Synthesis and antimicrobial evaluation of 6-azauracil non-nucleosides

Nasser R. El-Brollosy

Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt

Received 17 February 2008; Accepted 31 March 2008; Published online 2 June 2008 © Springer-Verlag 2008

Abstract The present study describes synthesis and antimicrobial evaluation of a series of novel 6azauracil non-nucleosides. Reaction of silylated 6azauracils with the appropriate chloroethers gave the corresponding non-nucleosides. 1-(Allyloxymethy)-6-azauracils and non-nucleosides bearing indanyl, cyclohexenyl, and cyclohexyl moieties were obtained *via* silylation of 6-azauracils followed by treatment with the appropriate acetals. Selected compounds were tested for their *in vitro* antimicrobial activity against a panel of standard strains of *Gram*-positive and *Gram*-negative bacteria and the yeast-like pathogenic fungus *Candida albicans*. Four compounds showed marked inhibitory activity particularly against the tested *Gram*-positive bacteria.

Keywords 6-Azauracils; 6-Azathymines; 1,2,4-Triazine-3,5diones; Non-nucleosides; Antimicrobial activity.

Introduction

6-Azauracils (1,2,4-triazine-3,5(2*H*,4*H*)-diones) represent an important class of heterocyclic compounds. In recent years, much effort has been done on the synthesis and biological evaluation of 6-azauracil derivatives due to their possible applications. Many 6-azauracils have been demonstrated to exhibit

herbicidal [1, 2], antiviral [3–6], antimicrobial [7–11], and anti-inflammatory activities [12]. As well as antimalarial [13], anticancer [14, 15], and antiulcer [16] activities have been reported.

On the other hand, the chemistry and diverse applications of non-nucleoside derivatives have received much attention due to their important biological activity. Several non-nucleosides have been reported as reverse transcriptase inhibitors of human immunodeficiency virus type-1 (HIV-1), the causative agent of the acquired immunodeficiency syndrome (AIDS) [17-20]. Non-nucleoside reverse transcriptase inhibitors, in contrast to other reverse transcriptase inhibitors, are highly specific as their binding site is a hydrophobic pocket located approximately 10 Å from the polymerase active site. They bind allosterically forcing the reverse transcriptase-subunit into an inactive conformation [18]. In the present study, and as a part of interest in the chemistry of non-nucleosides [21-30], the synthesis and antimicrobial evaluation of some novel 6-azauracil nonnucleosides have been described.

Results and discussions

5-Substituted 6-azauracil derivatives 4a-4d were prepared *via* the semicarbazones 3a-3d, by the reaction of semicarbazide hydrochloride (2) with the appropriate α -keto acids 1a-1d, according to literature procedure [31]. Cyclization of the semicarbazones 3a-3d was achieved by treatment with

Correspondence: Nasser R. El-Brollosy, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia. E-mail: brollosy@yahoo.com

aqueous sodium hydroxide to give the corresponding 5-substituted 6-azauracils 4a-4d in good yields except in the case of 4b, for which the yield was poor. Sodium ethoxide in ethanol and ethylene glycol was used instead of aqueous sodium hydroxide to afford 4b [5]. 6-Azauracils 4b-4d were silylated with *N*,*O*-bis(trimethylsilyl)acetamide (*BSA*) in anhydrous chloroform followed by alkylation with chloromethyl methyl sulfide, chloromethyl methyl ether, and/or benzyl chloromethyl ether in the presence of cesium iodide to give the corresponding non-nucleosides 5a-5g in 51-71% yields (Scheme 1).

Bis(allyloxy)methane (7a), bis(2-methylallyloxy)methane (7b), bis[(*E*)-2-methyl-3-phenylallyloxy]methane (7c), bis(indan-2-yloxy)methane (7d), bis(3-cyclohexen-1-ylmethoxy)methane (7e), and bis(2-cyclohexylethoxy)methane (7f) were prepared from the corresponding alcohols; allyl alcohol (6a), 2-methylallyl alcohol (6b), (*E*)-2-methyl-3-phenylallyl alcohol (6c), 2-indanol (6d), 3-cyclohexen-1methanol (6e), and 2-cyclohexylethanol (6f) were reacted with dibromomethane using potassium hydroxide in anhydrous benzene in the presence of tetrabutylammonium bromide according to the method of *Nazaretyan et al.* [32].

Silulation of 4a-4d with BSA in anhydrous acetonitrile followed by treatment with the acetals 7a, 7b, or 7c under the Vorbrüggen conditions [33] using trimethylsilyl trifluoromethanesulfonate (TMS triflate) as a Lewis acid catalyst afforded 1-allyloxymethyl-6-azauracil (8a), 1-(2-methylallyloxymethyl)-6-azauracils **8b–8e**, and 1-[(E)-2-methyl-3-phenylallyloxymethyl]-6-azauracils 8f, 8g in 67%, 54-70%, and 62, 68% yields. Synthesis of non-nucleosides bearing indanyl, cyclohexenyl, and cyclohexyl moieties (8h-8m) was investigated. Compounds 4b and 4c were silvlated with BSA in anhydrous acetonitrile and treated with 7d in the presence of TMS triflate to give 5-ethyl-1-(indan-2yloxymethyl)-6-azauracil (8h) and 1-(indan-2-yloxymethyl)-5-phenyl-6-azauracil (8i) in 53 and 61% yields. Silylation of 5-phenyl-6-azauracil (4c) followed by reaction with 7e in the presence of TMS triflate afforded 1-(3-cyclohexen-ylmethoxymethyl)-5-phenyl-6-azauracil (8j) in 64% yield. 1-(2-Cyclohexylethoxymethyl)-6-azauracils (8k-8m) were obtained in 23-54% yields, by treatment of 4a-4c with the acetal 7f under the same reaction conditions (Scheme 2).

