGCphase, 

as expected for a molecule of this configuration [lo]. The HH-dimrS $&, 

aand4aj - prcbably all of anti-configuratim - make up for 25% of all 

dimers in C6H6 and for 58% in CH3cN. The proposal of HT-anti structures for 

+&,*r_ _ 4af and 4ah (59% in c6~6 VS. 36% in CH3CN) and HT-syn structures 

fore, 4ac and 4ai (16% in C6H6 vs. 6% in CH,CN) is tentative, and based - 
ontherelative stabilitiesof suchcmpounds.~nder similar irradiation 

conditicms 2b is known to afford a mixture of dimars 4b 171. - - 

bcF3 h*v _ [ -&" 1, 

2a - 

CF3 

4aj 
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TABLE 2 

Product distribution and mass spectroscopic data of @otcdimrs 4a - 

Dimera 'gH6 CB3cN MS Structure 

4aa - 
4ab 

4ac 

4ad - 
4ae - 
4af - 

4aq 
4ah 

4ai - 
w 

3.4 1.7 C 

9.0 5.8 B 

3.9 2.4 C 

9.4 15.5 A 

27.3 20.0 B 

4.3 2.4 B 

9.5 30.5 A 

18.5 7.8 B 

8.3 3.4 C 

4.0 11.8 A 

Hlk5p-l 

H&anti 

m-syn 
HH-anti 

ITT-anti 

BT-anti 

B&anti 

BT-anti 

m-syn 
BB-anti 

m/e 328(M*) 232 218 165 91 80 68 

A 15% 23% - 27% 26% 70% 100% 

B 4% - 20% 10% 10% 25% 100% 

C 6% - - 20% 25% 100% 70% 
- 

a ordered as to their retention time on a SE 30 capillary CX column 

Excited cyclic enones react with alkenes to afford photocycloaddition 

and photoaddition products [13, 141. 2-Cyclohexenone itself gives tram-7, 

7-din&hylbicyclo[4.2.O]cctan-2-one (26%) and 2-(2'-methyl-2'-propenyl)cyclo- 

hexanone (14%) as major products with 2-methylpropme [15, 161. The behaviour 

of 2a and 2b on irradiation in benzene solutions saturated with 2-methylpro- - - 
peneis found tobe very similar. The fcur principal prcducts - product 

distribution as determined by CC - are given belm. 

-L 
5 - a 3. 8 

a:R=CF 3 39% 17% 13% 6% - 
b: R=CH3 41% 21% 17% 6% 



109 

Irradiation of 2a or 2b in the presence of 2,3-dimsthyl-2-butene also -- 
affords mixtures of cycloaddition and addition products, respectively: 

a: R=CF 3 28% 23% 10% 20% 
b: R= CH3 40% 28% 

Finally we investigated the photochemical behavior of 2a and 2b in 2-pro- - - 
pan01, a solvent wherein 2-cyclch~enme affords both tricyclic dirmars and the 
2H-reduction product (cyclch~anone) [17]. Etccm 2a a 1:4:4 mixture of &, - 
cis- and trans-2-tiifluoramethyl-5-(l-hydxoxy-l-methyl)ethylcyclohexanone is 
obtained selectively, whereas 2b affords similar products but in additicm - 
about 50% tricyclic dimrs 4b. - 

1 13 l4 - - - 
a: R=CF 3 10% 40% 40% 
b: R=CH3 5% 40% 50% 

Theassignmsntof the structures of the photoproductsisbasedon their 
'H-NMR- (Table 3) and sass spectra (Table 4), the determination of their con- 
figuration and conformation emnating fran the analysis of the signals of the 
hydrcgens on the carbon atcms vicinal to the C=C group (H(2) and H(6), the 
formr being the one next to CF3). Although the chemical shift of H(2) (3 .O 
+ 0.1 ppn) is n-ore or less invariant, the differentiation between such an 
axial orequatoria_LH-atm- and therefore also of the CR3 grmps - is 

straightforward, as H,(2) gives two large coupling constants with the tm 
hydrcgens on C(3) and, in rigid mlecules, anadditionallongraugecoupling 
with H,(6), &eras the coupling constants of H,(2) with H,(3) and H,(3) are 
smll. It is noteworthy that JHF is larger for H,(Z) than for H,(2) ( 11 vs. 
8 Hz ). 
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TABLE 3 

'I-I-NMR spectroscopic data of phOtoprc&Cts 2 - 14 - 

canpcund H(2) @T,l H(6) [apI Others 
a 

5a - 

5b - 

6a - 

6b - 

7a - 

7b - 

8a - 

8b - 

9a - 

9b - 

10a - 

lob - 

lla - 

12a - 

13a - 

14a - 

3.05 bG 

3.08 “e 

g 

2.95 hA 

g 

3.05 b,e 

2.45 k 

3,05bfC 

9 

2.95 b,e 

g 

2.95 h,i 

9 

2.80 “c 

3.05 b,e 

3.05 h,i 

3.05 b,e 

3.30 b,d 

2.75 “f 2.OO(dd, 11, 10) 

