Journal of Organometallic Chemistry, 185 (1980) 9–51 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

STRUCTURAL STUDIES IN MAIN GROUP CHEMISTRY

XXV *. TIN DERIVATIVES OF N-ACYLHYDROXYLAMINES; FURTHER STUDIES

PHILIP G. HARRISON* and JOHN A. RICHARDS

Chemistry Department, University of Nottingham, University Park, Nottingham NG7 2RD (Great Britain)

(Received July 24th, 1979)

Summary

The tin derivatives of N-acylhydroxylamines, (CH₃)₂Sn[ON(CH₃)COCH₃], R₂Sn[ON(Ph)COPh]₂ (R = CH₃, Ph, n-C₄H₉, n-C₈H₁₇), n-C₄H₉Sn[ON(Ph)COPh]₃, (CH₃)₃Sn[ON(Ph)SO₂C₆H₄CH₃], X₂Sn[ON(E)COPh]₂ (X = Cl, Br, I; E = H, Ph), (CH₃)₂SnX[ON(Ph)COPh] (X = Cl, Br, I); Cl₂Sn[ON(CH₃)COCH₃]₂ have been prepared. The reaction of N-acetyl-N-methylhydroxylamine with hexamethyldisilazane yielded the trimethylsilyl hydrazine, (CH₃)₃SiNH—N(CH₃)COCH₃. From several attempted syntheses of triorganotin derivatives only products of disproportionation were isolated, In particular, (CH₃)₃Sn[ON(CH₃)COCH₃], which could be isolated from the reaction of the hydroxylamine and (CH₃)₃SnNEt₂ in cold ether, disproportionated to (CH₃)₂Sn[ON(CH₃)COCH₃]₂ and (CH₃)₄Sn in refluxing ether after 30 min or by heating the solid to ca. 70°C. Tin-119 Mössbauer, vibrational, and mass spectral data are reported for the derivatives and discussed in detail.

Introduction

In previous papers we have described the synthesis, spectroscopic properties, and structures of some triorganotin derivatives of N-acylhydroxylamines [1,2], as well as the structures of Me₂Sn(ONMeCOMe)₂ [3], Me₂Sn(ONHCOMe)₂ [4], Me₂Sn(ONHCOMe)₂ · H₂O [4] and Cl₂Sn(ON(PhCOPh)₂ [5]. In every case, the N-acylhydroxylamino ligand behaved as a bidentate chelating ligand towards tin, thus providing the first corroborated example of the five-coordinated cis-(R₃SnX₂) geometry (Ph₃SnONPhCOPh) [2], which as since also been demonstrated for Me₃SnONPhCOPh [6]. Me₂Sn(ONMeCOMe)₂ exhibits a distorted octahedral geo-

^{*} For part XXIV see ref. 32.

metry at tin with a CSnC bond angle of 145.8(3)° [3], but the N-proto analogue, Me₂Sn(ONHCOMe)₂ is only little perturbed from the *cis*-octahedral geometry (CSnC = 109.1(4)°) due to the presence of NH···O=C hydrogen bonds. However, the corresponding monohydrate exhibits a similar stereochemistry to that of Me₂Sn(ONMeCOMe)₂ with a CSnC bond angle of 156.8(8)°, again due to a rather complex system of intermolecular hydrogen bonds [4]. Cl₂Sn-(ONPhCOPh)₂ has the expected *cis*-octahedral geometry [5]. We have only briefly mentioned the spectroscopic properties of these derivatives before, and so in this paper we report details of the syntheses and spectroscopic data for them and several other N-acylhydroxylamino derivatives of tin.

Experimental

N-Benzoyl-N-phenylhydroxylamine (Hopkin and Williams), N-benzoylhydroxylamine (Eastman Kodak) and potassium hydroxamate (Koch-Light) were commercial products and used as obtained. N-4-Methylbenzoylhydroxylamine and N-acetylhydroxylamine were obtained by reaction of the appropriate acyl chloride and hydroxylamine hydrochloride as described by Jones and Hurd [7] for benzohydroxamic acid. The latter compound was extremely hygroscopic, and was stored under argon. N-Acetyl-N-methylhydroxylamine was prepared as follows: N-methylhydroxylamine hydrochloride was obtained by the reduction of nitromethane in an aqueous medium using ammonium chloride at zinc dust maintaining the temperature lower than 15°C, as described by Beckmann [8]. Reaction of the hydrochloride with acetyl chloride and NA₂CO₃ after the method of Ulrich and Sayigh [9] to give N-acetyl-N-methylhydroxylamine as a very pale yellow oil which contained some impurities.

Attempted purification by distillation in vacuo gave a product which remained contaminated (approximately 2–5% estimated from NMR measurements). Gasliquid chromatography on several different columns at various temperatures (80–150°C) resulted in rearrangement to give three major components, which were not identified. The cleanest sample of HON(CH₃)COCH₃ was obtained by distillation in vacuo of a freshly prepared sample (fraction collected at 79°C/1.5 mmHg). Found: C, 39.10; H, 7.49; N, 15.69%. C₃H₇O₂N calcd.: C, 40.44; H, 7.92; N, 15.72%. NMR data (CDCl₃ coln.) δ 2.12 ppm (CH₃-C), 3.24 (CH₃-N), 9.65 (OH).

N-Phenyl-*N*-tosylhydroxylamine was obtained from *N*-phenylhydroxylamine (by reduction of nitrobenzene with zinc dust and ammonium chloride in water) and *p*-toluenesulphonyl chloride as described by Shokol [10] and recrystallised from petrol (60–80)/benzene. Found: C, 58.97; H, 4.85; N, 5.16; S, 11.94. $C_{13}H_{13}O_3NS$ calcd.: C, 59.30; H, 4.98; N, 5.32; S, 12.18%.