The acetals **7a–7e** were prepared previously [21, 22, 24]. N-1 Alkylation was proved by comparison

Synthesis and antimicrobial evaluation of 6-azauracil non-nucleosides

with similar NMR data [34, 35]. The *N*-3 regioisomer was not observed.

The newly synthesized non-nucleosides **5a–5g**, **8a**, **8d**, **8g–8j**, and **8m** were tested for their *in vitro* antimicrobial activity against a panel of standard strains of *Gram*-positive bacteria (*Staphylococcus aureus* IFO 3060 and *Bacillus subtilis* IFO 3007), *Gram*-negative bacteria (*Escherichia coli* IFO 3301 and *Pseudomonas aeuroginosa* IFO 3448), and the yeast-like pathogenic fungus *Candida albicans* IFO 0583 using the agar disc-diffusion method [36]. The results of the preliminary antimicrobial testing of **5a–5g**, **8a**, **8d**, **8g–8j**, and **8m** (200 μ g/disc), the antibacterial antibiotic Ampicillin trihydrate (100 μ g/disc), and the antifungal drug Clotrimazole (100 μ g/disc) are shown in Table 1. In general, the best antibacterial activity was displayed by **5a** which showed potent inhibitory activity against the tested *Gram*-positive bacteria and medium activity against the tested *Gram*-negative bacteria. Meanwhile, **5b**, **5e**, and **8h** were active against the tested *Gram*-positive bacteria and almost inactive against the tested *Gram*-negative bacteria. None of the tested compounds was found to be

Table 1 Antimicrobial activity of **5a–5g**, **8a**, **8d**, **8g–8j** and **8m** (200 μ g/8 mm disc), the broad spectrum antibacterial drug Ampicillin (100 μ g/8 mm disc) and the antifungal drug Clotrimazole (100 μ g/8 mm disc) against *Staphylococcus aureus* IFO 3060 (*SA*), *Bacillus subtilis* IFO 3007 (*BS*), *Escherichia coli* IFO 3301 (*EC*), *Pseudomonas aeuroginosa* IFO 3448 (*PA*), and *Candida albicans* IFO 0583 (*CA*)

Comp. no.	Diameter of growth inhibition zone mm*				
	SA	BS	EC	PA	CA
5a	18	18	15	14	13
5b	18	16	11	_	_
5c	14	15	_	_	_
5d	15	14	_	_	_
5e	18	24	12	_	_
5f	12	10	_	_	_
5g	10	10	-	-	-
8a	14	10	_	_	_
8d	12	10	_	_	_
8g	10	-	_	_	_
8h	17	19	10	-	-
8i	_	10	_	_	_
8j	_	13	_	_	_
8m	_	10	_	_	_
Ampicillin	19	18	16	15	NT
Clotrimazole	NT	NT	NT	NT	21

* -:Inactive (inhibition zone <10 mm); NT: Not tested

superior to Clotrimazole against *Candida albicans*, only **5a** produced weak activity.

Experimental

NMR spectra were recorded on a Bruker AC 500 Ultra Shield NMR spectrometer at 500 MHz for ¹H and 125 MHz for ¹³C with TMS as an internal standard. Chemical shifts are reported in ppm (δ), and signals are expressed as s (singlet), d (doublet), t (triplet), q (quartet), or m (multiplet). Electron impact mass spectra were recorded on a Jeol JMS-AX 500 mass spectrometer, melting points were determined on a Gallenkamp melting point apparatus. Elemental analysis were alone with a their results agreed favourably with calculated values. The progress of reactions was monitored by TLC (DCalufolio 60 F₂₅₄) from Merck. For column chromatography Merck silica gel (0.040–0.063 mm) was used. The bacterial strains and Candida albicans fungus were obtained from the Institute of fermentation of Osaka (IFO), Osaka, Japan. The reference drugs Ampicillin trihydrate (CAS 7177-48-2) and Clotrimazole (CAS 23593-75-1) were obtained from Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany.

General procedure for preparation of 6-azauracil nonnucleosides **5a–5g**

N,*O*-Bis(trimethylsilyl)acetamide (*BSA*) (0.87 cm³, 3.5 mmol) was added to a suspension of 1.0 mmol 6-azauracil **4b**-**4d**

in anhydrous $20 \text{ cm}^3 \text{ CHCl}_3$ and the mixture was stirred at room temperature under nitrogen. After a clear solution was obtained (20–30 min), chloromethyl methyl sulphide, chloromethyl ethyl ether, or benzyl chloromethyl ether (1.5 mmol) was added, followed by addition of (0.26 g, CsI 1 mmol). The reaction mixture was stirred at room temperature under nitrogen for 3–4 h. Sat aq NaHCO₃ (20 cm³) was added and the mixture was extracted with $3 \times 50 \text{ cm}^3 \text{ CH}_2\text{Cl}_2$. The organic phase was collected, dried (MgSO₄), and evaporated under reduced pressure. The residue was chromatographed on silica gel column using CHCl₃ to give **5a–5g**.