2.80 “f 
1.65(dd, 10, 6.5) 

2.90 b,j 

2.90 b,j 

2.50 k 2.60(dd, 14.5, 4.5) ’ 

2.45 k 
1.95(dd, 14.5, 10) 
2.55(dd, 14.5, 4.5) ’ 

2.50 j , 2.00 b 
1.95(dd, 14.5, 10) 

1 
4) 1 

2.40 “m 

2.40 “m 

2.50 “n 

2.50 bJn 

2.85 b80 

2.40 h8p , 2.10 b8q 1 

2.60 h’r , 2.40 bts 

2.60 h’p , 2.25 “q 

a H,(3): 2.45 ppn, dddd, J = 13, 5, 3, 2 b 
axial proton 

’ 
dd+ 13, 5,8 

d 
AA%’ ‘Jpx = 10, Jm, = -1, JAA, = 10, J 

xx’ 
= 3) 

e dddq, 13, 5, 1, 8 f dddd, 13, 11, 6.5, 1 

gchemical 

j ddd,l3, 

’ 4.80 and 

o d, 9.5 

shift not determined h equatorial proton hdq, 7,3,11 

11, 6 k 
caJpling constantsnotdetfxmin4 

4.65 (s), 1.70 (s, 3H) m dcf, 13.5,l n d, 13.5 

p ddd, 13, 5, 3 q dt, 1, 13 r dd, 13, 3 s t, 13. 
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TABLE 4 

Mass spectroscopic data of @mtopraiucts 2 -14 - 

CaTllxxlnd M* Base peak cFF,* Others 

5a and 6a 220 (14%) 82 a 30% 165 - - (35%) b 

5band6b 166 (33%) 111 b - - 

7a 220 95 c 23% 67 d - (28%) (67%) 

7b 166 67 d 95 = - (29%) (75%) 

8a 220 (3%) 165 b 13% - 

8b 166 (7%) 55 111 (73%) b - 

9a and IOa 248 (2%) 82 a 13% - - 

9b and lob 194 (3%) 83 e - - 

Ila 248 (2%) 82 e 18% - 

12a 248 - (0.1%) 83 e 8% 

13a and 14a 224 (0.1%) 59 f 18% - - 

a 
((x3) 2C=Cw+CH2* 

b 
[wme+H]* 

C 
cH2=ccH3)cHal~=o* 

d 95 - Co 
e 

~2=C(CJi3)C(~3i,)2* 
f (M3'2coH* 

The six- and the fax nmhered rhg in the bicyclo[4.2.0]octan-2-s 
are g=me?zaly tram-fused (JH (6j H (5) = 13 Hz), the minor cyclcadduct j& 

(10% frcm 2a and 2,3-dimethyl-a2-b&&) representing the only exception. The - 
position of the 2-methyl-2-propenyl side chain in ccnqxm&z (m C(6)) andg 
(OnC(5) becanes evidentbyccqxrisonof the 'H-NM spectra oflwith those 
of 2-halcgeno-6-alkyl-2-cycl&~ones report& in the literature (181. Only 
wfienthis sidechainislccatedmC(6)~ the signalofmeof them&- 

dmgen atans cm C(1’) shifted to lower field (2.6 ~1 due to the anisotropy 
of theG0grcup. Inthemss spectra of m z the signal at m/e = 95, 
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COLYeSpcozding to the fragmant CH2=C (CH3)CH=CH-GO+, formed by elimination of 

either ethylene, H and l,l,l-trifluoropropene (fran 7a) or ethylene, H - 
andpropene (frcan7&),isvery intensive, prcxringthechain tobelocated 

on C(6) of the cyclohexanone ring. For canpounds '&, 13a and 14a the -- 
chemical shifts andcouplingconstants fullycorrespondto those repor- 

ted for alkylated 2-chlorocyclohexanones 119, 201. 

Increased formation of reduction products frcnn excited 2a vs. &J is to be - 
expected, given the difference of abcut 200 mV in their reduction potentials 

(Ep vs. Ag/Ag+ (lo-'M) in CH3CN with 0.5M Hu4N+C10~ as ekctrolyte, g: 

-2.22s7 , 2: -2.43 V). This is indeed observed in 2-propanol, where 2b af- - 
fords 50% reduction products and 50% dimers whereas 2a gives reduction pro- - 
ducts selectively, as well as in the formation of a 5-(1,1,2-trimethyl-2- 

propenyl)cyclohfxanone with 2,3-dinrathyl-2-butene cnly fram 2a (@, 20%). - 
These R&reduction products 12 - 14 are formed via electron transfer to the -- 
excitedenone, followed by proton transfer in the radical ion pair and CU_I- 

pling of the resulting radicals [3, 41. The fact that no such differential 

behavicur between 2.a and 2b is observed in their reactions with 2-methylpro- - - 
pene, where frcxn both enones only minor amxnts of 8 are formed, is most pro- 

bably due to the higher ionisation potential of this alkene as ccmpared to 

that of 2,3-dimethyl-2-but. 