Infrared spectra were recorded using a Perkin—Elmer 521 Spectrophotometer, Raman spectra using a Cary 81 instrument mass spectra using an AEI MS-902 instrument, and ¹H NMR data using a Varian HA-100 spectrometer. The Mössbauer data were filled to Lorentzian line shapes using usual least-squares methods.

Preparation of the organotin derivatives

(a) Dimethyltin bis-N-benzoyl-N-phenylhydroxylamine. (CH₃)₂SnO (1.250 g; 7.59 mmol and HON(Ph)COPh (3.190 g; 14.96 mmol) were refluxed together

- in benzene (70 ml) under a Dean and Stark water separator for 4 h. The cooled reaction mixture was filtered and a white solid was precipitated by addition of ether. The solid was removed and recrystallised from warm cyclohexane to give dimethyltin bis-N-benzoyl-N-phenylhydroxylamine (yield 3.52 g, 66.4%) as a creamy white microcrystalline solid (m.p. 155°C). Found: C, 58.37; H, 4.70; N, 4.75. $C_{28}H_{26}O_4N_2Sn$ calcd.: 58.67; H, 4.57; N, 4.89%. NMR data (CDCl₃ soln.): δ 0.78 ppm ((CH₃)₂Sn), 7.19 (Ph), $^2J(^{119,117}Sn-C-^{1}H)$ 78.7, 75.0 Hz.
- (b) Di-n-butyltin bis-N-benzoyl-N-phenylhydroxylamine. $(n-C_4H_9)_2SnO$ (1.246 g; 5.01 mmol) and HON(Ph)COPh (2.132 g; 10.00 mmol) were reacted and extracted as in (a) giving di-n-butyltin bis-N-phenylhydroxylamine (yield 2.65 g; 80.6%), as a creamy white solid. Found: C, 62.01; H, 5.89; N, 3.90. $C_{34}H_{38}O_4N_2Sn$ calcd.: C, 62.20; H, 5.83; N, 4.27%. NMR data (CDCl₃ soln.): δ 7.11 ppm (Ph), complex butyl pattern.
- (c) Di-n-octyltin bis-N-benzoyl-N-phenylhydroxylamine. (n- C_8H_{17})₂SnO (2.107 g; 5.83 mmol) and HON(Ph)COPh (1.597 g; 7.49 mmol) were reacted as in (a), although a thick brown oil was obtained on reducing the reaction volume after filtration. All attempts to obtain a solid product failed, and the attempted distillation in vacuo brought about degradation of the product. However, partition of the crude product between benzene and aqueous ethanol gave a pure sample of di-n-octyltin bis-N-benzoylphenylhydroxylamine, as a brown viscous oil. Found: C, 65.4; H, 7.38; 3.54. $C_{42}H_{54}O_4N_2$ Sr. calcd.: C, 65.6; H, 7.07; N, 3.64%.
- (d) Diphenyltin bis-N-benzoyl-N-phenylhydroxylamine. Ph₂SnO (0.963 g; 3.34 mmol) and HON(Ph)COPh (1.420 g; 6.66 mmol) were reacted and extracted as in (a) to give diphenyltin bis-N-benzoyl-N-phenylhydroxylamine (yield 1.06 g; 45.7%), as a creamy white solid. Found: C, 65.14; H, 4.63; N, 2.06. $C_{38}H_{30}O_4N_2Sn$ calcd.: C, 65.48; H, 4.34; N, 4.02%.
- (e) n-butyltin tris-N-benzoyl-N-phenylhydroxylamine. (n-C₄H₉)SnO(OH) (1.045 g; 5.00 mmol) and HON(Ph)COPh (3.195 g; 14.98 mmol) were refluxed together in benzene (50 ml) under Dean and Stark conditions until no further water was removed. Evaporation of the reaction mixture and recrystallisation in pentane gave n-butyltin tris-N-benzoyl-N-phenylhydroxylamine (yield 2.23 g; 54.9%) as a yellow solid. Found: C, 63.24; H, 4.74; N, 4.62. C₄₃H₃₉O₆N₃Sn calcd.: C, 63.60; H, 4.84; N, 5.17%. NMR data (CDCl₃ soln.) indicates expected integrated peak ratio 30 (Ph): 9 (Bu).
- (f) Attempted preparation of phenyltin tris-N-benzoyl-N-phenylhydroxyl-amine. Lithium metal (0.070 g; 1.01 mmol) was dissolved in a dry methanol (10 ml), and to this was added dropwise with stirring a solution of HON(Ph)COPh (2.132 g; 1.00 mmol) in dry methanol (8 ml). PhSnCl₃ (1.010 g; 3.34 mmol) in dry methanol (9 ml) was added to the above prepared solution, and the yellow solution became brown. On concentration a brown oil separated out, which was removed, washed with methanol and redissolved in a large volume of methanol. The solution was again concentrated, and the brown oil again removed, and dried in vacuo, whereupon a brown solid formed (m.p. 110° C) Found: C, 62.38; H, 4.87; N, 5.05. $C_{45}H_{35}O_6N_3$ Sn calcd.: C, 64.93; H, 4.24; N, 5.05%. Subsequent attempts to recrystallise the solid failed to improve the analysis.
- (g) Attempted preparation of dichlorotin bis-N-benzoy-l-N-phenylhydroxylamine. $SnCl_4 \cdot 5 H_2O$ (1.754 g; 5.00 mmol) in methanol (10 ml) was added drop-