1-Methylthiomethyl-5-phenyl-6-azauracil (**5a**, C₁₁H₁₁N₃O₂S) White solid; yield 0.152 g (61%); mp 184–185°C; ¹H NMR (*DMSO*-d₆, 500 MHz): δ = 2.27 (s, 3H, CH₃), 5.06 (s, 2H, CH₂), 7.46–7.48, 7.89–7.91 (2 × m, 5H, H_{arom}), 12.38 (s, 1H, NH) ppm; ¹³C NMR (DMSO-d₆, 125 MHz): δ = 15.40 (CH₃), 54.15 (CH₂), 128.57, 128.60, 130.14, 132.42 (C_{arom}), 141.78 (C-5), 148.46 (C-2), 156.92 (C-4) ppm; MS (EI): *m/z* (%) = 249 (M⁺, 51), 243 (9), 228 (17), 208 (19), 203 (56), 191 (13), 165 (12), 147 (23), 131 (68), 104 (42), 91 (100).

5-*Ethyl-1-ethoxymethyl-6-azauracil* (**5b**, C₈H₁₃N₃O₃) White solid; yield 0.137 g (69%); mp 76–77°C; ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.21$ (t, J = 7.5 Hz, 3H, CH₃), 124 (t, J = 7.0 Hz, 3H, CH₃), 2.65 (q, J = 7.0 Hz, 2H, CH₂), 3.69 (q, J = 7.5 Hz, 2H, CH₂), 5.33 (s, 2H, CH₂), 9.93 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz): $\delta = 10.36$ (CH₃), 15.00 (CH₃), 23.23 (CH₂), 65.70 (CH₂), 79.32 (CH₂), 148.04 (C-5), 149.09 (C-2), 156.38 (C-4) ppm; MS (EI): m/z (%) = 199 (M⁺, 36), 170 (14), 155 (83), 142 (27), 127 (8), 112 (34), 100 (82), 83 (86) 58 (100).

1-Ethoxymethyl-5-phenyl-6-azauracil (**5c**, $C_{12}H_{13}N_{3}O_{3}$) White solid; yield 0.175 g (71%); mp 122–123°C; ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.26$ (t, J = 7.0 Hz, 3H, CH₃), 3.76 (q, J = 7.0 Hz, 2H, CH₂), 5.45 (s, 2H, CH₂), 7.45–7.48, 8.03–8.05 (2 × m, 5H, H_{arom}), 10.08 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz): $\delta = 15.03$ (CH₃), 65.89 (CH₂), 79.81 (CH₂), 128.35, 128.40, 130.42, 131.13 (C_{arom}), 142.34 (C-5), 148.78 (C-2), 155.97 (C-4) ppm; MS (EI): m/z (%) = 247 (M⁺, 57), 203 (29), 190 (10), 175 (6), 131 (32), 118 (34), 104 (93), 89 (51), 58 (100).

5-Benzyl-1-ethoxymethyl-6-azauracil (**5d**, C₁₃H₁₅N₃O₃) White solid; yield 0.154 g (59%); mp 96–97°C; ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.23$ (t, J = 7.0 Hz, 3H, CH₃), 3.67 (q, J = 7.0 Hz, 2H, CH₂), 3.95 (s, 2H, CH₂), 5.32 (s, 2H, CH₂), 7.25–7.36 (m, 5H, H_{arom}), 9.71 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz): $\delta = 15.00$ (CH₃), 35.92 (CH₂), 65.70 (CH₂), 79.35 (CH₂), 127.02, 128.59, 129.25, 135.75 (C_{arom}), 145.92 (C-5), 148.89 (C-2), 156.04 (C-4) ppm; MS (EI): m/z (%) = 261 (M⁺, 39), 232 (6), 217 (25), 203 (11), 184 (9), 171 (22), 118 (16), 91 (100).

1-Benzyloxymethyl-5-ethyl-6-azauracil (**5e**, $C_{13}H_{15}N_3O_3$) White solid; yield 0.151 g (58%); mp 86–88°C; ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.22$ (t, J = 7.0 Hz, 3H, CH₃), 2.63 (q, J = 7.0 Hz, 2H, CH₂), 4.75 (s, 2H, CH₂), 5.42 (s, 2H, CH₂), 7.29–7.36 (m, 5H, H_{arom}), 9.81 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz): $\delta = 10.32$ (CH₃), 23.22 (CH₂), 72.02 (CH₂), 79.03 (CH₂), 127.69, 127.89, 128.37, 137.38 (C_{arom}), 148.04 (C-5), 149.07 (C-2), 156.21 (C-4) ppm; MS (EI): m/z (%) = 261 (M⁺, 11), 244 (3), 232 (6), 181 (4), 155 (47), 147 (16), 107 (31), 91 (100).