General 

Chemical shifts in the 4OO-MI-k 'H-NIB spectra are given in ppm relative 

to TTG (coupling constants J in Hz). Mass spectra were recorded at 70 eV. 
Analytical Cc was performed on a SE 30 capillary column. Preparative CC se- 

parations were run on 2m 25% C~~~KWU 20M (column A) or 2x1 10% QF1 (co- - 
lumn FJ. 
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Starting Materials 

6+lethyl-2-cyclohexenone (2b) [61 was synthesized according to the li- - 
terature. 2-Methylpropene and 2,3-dimethyl-2-butene were purchased frcm 

ELLJKAAG. 

(a) Preparation of trans-2-brcso-6-trifluorcmethylcyclch~anone (3) 

To a solution of 3.9 g 2-trifluorcmethylcyclohexanone (la) [II in 100 - 
ml CC14 at 0" is added a solution of 4.5 g brcmine in 50 ml CC14. After 

stirring for 2h at O0 and 1% at r.t. the solvent is evaporated and the 

residue distilled to afford 4.3 g (76%) 3, b.p. 98-103"/14 nun. 'H-NMR 

(CDcl ): 4.45 (t, J = 

6H). LWR (Clxl ) : 

3 HZ), 3.95 (ddq, J = 13, 5.5, 8 Hz), 2.4 - 1.7 (m, 

3 196, 125 (q, J = 273 Hz), 52,48 (q, J = 26 Hz), 35, 

27,19. MS: 246 + 244 (M*, 13%), 41 (C3H; , 100%). 

(b) Preparation of 6-trifluoromathyl-2-cyclchexenone (2a) - 
A mixture of 3.8 g 2 and 12.5 g CaC03 in 80 ml dinrethylacetamide is 

stirred at 130" for 15h. 500 ml Water are added and the solution extracted 

threetimeswith 25nil ether.'Iheorganicpbaseisx&mxItwicewith satu- 

rated NaCl solution and dried over MgS04: After evaporation of the solvent 

the residue is chrcxretcgraphed (Si02, CH2C12) to afford 1.5 g (58%) 2. 

'H-NMR (CDC13): 7.05 (dt ,J = IO, 1 Hz), 6.10 (dt, J = 10, 2 Hz), 3.08 

(ddq, J = 11, 5, 8), 2.6 - 2.1 (m, 4H). 13C-NMR (CEC13): 191, 151, 130, 

125 (q, J = 280 Hz), 50 (q, J = 25 Hz), 24, 23. MS: 164 (M*, 24%), 68 

(CH2=CHcH=C=O*, 100%). 

Photolyses 

These ware performed in a Rayonet RPR-100 photoreactorusing 350 nmlamps. 

Argcn-degassed solutions of 164 mg 2a or 110 IIKJ 2b (10m3 sol) in 10 ml of ei- - - 
ther benzene, 2-propanol or acetonitrile, benzene satiated with 2-methylpro- 

pene or containing 840 mg (IO -2 nil) 2,3-din&hyl-2-butene were irradiated 

for 24 - 70h (nxmitoring by CC). With the exception of diner&j,, obtained by 

fractional crystallization, all products were isolated by prep. Gc as liquids 

or oils. 
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Irradiation of 2a - 

(a) In benzene 

Irradiation period: 70h. All attempts to isolate pure dimers 4a by either - 
chromatcgraphy or fractional crystallization were unsuccessful. 

(b) In acetonitrile 

Irradiation period as above. Evaporation of the solvent dissolving the re 

sidue in 1 ml CHC13/CC14 1:l and ccoling to -5” affords 10 mj (6%) of crystal- 

line w, m-p. 185” (dec.). 

(c) In benzene saturated with 2-methylpropene 

Irradiation period: 21h. After evaporation of the solvent preparative Gc 

on column g (isotherm. 140") affords four fractions, first& (60% purity), 

second 7a (85% purity), third 8a (95% prity) and finally 5a (97% purity). - - - 

(d) With 2,3-din&hyl-2-butene 

Irradiation period as under (c). Separation on column & (isotherm. 170°) 

affords four fractions of greater 90% prity, first-, second B, third 

9aandfinally 12a. - - 

(e) In 2-propanol 

Irradiation period as under (c). Separation on colutm g 80 - 200", 

5"/m.in affords three fractions of greater 95% purity, first la, second 13a - - 
and finally 14a. Ccmpcund 13a iscmerizes to 14a on standing at r.t. in 5-7 - - - 
days, or in 5 min. on contact with basic alumina. 

Irradiation of 2b - 

(a) With 2-methylpropene 

Irradiation period: 20h. Separation on colurrn & (90 - 130", 

fords three fractions of greater 80% plrity, first 7&, second a 

of 5b and 6b and finally 8b. - - - 

(b) With 2,3-dimethyl-2-butene 

S~/min) af- 

I:1 mixture 

Irradiation period. as above. Separaticol on column $ (isotherm. 140") 

affords one fraction, a I:1 mixtie of 9b and -&, of 90% purity. - 

(c) In 2-propan 

Irradiation period as above. The mixture was analyzed by E/MS 
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