- wise with stirring to a methanol solution (30 ml) of HON(Ph)COPh (2.133 g; 10.00 mmol) with immediate formation of an intense violet colouration, which on standing became more intense. Attempts to isolate a single product failed.
- (h) Attempted preparation of dibromotin bis-N-benzoyl-N-phenylhydroxyl-amine. Bromine (1.340 g; 8.38 mmol) in methanol (20 ml) was added dropwise with stirring to a solution of (CH₃)₂SnON(Ph)COPh₂ (2.400 g; 4.19 mmol) in methanol (40 ml). A green colouration was initially formed, which intensified on standing. Evaporation of the solution in vacuo, yielded an involatile red oil, from which individual products could not be isolated.
- (i) Dichlorotin bis-N-benzoyl-N-phenylhydroxylamine. Lithium (0.074 g; 10.66 mmol) was dissolved in dry methanol (15 ml) and to this was added a solution of HON(Ph)COPh (2.133 g; 10.00 mmol) in dry methanol (15 ml). To this was added dropwise with stirring SnCl₄ (1.306 g; 5.012 mmol) also in dry methanol (10 ml), whereupon a white precipitate was formed, which was filtered off, washed with methanol and ether and dried in vacuo. (Yield of crude product 3.05 g; 99.3%.) The solid was recrystallised from a methanol/chloroform mixture to give dichlorotin bis-N-phenylhydroxylamine as a white crystalline solid (m.p. 180.5°C). Found: C, 50.71; H. 3.43; N, 4.46. C₂₆H₂₀O₄N₂Cl₂Sn calcd.: C, 50.90; H, 3.31; N, 4.57%.
- (j) Dibromotin bis-N-benzoyl-N-phenylhydroxylamine. Lithium (0.047 g; 6.77 mmol), HON(Ph)COPh (1.422 g; 6.67 mmol) and SnBr₄ (1.513 g; 3.45 mmol) were reacted and extracted as in (i), to give dibromotin bis-N-benzoyl-N-phenylhydroxylamine (yield: 1.77 g; 75.6%) as a slightly pink crystalline solid (m.p. 186° C). Found: C, 43.90; H, 2.95; N, 3.93. C₂₆H₂₀O₄N₂Br₂Sn calcd.: C, 44.40; H, 2.89; N, 3.98%.
- (k) Diiodotin bis-N-benzoyl-N-phenylhydroxylamine. Lithium (0.053 g; 7.59 mmol, HON(Ph)COPh (1.422 g; 6.67 mmol) and freshly recrystallised SnI₄ (2.088 g; 3.33 mmol) were reacted and extracted as in (i) to give diiodotin bis-N-benzoyl-N-phenylhydroxylamine (yield: 1.35 g; 5.07%) as a white crystalline solid. Found: C, 39.58; H, 2.63; N, 3.74. $C_{26}H_{20}O_4N_2I_2Sn$ calcd.: C, 39.18; H, 2.53; N, 3.51%.
- (l) The reaction of anhydrous tin(IV) chloride and N-benzoyl-N-phenylhy-droxylamine. HON(Ph)COPh (1.066 g; 5.00 mmol) in dry benzene (30 ml) was added to SnCl₄ (1.303 g; 5.00 mmol) in dry benzene (40 ml) with no visible reaction. After standing for 16 h the volume of the solution was reduced by approximately a half, at which point a white solid formed, and this was filtered off, washed with benzene and dried in vacuo. This was identified as the salt di-N-benzoyl-N-hydroxy-N-phenylammonium hexachlorostannate(IV). Found: C, 41.25; H, 2.91; N, 4.79. C₂₆H₂₄O₄N₂Cl₆Sn calcd.: C, 41.10; H, 3.18; N, 3.69%. Evaporation of the filtrate from the reaction, gave a white residue, which on extraction with chloroform, and subsequent precipitation with methanol gave dichlorotin bis-N-benzoyl-N-phenylhydroxylamine identified by comparison of its infrared spectrum, with a previously prepared sample.
- (m) Dimethylchlorotin N-benzoyl-N-phenylhydroxylamine. Lithium (0.41 g; 5.85 mmol) was dissolved in dry methanol (15 ml) and to this was added HON-(Ph)COPh (1.066 g; 5.00 mmol) also in dry methanol (5 ml). (CH₃)₂SnCl₂ (1.098 g; 5.00 mmol) in dry methanol (10 ml) was added to previously prepared solution, with the formation of a green colour. On standing a white crystalline