1-Benzyloxymethyl-5-phenyl-6-azauracil (ff, $C_{17}H_{15}N_3O_3$) White solid; yield 0.195 g (63%); mp 124–125°C; ¹H NMR

white solid, yield 0.195 g (05%), inp 124–125 C, 11 NMR (CDCl₃, 500 MHz): $\delta = 4.80$ (s, 2H, CH₂), 5.53 (s, 2H, CH₂), 7.28–8.05 (m, 10H, H_{arom}), 9.92 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz): $\delta = 72.20$ (CH₂), 79.51 (CH₂), 127.02, 127.76, 127.96, 128.36, 128.41, 130.45, 131.12, 137.27 (C_{arom}), 142.40 (C-5), 148.71 (C-2), 155.74 (C-4) ppm; MS (EI): m/z (%) = 309 (M⁺, 11), 203 (78), 176 (16), 160 (6), 147 (53), 131 (24), 118 (12), 104 (72), 91 (100).

5-Benzyl-1-benzyloxymethyl-6-azauracil (**5g**, $C_{18}H_{17}N_3O_3$) White solid; yield 0.165 g (51%); mp 73–74°C; ¹H NMR (CDCl₃, 500 MHz): $\delta = 3.94$ (s, 2H, CH₂), 4.71 (s, 2H, CH₂), 5.40 (s, 2H, CH₂), 7.30–7.38 (m, 10H, H_{arom}), 9.69 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz): $\delta = 35.89$ (CH₂), 71.99 (CH₂), 78.97 (CH₂), 127.07, 127.74, 127.90, 128.37, 128.63, 129.35, 135.73, 137.23 (C_{arom}), 146.01 (C-5), 146.89 (C-2), 155.94 (C-4) ppm; MS (EI): m/z (%)=323 (M⁺, 13), 232 (10), 217 (65), 204 (7), 161 (43), 131 (19), 118 (7), 91 (100).

Bis(2-cyclohexylethoxy)methane (7f, C₁₇H₃₂O₂)

2-Cyclohexylethanol (6f, 12.8 g, 0.1 mol), 8.79 g (dibromomethane 0.0505 mol), and 1.74 g (tetrabutylammonium bromide 0.00535 mol) were added to 5.66 g (potassium hydroxide 0.101 mol) in 30 cm³ anhydrous benzene, and the suspension was heated under reflux for 5 h. After cooling, (50 cm^3) H₂O were added and the resulting solution was extracted with $3 \times 50 \text{ cm}^3$ ether. The ether phase was dried with anhydrous MgSO₄ and evaporated under reduced pressure to afford 7f as a colorless oil in 55% (7.4g) yield. As determined from NMR, the desired 7f was contaminated with the starting material 6f in a 5:2 ratio. The product was used for further synthesis without purification. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.90 - 1.69$ (m, 26H, H_{hexvl}, 2×CH₂), 3.59 (t, J = 6.5 Hz, 4H, 2×CH₂), 4.66 (s, 2H, CH₂) ppm; ¹³C NMR (CDCl₃, 125 MHz): $\delta = 26.17$, 26.59, 33.38, 34.58 (C_{hexyl}), 37.17 (CH₂), 65.70 (CH₂), 95.23 (CH₂) ppm.

General procedure for preparation of 1-allyloxymethyl-6azauracils 8a-8g

Compound **4a**–**4d** (1 mmol) was stirred in 15 cm³ anhydrous CH₃CN under nitrogen and 0.87 cm³ (*BSA* 3.5 mmol) were added. After a clear solution was obtained (10 min), the reaction mixture was cooled to -50° C and 0.18 cm³ (*TMS* triflate 1 mmol) were added followed by dropwise addition of 2 mmol **7a**–**7c** appropriate acetal. The mixture was stirred at room temperature for 4 h. The reaction was quenched with 5 cm³ sat aq NaHCO₃ solution and evaporated under reduced pressure. The residue was extracted with 3×50 cm³ ether, the combined organic fractions were dried (MgSO₄), and evapo-

rated under reduced pressure. The residue was chromatographed on silica gel column with $CHCl_3$ to afford the desired non-nucleosides **8a–8g**.

1-Allyloxymethyl-5-phenyl-6-azauracil (8a, C₁₃H₁₃N₃O₃)

White solid; yield 0.174 g (67%); mp 101–102°C; ¹H NMR (CDCl₃, 500 MHz): $\delta = 4.26$ (d, J = 5.5 Hz, 2H, CH₂), 5.24 (d, J = 10.5 Hz, 1H, CH_(Z)=), 5.35 (d, J = 17.0 Hz, 1H, CH_(E)=), 5.48 (s, 2H, CH₂), 5.90–5.98 (m, 1H, =CH–), 7.28–7.47, 8.03–8.05 (2 × m, 5H, H_{arom}), 10.14 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz): $\delta = 71.04$ (CH₂), 79.26 (CH₂), 117.98 (CH₂=), 128.38, 128.40, 130.47, 131.08 (C_{arom}), 133.38 (=CH–), 142.44 (C-5), 148.89 (C-2), 155.99 (C-4) ppm; MS (EI): m/z (%) = 259 (M⁺, 14), 228 (5), 202 (28), 190 (21), 175 (4), 160 (6), 131 (43), 115 (17), 104 (100).

