Chemical Studies on Myctophina Fish Bioluminescence

Shoji INOUE,^{*} Kunisuke OKADA, Hideo TANINO, and Hisae KAKOI Faculty of Pharmacy, Meijo University, Tenpaku, Nagoya 468

A new type of masked Watasenia preluciferin was isolated from the liver of myctophina fish and its structure was determined as Watasenia preluciferyl $\beta\text{-D-glucopyranosiduronic acid.}$

Watasenia preluciferin (WPL) (<u>1</u>), first isolated from the squid <u>Watasenia</u> <u>scintillans</u>,¹⁾ is a compound playing a key role in the light-emitting process of various bioluminescent marine organisms²⁾ such as squids, shrimps, coelenterates, and fish. In the case of myctophina fish, WPL <u>1</u> was isolated either from the liver of <u>Neoscopelus microchir</u> (Japanese name; sango-iwashi)³⁾ or from a pair of big nasal photophores of <u>Diaphus elucens</u> (Japanese name; suito-hadaka).⁴⁾ It is of interest that not the free form, but rather the bound form of <u>1</u> posessing an unknown molecule was present in the fish liver.

The present paper reports the structure of this new bioluminescent substance to be watasenia preluciferyl β -D-glucopyranosiduronic acid (2). The methanol extracts obtained from the lyophilized livers of Diaphus elucens (3 g, 50 individuals) were chromatographed on a sephadex LH-20 column with MeOH. The fractions giving chemiluminescence in DMSO-t-BuOK were combined and rechromatographed on a column of Sephadex LH-20 using acetone-MeOH (1:1) to give a crude chemiluminescent substance, which was successively separated on a silica gel TLC using AcOEt-acetone-MeOH-H₂O (6:2:1:1), acetone-CH₂Cl₂-MeOH (1:2:1), and 90% MeCN as solvents (Rf value: 0.70, 0.80, and 0.50, respectively) giving rise to the pure compound 2 (ca. 0.5 mg). The UV spectrum of 2 (275 nm in MeOH) was very close to that of Renilla luciferyl sulfate (3).⁵⁾ The ¹H-NMR spectrum⁶⁾ of 2 also indicated the presence of the paruial structure of 1 as an enol ether form with a sugar-like moiety. Acid hydrolysis of 2 with 1% HCl-MeOH (rt, 5 min) followed by extraction with AcOEt afforded an aglycone identical to WPL 1 in all respects whereas the other fragment remained in the aqueous phase. This hydrophilic counterpart could not be characterized in the usual way. Its structure was deduced as D-glucuronic acid, since light was emitted on adding a solution of β -glucuronidase in phosphate buffer (pH 7.6) to an aqueous solution of 2 containing 3% NaCl extracts of flesh of the fish. The structure of this luminescent substance is thus considered to be 2, as confirmed by the following synthesis.

O,O-Diacetyl WPL (<u>4</u>), prepared from <u>1</u> according to our previous report,⁵) was treated with methyl (2,3,4-tri-O-acetyl- α -D-glucopyranosyl bromide)-uronate in the presence of silver trifrate and tetramethylurea in dry CH₂Cl₂ (rt, 2 h) to

give pentaacetylluciferyl glucuronide methyl ester ($\underline{5}$) in 42% yield. Heating $\underline{5}$ in MeOH containing 10 equiv. of NaOH under reflux for 2 min resulted in the removal of all protecting groups to give the desired luciferyl glucuronide $\underline{2}$ in 79% yield. The chromatographical (TLC, HPLC(ODS/30% CH₃CN)) and spectral (UV, ¹H-NMR, Mass(negative SIMS)) properties of synthetic $\underline{2}$ were identical with those of the natural product.

Glucuronide $\underline{2}$ was also found in the liver of <u>Diaphus coeruleus</u> (Japanese name: Hadaka-iwashi), a representative luminous fish in Japan, and various other Myctophina fish such as <u>Diaphus suborbitalis</u>, <u>Benthosema fibulata</u>, and <u>Myctophum asperum</u>. In contrast to glucuronide $\underline{2}$ in liver, free WPL $\underline{1}$ was found, for example, in the photophores of <u>Diaphus coeruleus</u> as well as <u>Diaphus elucens</u> (characterized by in vitro bioluminescence). From the data presented above, glucuronide $\underline{2}$, a masked form of $\underline{1}$, is possibly synthesized from luciferin $\underline{1}$ in the liver and conveyed to the photophores to be hydrolysed to the free form $\underline{1}$ (luciferin). It would be of interest to make a comparison of this new type of bioluminescence system with that in <u>Renilla mülleri</u>⁵⁾ or <u>Watasenia scintillans</u>.⁷⁾ The further characterization of luminous substances in the photophores of other Myctophina fishes is now in progress.

References

1) S. Inoue, S. Sugiura, H. Kakoi, K. Hashizume, T. Goto, and H. Iio, Chem. Lett., <u>1975</u>, 141. 2) O. Shimomura, S. Inoue, F. H. Johnson, and Y. Haneda, Comp. Biochem. Physiol., <u>65B</u>, 435 (1980). 3) S. Inoue, K. Okada, H. Kakoi, and T. Goto, Chem. Lett., <u>1977</u>, 257. 4) S. Inoue, H. Kakoi, K. Okada, and T. Goto, Chem. Lett., <u>1979</u>, 253. 5) S. Inoue, H. Kakoi, M. Murata, T. Goto, and O. Shimomura, Tetrahedron Lett., <u>1977</u>, 2685. 6) ¹H-NMR (CD₃OD) aglycone: δ 4.17 (1H, d, J=15.3 Hz), 4.24 (1H, d, J=15.3 Hz), 4.49 (2H, s), 6.67 (2H, d, J=8.8 Hz), 6.86 (2H, d, J=8.8 Hz), 7.15 (2H, d, J=8.8 Hz), 7.16 (1H, t, J=7.1 Hz) 7.24 (2H, t, J=7.1 Hz), 7.45 (2H, d, J=7.1 Hz), 7.83 (2H, d, J=8.8 Hz), 8.62 (1H, s); glucuronic acid moiety: δ 3.39 (1H, t, J=9.3 Hz), 3.45 (1H, d, J=10.0 Hz), 3.56 (1H, dd, J=10.0, 9.3 Hz), 3.61 (1H, dd, J=9.3, 7.8 Hz), 4.69 (1H, d, J=7.8 Hz). 7) S. Inoue, H. Kakoi, K. Okada, H. Tanino, and T. Goto, Agric. Biol. Chem., <u>47</u>, 635 (1983).

(Received November 28, 1986)