- solid formed, which was removed, washed with methanol and ether, and dried in vacuo. Recrystallisation from methanol/chloroform gave dimethylchlorotin *N*-benzoyl-*N*-phenylhydroxylamine (yield: 1.23 g; 62.1%). Found: C, 45.86; H, 3.73; N, 3.34. $C_{15}H_{16}O_2NClSn$ calcd.: C, 45.45; H, 4.07; N, 3.53%. M.p. 160°C. NMR data (CDCl₃ soln.): δ 1.06 ppm (CH₃)₂, 7.28 (Ph). ²*J*(^{119,117}Sn—C—²H) 79.85, 76.00 Hz.
- (n) Dimethylbromotin N-benzoyl-N-phenylhydroxylamine. Lithium (0.037 g; 5.33 mmol), HON(Ph)COPh (1.066 g; 5.00 mmol) and (CH₃)₂SnBr₂ (1.543 g; 5.00 mmol) were reacted, and the product extracted and purified as in (m) to give dimethylbromotin-N-benzoyl-N-phenylhydroxylamine (yield: 1.63 g; 74.3%) as a white crystalline solid (m.p. 174.5°C). Found: C, 40.60; H, 4.12; N, 2.70. $C_{15}H_{16}O_2NBrSn$ calcd.: C, 40.86; H, 3.66; N, 3.18%' NMR data (CDCl₃ soln.) δ 1.02 ppm ((CH₃)₂Sn), 7.15 (Ph). $^2J(^{119,117}Sn-C-^{1}H)$ 76.5 Hz.
- (o) Dimethyliodotin N-benzoyl-N-phenylhydroxylamine. Lithium (0.040 g; 5.69 mmol), HON(Ph)COPh (1.066 g; 5.00 mmol) and $(CH_3)_2SnI_2$ (2.013 g; 5.00 mmol) were reacted, and the product extracted and purified as in (m) to give dimethyliodotic N-benzoyl-N-phenylhydroxylamine (yield: 1.46 g; 59.0%) as a white crystalline solid. Found: C, 36.64; H, 3.81; N, 2.36. $C_{15}H_{16}O_2NISn$ calcd.: C, 36.93; H, 3.31; N, 2.87%. NMR data (CDCl₃ soln.) δ 1.35 ppm ((CH₃)₂Sn), 7.28 (Ph). $^2J(^{119},^{117}Sn-C-^{1}H)$ 73.4 Hz.
- (p) Attempted preparation of triphenyltin N-benzoylhydroxylamine. Ph₃SnOH (3.670 g; 10.00 mmol) and HON(H)COPh (1.411 g; 10.00 mmol) were refluxed together in benzene (55 ml) under Dean and Stark conditions for 14 h. A white solid was formed, which was removed and dried. This was identified as tetraphenyltin, by comparison of its infrared spectrum, with that of a pure sample of Ph₄Sn. Attempts to isolate other products were unsuccessful.
- (q) Reaction of triphenyltin chloride, N-benzoylhydroxylamine and triethylamine. Ph₃SnCl (1.927 g; 5.00 mmol) in dry methanol (25 ml) was added dropwise with stirring, to HON(H)COPh (0.686 g; 5.00 mmol) also in dry methanol (25 ml) and anhydrous (C_2H_5)₃N (1.015 g; 10.03 mmol) with no apparent reaction. The mixture was refluxed for six hours, whereupon a solid formed, which was removed and dried, and identified as tetraphenyltin. Found: C, 67.51; H, 5.33; N, 0.00. $C_{24}H_{20}$ Sn calcd.: C, 67.40; H, 4.68; N, 0.00%. The infrared spectrum was also identified as that of tetraphenyltin.
- (r) Repeat of (q) with excess triethylamine. Ph₃SnCl (1.927 g; 5.00 mmol), and HON(H)COPh (0.686 g; 5.00 mmol) were mixed as in (q) with a large excess of (C₂H₅)₃N, giving the immediate formation of a white solid. The solid was filtered off, washed with methanol and then ether, and dried in vacuo yielding triethylammonium triphenyltin benzohydroximate (yield: 1.10 g; 37.5%) as a white microcrystalline solid. Found: C, 62.26; H, 5.88; N, 3.46. C₃₁H₃₆O₂N₂Sn calcd.: C, 62.25; H, 6.07; N, 4.79%. NMR data (CDCl₃ soln.): δ 0.72 ppm (CH₃—) 2.27 (—CH₂—), 7.46, 7.06 (Ph). Mössbauer data IS. 0.59 mm sec⁻¹, QS 1.41 mm sec⁻¹.
- (s) Reaction of triphenyltin hydroxide with N-4-methylbenzoylhydroxylamine. Ph₃SnOH (0.824 g; 2.14 mmol) and HON(H)CO \cdot C₆H₄ \cdot CH₃ (0.339 g; 2.24 mmol) were refluxed together in benzene (50 ml) under Dean and Stark conditions, for 6 h, after which no further water separated out. The white precipitate formed was filtered off, and recrystallised from benzene, giving tetra-