5-Methyl-1-(2-methylallyloxymethyl)-6-azauracil (**8b**, C₉H₁₃N₃O₃)

White solid; yield 0.118 g (56%); mp 71–72°C; ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.74$ (s, 3H, CH₃), 2.26 (s, 3H, CH₃), 4.08 (s, 2H, CH₂), 4.91, 5.00 (2 × s, 2H, CH₂=), 5.32 (s, 2H, CH₂), 10.23 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz): $\delta = 16.17$ (CH₃), 19.32 (CH₃), 73.82 (CH₂), 78.70 (CH₂), 112.80 (CH₂=), 141.20 (C-5), 144.43 (=C(*Me*)–), 149.31 (C-2), 156.76 (C-4) ppm; MS (EI): *m*/*z* (%) = 211 (M⁺, 15), 196 (8), 141 (9), 127 (5), 112 (6), 85 (11), 70 (29), 42 (100).

5-Ethyl-1-(2-methylallyloxymethyl)-6-azauracil (**8c**, C₁₀H₁₅N₃O₃)

Colorless viscous oil; yield 0.122 g (54%); ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.20$ (t, J = 7.5 Hz, 3H, CH₃), 1.74 (s, 3H, CH₃), 2.65 (q, J = 7.5 Hz, 2H, CH₂), 4.09 (s, 2H, CH₂), 4.92, 5.01 (2×s, 2H, CH₂=), 5.34 (s, 2H, CH₂), 10.17 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz): $\delta = 10.31$ (CH₃), 19.32 (CH₃), 23.20 (CH₂), 73.86 (CH₂), 78.74 (CH₂), 112.79 (CH₂=), 141.27 (C-5), 148.06 (=C(*Me*)-), 149.22 (C-2), 156.46 (C-4) ppm; MS (EI): m/z (%) = 225 (M⁺, 24), 196 (5), 155 (13), 154 (61), 141 (16), 112 (4), 85 (7), 70 (19), 56 (100).

1-(2-Methylallyloxymethyl)-5-phenyl-6-azauracil

$(8d, C_{14}H_{15}N_3O_3)$

White solid; yield 0.19 g (70%); mp 125–126°C; ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.77$ (s, 3H, CH₃), 4.17 (s, 2H, CH₂), 4.96, 5.05 (2×s, 2H, CH₂=), 5.47 (s, 2H, CH₂), 7.45–7.50, 8.04–8.06 (2×m, 5H, H_{arom}), 10.13 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz): $\delta = 19.38$ (CH₃), 74.03 (CH₂), 79.25 (CH₂), 113.00 (CH₂=), 128.38, 128.39, 130.44, 131.12 (C_{arom}), 141.21 (C-5), 142.37 (=C(*Me*)–), 148.85 (C-2), 155.98 (C-4) ppm; MS (EI): m/z (%) = 273 (M⁺, 14), 245 (4), 202 (73), 190 (16), 171 (3), 131 (58), 111 (13), 104 (75), 53 (100).

5-Benzyl-1-(2-methylallyloxymethyl)-6-azauracil

$(8e, C_{15}H_{17}N_3O_3)$

White solid; yield 0.158 g (55%); mp 76–77°C; ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.73$ (s, 3H, CH₃), 3.95 (s, 2H,

CH₂), 4.07 (s, 2H, CH₂), 4.91, 4.97 (2 × s, 2H, CH₂=), 5.33 (s, 2H, CH₂), 7.25–7.36 (m, 5H, H_{arom}), 9.48 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz): $\delta = 19.32$ (CH₃), 35.90 (CH₂), 73.85 (CH₂), 78.80 (CH₂), 112.82 (CH₂=), 127.05, 128.61, 129.27, 135.69 (C_{arom}), 141.17 (C-5), 145.86 (=C(*Me*)–), 148.67 (C-2), 155.89 (C-4) ppm; MS (EI): m/z (%) = 287 (M⁺, 20), 259 (6), 216 (59), 204 (8), 196 (23), 118 (31), 113 (5), 91 (100).

5-Methyl-1-[(E)-2-methyl-3-phenylallyloxymethyl]-6azauracil (**8f**, C₁₅H₁₇N₃O₃)

Colorless viscous oil; yield 0.177 g (62%); ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.93$ (s, 3H, CH₃), 2.29 (s, 3H, CH₃), 4.24 (s, 2H, CH₂), 5.39 (s, 2H, CH₂), 6.56 (s, 1H, CH), 7.23–7.38 (m, 5H, H_{arom}), 10.19 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz): $\delta = 15.43$ (CH₃), 16.22 (CH₃), 76.17 (CH₂), 78.71 (CH₂), 126.44, 127.80, 128.14, 130.03, 133.97, 137.59 (C_{arom}, CH, =C(*Me*)–), 144.39 (C-5), 149.07 (C-2), 156.58 (C-4) ppm; MS (EI): m/z (%) = 287 (M⁺, 8), 272 (11), 147 (62), 141 (24), 131 (100), 126 (5), 118 (6), 77 (21).