- phenyltin as a white microcrystalline solid, which was identified from its infrared spectrum. Found: C, 67.63; H, 4.84; N, 0.00. $C_{24}H_{20}Sn$ calcd.: C, 67.49; H, 4.72; N, 0.00%.
- (t) Dichlorotin bis-N-benzoylhydroxylamine. SnCl₄ (1.620 g; 6.22 mmol) in dry methanol (10 ml) was added dropwise with stirring to potassium benzohydroxamate (2.180 g; 12.44 mmol) in dry methanol (25 ml). A white solid formed on standing, which was removed and recrystallised from a large volume of methanol, to give dichlorotin bis-N-benzoylhydroxylamine as a white crystalline solid. Found: C, 36.11; H, 3.23; N, 5.79. C₁₄H₁₂O₄N₂Sn calcd.: C, 36.37; H, 2.59; N, 6.06%.
- (u) Dibromotin bis-N-benzoylhydroxylamine. $SnBr_4$ (2.235 g; 5.11 mmol) and potassium benzohydroxamate (1.782 g; 10.16 mmol) were reacted and the solid extracted as described in (t). Found: C, 27.30; H, 2.30; N, 4.54%. $C_{14}H_{12}O_4N_2Br_2Sn$ calcd.: C, 30.53; H, 2.20; N, 5.09%.
- (v) Diiodotin bis-N-benzoylhydroxylamine. SnI₄ (1.980 g; 3.16 mmol) and potassium benzohydroxamate (1.369 g; 7.82 mmol) were reacted and the product extracted as described in (t). Recrystallisation of the crude grey product was carried out in chloroform and gave diiodotin bis-N-benzoylhydroxylamine as a pale yellow crystalline solid. Found: C, 26.42; H, 2.09; N, 5.22. $C_{14}H_{12}O_4N_2I_2Sn$ calcd.: C, 26.04; H, 1.86; N, 4.34%.
- (w) Dimethyltin bis-N-acetyl-N-methylhydroxylamine. (CH₃)₂SnO: (1.663 g; 10.10 mmol) and HON(CH₃)COCH₃ (0.996 g; 11.18 mmol) were refluxed together in benzene (90 ml) under Dean and Stark conditions for 10 h. On cooling, the excess (CH₃)₂SnO was filtered off, and the filtrate evaporated to dryness, whereupon the solid obtained was recrystallised from chloroform/ether, and dried in vacuo to give dimethyltin bis-N-acetyl-N-methylhydroxylamine (yield: 0.45; 24.8%) (m.p. 138.5°C) as a white crystalline solid. Found: C, 29.42; H, 5.76; N, 8.39. $C_8H_{18}O_4N_2Sn$ calcd.: C, 29.55; H, 5.58; N, 8.39%. NMR data (CDCl₃ soln.): δ 1.83 ppm (CH₃—C), 3.17 ppm (CH₃—N), 0.23 ((CH₃)₂Sn), $^2J(^{119,117}Sn-C-^1H)$ 81.5, 77.3 Hz.
- (x) Attempted preparation of diphenyltin bis-N-acetyl-N-methylhydroxylamine. Ph₂SnO (1.835 g; 5.00 mmol) and HON(CH₃)COCH₃ (0.908 g; 10.19 mmol) were reacted as in (w) to give a cloudy solution on cooling, which after filtration was evaporated to dryness, and the resultant solid recrystallised from chloroform/ether to give a waxy solid. Found: C, 29.41; H, 3.64; N, 5.26. $C_{18}H_{22}O_4N_2Sn$ calcd.: C, 48.2; H, 4.94; N, 6.25%.
- (y) Dimethyltin bis-N-acetylhydroxylamine. (CH₃)₂SnO (1.110 g; 6.74 mmol) and HON(H)COCH₃ (1.011 g; 13.47 mmol) were reacted as described in (w) and on cooling the white solid was removed and recrystallised from methanol to give dimethyltin bis-N-acetylhydroxylamine (yield: 0.64 g; 34.8%) as a white crystalline solid. Found: C, 24.22; H, 4.92; N, 8.89. $C_6H_{14}O_4N_2Sn$ calcd.: C, 24.27; H, 4.72; N, 9.44%. NMR data (CD₃OD soln.): δ 1.12 ppm (CH₃-C), 0.27 ((CH₃)₂Sn), $^2J(^{119,117}Sn-C-^{1}H)$ 77 Hz.
- (z) Preparation of dichlorotin bis-N-acetyl-N-methylhydroxylamine. $SnCl_4 \cdot 5 H_2O$ (1.755 g; 5.00 mmol) and $HON(CH_3)COCH_3$ (1.805 g; 20.26 mmol) were mixed in methanol (30 ml) and refluxed for 5 h. On cooling a white solid precipitated out, which was removed, recrystallised from methanol and dried in vacuo to give dichlorotin bis-N-acetyl-N-methylhydroxylamine (yield:

- 0.74 g; 40.4%) as a white crystalline solid. Found: C, 19.66; H, 3.29; N, 7.80%. $C_6H_{12}O_4N_2Cl_2Sn$ calcd.: C, 19.70; H, 3.31; N, 7.77%. NMR data (CDCl₃ soln.): δ 2.80 ppm (CH₃—C), 4.11 (CH₃—N).
- (aa) Attempted preparation of trimethyltin N-acetyl-N-methylhydroxylamine. (CH₃)₃SnOH (1.348 g; 7.51 mmol) and HON(CH₃)COCH₃ (0.668 g; 7.49 mmol) were refluxed together in benzene (50 ml) under Dean and Stark conditions for five hours. On cooling, the almost clear solution was filtered and the filtrate reduced in volume to give a labile oil. Vacuum distillation gave three fractions, which could not be identified. A solid formed slowly in the second fraction (38.5–44.0°C/0.25 mmHg) which also could not be identified.
- (bb) Attempted preparation of triphenyltin N-acetyl-N-methyldroxylamine. Ph₃SnOH (1.835 g; 5.00 mmol) and HON(CH₃)COCH₃ (0.450 g; 5.05 mmol) were reacted as in (aa). On cooling the insoluble residue was filtered off and the filtrate evaporated to dryness to give an off-white solid, which was recrystallised from chloroform/pentane to give diphenyltin bis-N-acetyl-N-methylhydroxylamine as a white microcrystalline solid. Found: C, 47.76; H, 4.54; N, 4.78. $C_{18}H_{22}O_4N_2Sn$ calcd.: C, 48.2; H, 4.94; N, 6.25. NMR data (CDCl₃ soln.): δ 2.28 ppm (CH₃-C), 3.61 (CH₃-N), 7.76 (o-protons Ph), 7.44 (m- and p-protons Ph).
- (cc) Reaction with trimethyltin diethylamine in ether. (CH₃)₃SnN(C₂H₅)₂ (1.829 g; 7.75 mmol) in dry ether (8 ml) was added dropwise with stirring to HON(CH₃)COCH₃ (0.693 g; 7.78 mmol) in dry ether (40 ml) under argon. After standing for two hours, with no apparent reaction, the solution was refluxed for 30 min and the resulting solution reduced in volume, whereupon large colourless crystals formed. These crystals were removed and recrystallised twice from ether to give dimethyltin bis-N-acetyl-N-methylhydroxylamine. This was identified from its infrared spectrum and its analysis. Found: C, 29.61; H, 5.93; N, 8.38. C₈H₁₈O₄N₂Sn calcd.: C, 29.47; H, 5.58; N, 8.62%.
- (dd) Reaction with trimethyltin diethylamine in n-pentane. (CH₃)₃SnN-(C₂H₅)₂ (2.240 g; 9.49 mmol) in freshly distilled dry pentane (8 ml) was added dropwise with stirring to a mixture of HON(CH₃)COCH₃ (0.806 g; 9.04 mmol) and n-pentane (30 ml) under an argon atmosphere with the immediate formation of a white solid. Filtration gave trimethyltin N-acetyl-N-methylhydroxylamine (m.p. dec. ca. 70°C) as a white microcrystalline solid. Found: C, 28.35; H, 6.49; N, 5.44. C₆H₁₅O₂NSn calcd.: C, 28.61; H, 6.00; N, 5.56%. NMR data (CDCl₃ soln.): δ 3.16 ppm (CH₃-N), 1.86 (CH₃-C), 0.307 ((CH₃)₃Sn). ²J(^{119,117}Sn-C-¹H) 54.5, 53.1 Hz.
- (ee) Preparation of trimethyltin N-phenyl-N-tosylhydroxylamine. $(CH_3)_3SnOH$ (0.904 g; 5.00 mmol) and $HON(Ph)SO_2C_6H_4 \cdot CH_3$ (1.317 g; 5.00 mmol) were refluxed in benzene (50 ml) under Dean and Stark conditions for 16 h. The cooled solution was filtered and the filtrate evaporated to dryness to give a yellow solid. Extraction of the solid with ethanol and subsequent recrystallisation from ether to give trimethyltin N-phenyl-N-tosylhydroxylamine as a pale yellow crystalline solid. Found: C, 45.05; H, 5.12; N, 3.03; S, 6.98%. $C_{16}H_{21}O_3NSSn$ calcd.: C, 45.10; H, 4.97; N, 3.29; S, 7.52%. NMR data (CDCl₃ soln.): δ 6.95 ppm (Ph), 2.13 (CH₃), 0.28 ((CH₃)₃Sn).
- (ff) Reaction of N-acetyl-N-methylhydroxylamine with hexamethyldisilazane. Hexamethyldisilazane (2.43 g; 15.06 mmol) in ether (10 ml) was added to HON-

(CH₃)COCH₃ (2.700 g; 30.30 mmol) in ether (20 ml) and the resulting solutions refluxed for 4 h, under argon. Reduction of the solution volume gave an oil, which was distilled in vacuo to give three fractions (major fraction collected, $47-48^{\circ}\text{C}/0.005$ mmHg). Found: C, 45.82; H, 9.41; N, 17.55. C₆H₁₆ON₂Si ((CH₃)₃SiNH-N(CH₃)COCH₃) calcd.: C, 44.95; H, 10.06; N, 17.48%. NMR data (C₆H₆ soln.): δ 0.20 ppm ((CH₃)₃Si), 2.08 (CH₃-C), 3.16 (CH₃-N).

Results and discussion

A. Syntheses

The diorganotin bis-N-benzoyl-N-phenylhydroxylamine derivatives I were readily prepared in good yields, from the appropriate diorganotin oxide and the hydroxylamine in benzene, by azeotropic removal of water in a Dean and Stark apparatus:

$$R_2SnO + HON(Ph)COPh \rightarrow R_2Sn[ON(Ph)COPh]_2 + H_2O$$

(I)

$$(R = CH_3, C_6H_5, n-C_4H_9, n-C_8H_{17})$$

The dimethyl-, diphenyl-, and di-n-butyl-tin derivatives were obtained as very soluble, cream coloured solids and recrystallised with difficulty from hydrocarbonds. The dioctyltin compound was isolated as an undistillable viscous brown oil, which was purified by partition between benzene and aqueous ethanol. Dimethyltin bis-N-acetyl-N-methylhydroxylamine was obtained similarly, but isolation of the corresponding diphenyltin derivative by the same method proved unsatisfactory.

n-Butyltin tris-N-benzoyl-N-phenylhydroxylamine (II) was also prepared by azeotropic removal of water, when butylstannonic acid and the hydroxylamine were refluxed together in benzene. However, the similar reaction with phenylstannonic acid and N-acetyl-N-methylhydroxylamine gave a mixture of products, which proved inseparable.

$$n-C_4H_9SnO(OH) + 3 HON(Ph)COPh \rightarrow (n-C_4H_9)Sn[ON(Ph)COPh]_3 + 2 H_2O$$
(II)

The same procedure was employed for the preparation of trimethyltin N-phen-yl-N-tosyhydroxylamine (III):

$$(CH_3)_3SnOH + HON(Ph)SO_2C_6H_4CH_3 \rightarrow (CH_3)_3SnON(Ph)SO_2C_6H_4CH_3 + H_2O$$
(III)

However, attempted syntheses of trimethyltin and triphenyltin *N*-acetyl-*N*-methylhydroxylamine were unsuccessful. In the latter case, diphenyltin bis-*N*-acetyl-*N*-methylhydroxylamine, water, and an insoluble residue were formed, whilst in the former an oil was obtained which decomposed on distillation in vacuo to afford an oil and a solid neither of which were identified.

Addition of N-benzoyl-N-phenylhydroxylamine to lithium methoxide (prepared in situ by the addition of freshly cut clean lithium metal to dry methanol in an inert atmosphere) in dry methanol under argon, gave pale lemon crystals of lithium N-benzoyl-N-phenylhydroxylamine, which slowly separated out of

solution. The sodium salt of *N*-acetyl-*N*-methylhydroxylamine was prepared in a similar fashion. The lithium salt was used to prepare a series of dihalogenotin bis-*N*-benzoyl-*N*-phenylhydroxylamines (IV) and dimethylhalogenotin *N*-phenylhydroxylamines (V) as white or yellow microcrystalline solids. In each case the lithium salt was prepared in situ, and subsequently reacted with the tin tetrahalides or dimethyltin dihalides respectively, in dry methanol under anerobic conditions.

$$SnX_4 + 2 LiON(Ph)COPh \rightarrow X_2Sn[ON(Ph)COPh]_2 + 2 LiX$$

$$(X = Cl, Br, I)$$

$$(IV)$$

$$(CH_3)_2SnX_2 + LiON(Ph)COPh \rightarrow (CH_3)_2Sn(X)[CN(Ph)COPh] + LiX$$

$$(X = Cl, Br, I)$$

$$(V)$$

The dichlorotin N-acetyl-N-methylhydroxylamine complex (VI) was obtained by an altogether different route: tin(IV) chloride pentahydrate was refluxed in methanoi with N-acetyl-N-methylhydroxylamine in a molar ratio of 1:4, whereupon crystals of the dichlorotin derivative separated out on cooling:

$$SnCl_4 \cdot 5 H_2O + 4 HON(CH_3)COCH_3$$

 $\rightarrow Cl_2Sn[ON(CH_3)COCH_3]_2 + 2 HON(CH_3)COCH_3 \cdot HCl_{(VI)}$

With N-benzoyl-N-phenylhydroxylamine in a 1:2 molar ratio in cold methanol a deep violet colouration was produced immediately, but no product could be isolated.