1-[(E)-2-Methyl-3-phenylallyloxymethyl]-5-phenyl-6azauracil (**8g**, C₂₀H₁₉N₃O₃)

White solid; yield 0.237 g (68%); mp 134–135°C; ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.94$ (s, 3H, CH₃), 4.32 (s, 2H, CH₂), 5.53 (s, 2H, CH₂), 6.60 (s, 1H, CH), 7.23–8.08 (m, 10H, H_{arom}), 10.29 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz): $\delta = 15.48$ (CH₃), 76.36 (CH₂), 79.20 (CH₂), 126.68, 128.00, 128.17, 128.40, 128.41, 128.92, 130.47, 131.14, 133.94, 137.18 (C_{arom}, CH, =C(*Me*)–), 142.40 (C-5), 148.81 (C-2), 155.93 (C-4) ppm; MS (EI): m/z (%) = 349 (M⁺, 6), 203 (36), 190 (7), 160 (15), 147 (66), 131 (100), 115 (24), 104 (49), 91 (56).

1-(Indan-2-yloxy)-6-azauracils 8h and 8i

6-Azauracil (**4b**, **4c**, 1 mmol) was stirred in 15 cm³ dry acetonitrile under nitrogen and 0.87 cm³ (*BSA* 3.5 mmol) were added. After a clear solution was obtained (10 min), the mixture was cooled to -50° C and 0.18 cm³ (*TMS* triflate 1 mmol) were added followed by the dropwise addition of 0.56 g bis(indan-2-yloxy)methane (**7d**) (2 mmol). The reaction mixture was stirred at room temperature for 5 h, and quenched by addition of 5 cm³ sat aq NaHCO₃ solution. The mixture was evaporated under reduced pressure and the residue was extracted with 3×50 cm³ ether. The combined ether fractions were collected, dried (MgSO₄), and evaporated under reduced pressure. The residue was purified on a silica gel column using 1/5 petroleum ether/chloroform to give **8h** and **8i**.

5-Ethyl-1-(indan-2-yloxymethyl)-6-azauracil (**8h**, C₁₅H₁₇N₃O₃)

White solid; yield 0.152 g (53%); mp 144–145°C; ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.23$ (t, J = 7.5 Hz, 3H, CH₃), 2.68 (q, J = 7.5 Hz, 2H, CH₂), 3.03 (dd, J = 4.5, 16.0 Hz, 2H, 1'-H, 3'-H), 3.22 (dd, J = 6.5, 16.0 Hz, 2H, 1'-H, 3'-H); 4.65–4.69 (m, 1H, 2'-H), 5.42 (s, 2H, CH₂), 7.17–7.29 (m, 4H, H_{arom}), 9.51 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz): $\delta = 10.41$

(CH₃), 23.28 (CH₂), 39.51 (C-1', C-3'), 78.10 (C-2'), 79.76 (CH₂), 124.65, 126.69, 140.35 (C_{arom}), 148.12 (C-5), 148.83 (C-2), 156.18 (C-4) ppm; MS (EI): m/z (%) = 287 (M⁺, 7), 258 (6), 169 (19), 154 (61), 147 (9), 141 (6), 118 (93), 112 (11), 56 (100).

1-(Indan-2-yloxymethyl)-5-phenyl-6-azauracil

$(8i, C_{19}H_{17}N_3O_3)$

White solid; yield 0.203 g (61%); mp 178–179°C; ¹H NMR (CDCl₃, 500 MHz): $\delta = 3.08$ (dd, J = 4.4, 15.9 Hz, 2H, I'-H, 3'-H), 3.25 (dd, J = 6.5, 15.9 Hz, 2H, 1'-H, 3'-H), 4.73 (m, 1H, 2'-H), 5.53 (s, 2H, CH₂), 7.17–8.06 (m, 9H, H_{arom}), 9.83 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz): $\delta = 39.55$ (C-1', C-3'), 78.50 (C-2'), 79.91 (CH₂), 124.68, 126.66, 126.72, 128.43, 130.51, 131.07, 140.33 (C_{arom}), 142.49 (C-5), 148.64 (C-2), 155.86 (C-4) ppm; MS (EI): m/z (%) = 335 (M⁺, 6), 202 (69), 190 (34), 160 (5), 147 (9), 131 (47), 118 (100), 105 (74).

1-(3-Cyclohexen-1-ylmethoxymethyl)-5-phenyl-6-azauracil (**8j**, C₁₇H₁₉N₃O₃)

5-Phenyl-6-azauracil (**4c**, 0.189 g, 1 mmol) was stirred in 15 cm^3 dry acetonitrile under nitrogen and 0.87 cm³ (*BSA* 3.5 mmol) were added. After a clear solution was obtained (10 min), the mixture was cooled to -50° C and 0.18 cm³ (*TMS* triflate 1 mmol) were added followed by the dropwise addition of 0.472 g bis(3-cyclohexen-1-ylmethoxy)methane (**7e**) (2 mmol). The reaction mixture was stirred at room temperature for 5 h, and worked up as described in preparation of **8h** and **8i** to give the title **8j**.

White solid; yield 0.199 g (64%); mp 128–129°C; ¹H NMR (CDCl₃, 500 MHz): δ = 1.27–2.15 (m, 7H, 3 × CH₂, CH), 3.60 (dd, J = 3.5, 6.5 Hz, 2H, CH₂), 5.46 (s, 2H, CH₂), 5.64–5.67 (m, 2H, 2 × CH=), 7.28–7.47, 8.03–8.05 (2 × m, 5H, H_{arom}), 10.10 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz): δ = 24.44 (CH₂), 25.41 (CH₂), 28.27 (CH₂), 33.82 (CH), 75.12 (CH₂), 80.27 (CH₂), 125.73 (CH=), 127.07 (CH=), 128.37, 128.41, 130.43, 131.14 (C_{arom}), 142.34 (C-5), 148.80 (C-2), 156.00 (C-4) ppm; MS (EI): m/z (%) = 313 (M⁺, 29), 283 (6), 242 (5), 202 (41), 190 (43), 147 (4), 131 (100), 118 (13), 104 (82).