The mixing of dry benzene solutions of anhydrous tin(IV) chloride and N-benzoyl-N-phenylhydroxylamine in molar ratio 1:1 yielded on reduction of the volume of the solution under reduced pressure, two products, which were separated by recrystallisation from different solvents. The products were identified as the N-benzoyl-N-phenylhydroxylammonium salt of the hexachlorotin anion VII, and dichlorotin bis-N-benzoyl-N-phenylhydroxylamine, the excess tin(IV) chloride presumably being taken off in vacuo with the other volatile components of the reaction mixture:

$$\begin{split} 4 & \text{Cl}_4\text{Sn} + 4 & \text{HON(Ph)COPh} \rightarrow \text{Cl}_2\text{Sn}[\text{ON(Ph)COPh}_2] + 2 & \text{Cl}_4\text{Sn} \\ & + [\text{HON(Ph)HCOPh}]_2^{\dagger}[\text{SnCl}_6]^{2-} \\ & \text{(VII)} \end{split}$$

The attempted preparation of the tetrakis-O-tin-N-acetyl-N-methylhydroxylamine, from tin(IV) chloride and the sodium salt of the hydroxylamine, was unsatisfactory with no identifiable products being obtained.

The attempted preparation of some triorganotin derivatives was found to yield in many cases the diorganotin bishydroxylamine derivatives. We have previously reported [1] that only tetraphenyltin could be identified from the azeotropic dehydration of a mixture of triphenyltin hydroxide and N-benzoylhydroxylamine the expected product, $Ph_3SnON(H)COPh$, was isolated. A triphenyltin derivative of N-benzoylhydroxylamine could be isolated as the triethylammonium salt of the $[Ph_3SnON \cdot C(O)Ph]^-$ amion (VIII) from the reaction of triphenyltin chloride and the hydroxylamine in excess triethylamine in methanol

[1]:

$$NEt_3H^+Cl^- + \begin{bmatrix} Ph_3Sh & JI \\ O & Ph \end{bmatrix} NEt_3H^+$$
(VIII)

However, when this reaction was repeated with a stoichiometric quantity of triethylamine and refluxed in methanol for 1 h, only tetraphenyltin could again be isolated. Although the other product, $Ph_2Sn[ONHCOPh]_2$, was not isolated in these reactions, diphenyltin bis-N-acetyl-N-methylhydroxylamine was obtained from the reaction of triphenyltin hydroxide and the hydroxylamine after reflux, and only dimethyltin bis-N-acetylhydroxylamine was recovered from the reaction of trimethyltin bydroxide and N-acetylhydroxylamine. That the migrating phenyl group arises as a result of the clearage of a tin—carbon (phenyl) bond, rather than from a (1,3) phenyl migration from hydroxylamine to tin, was confirmed by the reaction between N-4-methylbenzoylhydroxylamine and triphenyltin hydroxide in boiling benzene which yielded tetraphenyltin and no triphenyl-4-tolyltin.

The cleavage of the tin-bound organic group appears to be facilitated by high reaction temperatures, and the attempted preparation of $(CH_3)_3SnON(CH_3)CO-(CH_3)$ (IX) from trimethyltin hydroxide and N-methyl-N-acetylhydroxylamine in boiling benzene yielded a complex mixture of products. However, this compound was isolated as a white solid by the reaction of the hydroxylamine with trimethylstannyldiethylamine in cold anhydrous ether:

$$(CH_3)_3SnNEt_2 + HON(CH_3)COCH_3 \rightarrow (CH_3)_3SnON(CH_3)COCH_3 + NEt_2H$$
(IX)

Reflux of the reaction mixture for 30 min afforded the disproportionation product, $(CH_3)_2Sn[ON(CH_3)COCH_3]$. A dilute chloroform solution of (IX) was found to be stable for several months, and it would appear that the disproportionation reaction is thermally-activated. Indeed treating a solid sample of (IX) to ca. $70^{\circ}C$ resulted in complete disproportionation:

$$2(CH_3)_3SnO(CH_3)COCH_3 \rightarrow (CH_3)_2Sn[ON(CH_3)COCH_3]_2 + (CH_3)_4Sn$$

Rather surprisingly, the reaction of *N*-acetyl-*N*-methylhydroxylamine with hexamethyldisilazane did not yield the *O*-silylhydroxylamine. Instead N—O bond fission occurred yielding the *N*-trimethylsilylhydrazine derivative (XI):

$$(CH_3)_3SiNHSi(CH_3)_3 + HON(CH_3)COCH_3$$
 $(CH_3)_3SiON(CH_3)COCH_3$
 $(CH_3)_3SiNH-N(CH_3)COCH_3$

B. Spectroscopy-structure correlations

(i) O-Triorganotinhydroxylamines. The presence of a second donor site in the N-acylhydroxylamine ligand permits its potential function as a unidentate, or a chelating or bridging bidentate ligand, thus giving rise to the possible four-coordinated structure (XII) or the two five-coordinated structures XIII and XIV, respectively.