1-(2-Cyclohexylethoxymethyl)-6-azauracils (8k-8m)

6-Azauracils (**4a**–**4c**, 1 mmol) were stirred in 15 cm³ dry acetonitrile under nitrogen and 0.87 cm³ (*BSA* 3.5 mmol) were added. After a clear solution was obtained (10 min), the mixture was cooled to -50° C and 0.18 cm³ *TMS* triflate 1 mmol were added followed by the dropwise addition of 0.536 g bis(2-cyclohexylethoxy)methane (**7f**) (2 mmol). The reaction mixture was stirred at room temperature for 5 h, and worked up as described in preparation of **8h** and **8i** to give **8k–8m**.

1-(2-Cyclohexylethoxymethyl)-5-methyl-6-azauracil (**8k**, C₁₃H₂₁N₃O₃)

Colorless viscous oil; yield 0.062 g (23%); ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.87 - 1.68$ (m, 16H, H_{hexyl}, CH₂, CH₃), 3.62 (t, J = 6.5 Hz, 2H, CH₂), 5.25 (s, 2H, CH₂), 10.08 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz):

$$\begin{split} &\delta = 16.12 \ (\mathrm{CH}_3), \ 26.25, \ 26.54, \ 33.23, \ 34.32 \ (\mathrm{C}_{\mathrm{hexyl}}), \ 36.85 \\ &(\mathrm{CH}_2), \ 68.05 \ (\mathrm{CH}_2), \ 79.25 \ (\mathrm{CH}_2), \ 144.26 \ (\mathrm{C}\text{-}5), \ 149.20 \\ &(\mathrm{C}\text{-}2), \ 156.86 \ (\mathrm{C}\text{-}4) \ \mathrm{ppm}; \ \mathrm{MS} \ (\mathrm{EI}): \ m/z \ (\%) = 267 \ (\mathrm{M}^+, \\ 5), \ 252 \ (7), \ 157 \ (18), \ 141 \ (69), \ 127 \ (21), \ 113 \ (6), \ 112 \\ &(9), \ 97 \ (6), \ 42 \ (100). \end{split}$$

1-(2-Cyclohexylethoxymethyl)-5-ethyl-6-azauracil (**8**], C₁₄H₂₃N₃O₃)

Colorless viscous oil; yield 0.096 g (34%); ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.91-1.66$ (m, 16H, H_{hexyl}, CH₂, CH₃), 2.63 (q, J = 7.5 Hz, 2H, CH₂), 3.64 (t, J = 6.4 Hz, 2H, CH₂), 5.29 (s, 2H, CH₂), 10.11 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz): $\delta = 10.39$ (CH₃), 23.20 (CH₂), 26.20, 26.55, 33.23, 34.35 (H_{hexyl}), 36.86 (CH₂), 79.39 (CH₂), 147.92 (C-5), 149.05 (C-2), 156.46 (C-4) ppm; MS (EI): m/z (%) = 281 (M⁺, 7), 252 (8), 171 (13), 155 (84), 141 (26), 127 (9), 112 (4), 97 (6), 56 (100).

1-(2-Cyclohexylethoxymethyl)-5-phenyl-6-azauracil (8m, C₁₈H₂₃N₃O₃)

White solid; yield 0.178 g (54%); mp 137–138°C; ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.91-1.53$ (m, 13H, H_{hexyl}, CH₂), 3.74 (t, J = 6.5 Hz, 2H, CH₂), 5.44 (s, 2H, CH₂), 7.45–7.47, 8.04–8.05 (2 × m, 5H, H_{arom}), 10.09 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, 125 MHz): $\delta = 26.22$, 26.52, 33.27, 34.36 (C_{hexyl}), 36.80 (CH₂), 68.38 (CH₂), 79.95 (CH₂), 128.35, 128.41, 130.41, 131.14 (C_{arom}), 142.32 (C-5), 148.79 (C-2), 155.97 (C-4) ppm; MS (EI): m/z (%) = 329 (M⁺, 14), 219 (12), 203 (91), 189 (25), 175 (7), 160 (8), 131 (41), 104 (83), 53 (100).

Determination of in vitro antimicrobial activity

The primary screen was carried out using the agar discdiffusion method [36] using *Müller-Hinton* agar medium. Sterile filter paper discs (8 mm diameter) were moistened with the compound solution in dimethylsulphoxide of specific concentration ($200 \ \mu g/disc$), the antibacterial antibiotic Ampicillin trihydrate ($100 \ \mu g/disc$) and the antifungal drug Clotrimazole ($100 \ \mu g/disc$) were carefully placed on the agar culture plates that had been previously inoculated separately with the microorganisms. The plates were incubated at 37° C, and the diameter of the growth inhibition zones were measured after 24 h in case of bacteria and 48 h in case of *Candida albicans*.

Acknowledgements

The author would like to thank Prof. *E.E. Habib* and Prof. *A.A. El-Emam*, Faculty of Pharmacy, Qassim University, Saudi Arabia, for the antimicrobial screening.

References

- Linker KH, Findeisen K, Dollinger M, Santel HJ (1997) PCT Int Appl WO:9730980; Chem Abstr 127:248128
- Britsun VM, Shvartau VV, Esipenko AM, Petrenko VS, Lozins'kii MO (2004) Zhur Org Farm Khim 2:35; Chem Abstr 142:176808

- Depelley J, Granet R, Kaouadji M, Krauz P, Pierre S, Delebassee S, Bosgiraud C (1996) Nucleos Nucleot 15:995
- Luo MZ, Liu MC, Mozdziesz DE, Lin TS, Dutschman GE, Gullen EA, Cheng YC, Sartorelli AC (2000) Bioorg Med Chem Lett 10:2145
- 5. Maslen HL, Hughes D, Hursthouse M, DeClerq E, Balzarini J, Simons C (2004) J Med Chem 47:5482
- Gabrielsen B, Kirsii JJ, Kwong CD, Carter DA, Krauth CA, Hanna LK, Huggins JW, Monath TP, Kefauver DF, Blough HA, Rankin JT, Bartz CM, Huffman JH, Smee DF, Sidwell RW, Shannon WM, Secrist JA (1994) Antiviral Chem Chemother 5:209
- 7. Holla BS, Sarojini BK, Shridhara K, Antony G (1999) Farmaco 54:149
- 8. Hozien ZA (2000) J Chem Res Synopses 99:401
- Kahne D, Kerns R, Fukuzawa S, Ge M, Thompson C (2000) PCT Int Appl WO:2000004044; Chem Abstr 132:122934
- 10. El-Brollosy NR (2000) Phosphorus Sulfur Silicon 163:77
- 11. Holla BS, Shivananda MK (2003) Ind J Heterocyl Chem 13:85
- Thorwart W, Gebert U, Schleyerbach R, Bartlett RR (1988) Eur Pat:276805. (1989) Chem Abstr 110: 75574
- March LC, Bajwa GS, Lee J, Wasti K, Joullie MM (1976) J Med Chem 19:845
- Fischer H, Moeller H, Budnowski M, Atassi G, Dumont P, Venditti J, Yoder OC (1984) Arzneim Forsch 34:663
- 15. Mansour A, Eid MM, Khalil NS (2003) Nucleos Nucleot 22:21
- Hirai K, Sugimoto H, Mizushima T (1986) JP:61134389. (1987) Chem Abstr 106:67353
- Tanaka H, Takashima H, Ubasawa M, Sekiya K, Inouye N, Baba M, Shigeta S, Walker RT, DeClercq E, Miyasaka T (1995) J Med Chem 38:2860
- Hopkins AL, Ren J, Esnouf RM, Willcox BE, Jones EY, Ross C, Miyasaka T, Walker RT, Tanaka H, Stammers DK, Stuart DI (1996) J Med Chem 39:1589
- 19. Pedersen OS, Pedersen EB (1999) Antiviral Chem Chemother 10:285
- Pedersen EP, Jorgensen PT, Dahan B, El-Brollosy NR, Nielsen C, Doel AM, Vestergaard BF (2003) PCT Int Appl WO:2003057677; Chem Abstr 139:85591
- 21. El-Brollosy NR, Jorgensen PT, Dahan B, Boel AM, Pedersen EB, Nielsen C (2002) J Med Chem 45:5721
- 22. El-Brollosy NR, Pedersen EB, Nielsen C (2003) Arch Pharm Pharm Med Chem 336:236
- El-Essawy FA, El-Brollosy NR, Pedersen EB, Nielsen C (2003) J Heterocyl Chem 40:213
- 24. Wamberg M, Pedersen EB, El-Brollosy NR, Nielsen C (2004) Bioorg Med Chem 12:1141
- 25. El-Brollosy NR, Nielsen C, Pedersen EB (2005) Monatsh Chem 136:1247
- 26. Sorensen ER, El-Brollosy NR, Jorgensen PT, Pedersen EB, Nielsen C (2005) Arch Pharm Chem Life Sci 338:299

- 27. El-Brollosy NR (2006) J Heterocyl Chem 43:1435
- 28. El-Brollosy NR, Al-Omar MA, Al-Deep OA, El-Emam AA, Nielsen C (2007) J Chem Res:263
- 29. El-Brollosy NR (2007) J Chem Res:358
- El-Brollosy NY, Sorensen ER, Pedersen EB, Sanna G, LaColla P, Loddo R (2008) Arch Pharm Chem Life Sci 341:9
- 31. Chang PK (1958) J Org Chem 23:1951
- 32. Nazaretyan AK, Torosyan GO, Babayan AT (1985) J Appl Chem USSR 58:2396
- 33. Vorbrüggen H, Krolikiewiecz K, Bennua B (1981) Chem Ber 114:1234
- 34. Han CH, Chen YL, Tzeng CC (1991) Nucleos Nucleot 10:1391
- 35. Chen YL, Chen SJ, Lee KH, Huang BR, Tzeng CC (1993) Nucleos Nucleot 12:925
- 36. Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (1995) In: Wood GL, Washington JA (eds) Manual of Clinical Microbiology. Am. Soc. Microbiol., Washington DC