We have previously shown that both trimethyltin [6] and triphenyltin N-benzoyl-N-phenylhydroxylamine [2] possess structure XIII in the crystal. The covalent tin—oxygen bond formed by the nitrogen bonded atom is in each case substantially shorter (mean 2.100(6) Å) than the coordinate bond of the axial site (mean 2.318(6) Å). Similarly, whilst the tin—carbon bonds of the equatorial positions are approximately equal in length (2.11(1) Å, 2.14(1) Å), that of the remaining axial site is longer (2.22(1) Å, 2.18(1) Å).

The coordination of the carbonyl group is indicated in the infrared spectrum of these compounds by a substantial reduction in the carbonyl stretching frequency (1540 cm⁻¹) in comparison with the parent hydroxylamine (1620 cm⁻¹), which is itself subject to substantial intramolecular hydrogen-bonding, and so is lower than might be expected. The value observed for trimethylsilyl-N-benzoyl-N-phenylhydroxylamine (1660 cm⁻¹) is probably more realistic for a "free" carbonyl group in this type of compound [1].

In contrast, trimethyltin N-acetyl-N-methylhydroxylamine exhibits quite different spectroscopic properties. The Mössbauer QS value for solid $(CH_3)_3SnON(CH_3)COCH_3$ (Table 1) is significantly larger (3.35 mm sec⁻¹) than for the triphenyltin and trimethyltin derivatives of the N-benzoyl-N-phenylhydroxylamine ligand (1.94 and 2.36 mm sec⁻¹, respectively), indicate of a gross structural change at tin. The QS value falls within the range attributed to trial-kyltin compounds with structure XIV by Bancroft et al. [12] and consequently is very similar to that of trimethyltin acetate (IS 1.34 mm sec⁻¹, QS = 3.47 mm sec⁻¹) [13] which is known to have this structure, with the planar trimethyltin moieties bridged by the carboxylate residues [14]. Tetrahedral coordination about the tin in $(CH_3)_3Sn[ON(CH_3)COCH_3]$ may be excluded, since the QS values of less than 2 mm sec⁻¹ would be expected for this geometry.

The PMR spectrum of (CH₃)₃Sn[ON(CH₃)COCH₃] in CDCl₃ exhibits the

TABLE 1 THE MOSSBAUER SPECTRA OF THE ORGANO- AND HALOGENO-TIN(IV) HYDROXYLAMINES ^a

Compound	IS b,c	QS b,c	Γ ₁ b	Г2 в
(CH ₃) ₃ Sn[ON(C ₂ H ₅) ₂] ^d	1.40	1.98	1.26	1.22
(CH ₃) ₃ Sn[ON(Ph)COPh] ^d	1.34	2.36	1.39	1.36
(CH ₃) ₃ Sn[ON(H)COPh] ^d	1.37	2.74	1.55.	1.55
$(CH_3)_3Sn[ON(Ph)SO_2C_6H_4 \cdot CH_3]$	1.34	2.66	0.78	0.72
(CH ₃) ₃ Sn[ON(CH ₃)COCH ₃]	1.23	3.36	0.80	0.93
Ph ₃ Sn[ON(Ph)COPh] d	1.26	1.94	0.92	0.92
(CH ₃) ₂ Sn[ON(Ph)COPh] ₂	1.16	3.07	0.95	0.95
(CH ₃) ₂ Sn[ON(CH ₃)COCH ₃] ₂	1.19	3.31	1.01	0.99
(CH ₃) ₂ Sn[ON(H)COCH ₃] ₂	0.93	2.01	0.85	0.90
(n-C ₄ H ₉) ₂ Sn[ON(Ph)COPh] ₂	1.34	3.30	2.76	2.50
(n-C ₈ H ₁₇) ₂ Sn[ON(Ph)COPh] ₂	1.23	2.91	0.83	1.45
Ph ₂ Sn[ON(Ph)COPh] ₂	0.83	1.80	1.89	2.12
Ph ₂ Sn[ON(CH ₃)COCH ₃] ₂	1.17	1.61	0.97	0.94
ı-C4H9Sn[ON(Ph)COPh]3	0.76	2.05	0.75	0.79
Cl ₂ Sn[ON(Ph)COPh] ₂	0.41	0	2.37	 .
Br ₂ Sn[ON(Ph)COPh] ₂	0.50	0	1.39	
I ₂ Sn[ON(Ph)COPh] ₂	0.69	o	1.36	_
Cl ₂ Sn[ON(CH ₃)COCH ₃] ₂	0.35	0	1.08	
(CH ₃) ₂ Sn(Cl)[ON(Ph)COPh]	1.18	2.71	1.29	1.30
(CH ₃) ₂ Sn(Br)[ON(Ph)COPh]	1.19	2.65	0.77	0.80
(CH ₃) ₂ Sn(I)[ON(Ph)COPh]	1.24	2.63	1.07	1.08

^a Recorded at ?7 K. ^b mm sec⁻¹. ^c Estimated errors: ±0.05 mm sec⁻¹ (IS), ±0.10 mm sec⁻¹ (QS). ^d Data taken from ref.

expected proton signals resulting from the three dissimilar methyl groups, in the correct integrated ratios. However, the value of the coupling constant ²J(¹¹⁹Sn-C¹H) is 54.5 Hz, similar to that observed for (CH₃)₃Sn[ON(Ph)COPh] (Table 2) which was assigned a cis-trigonal bipyramidal structure XIII in solution [1]. The trans trigonal bipyramidal (CH₃)₃SnX₂ species are expected to have $^{2}J(^{119}Sn-C-^{1}H)$ values of ca. 70 Hz commensurate with an approximately sp^{2} rehybridisation for the planar (CH₃)₃Sn group. The value of the coupling constant, here, is related to the s-electron density directed along the tin—carbon bond, via the Fermi contact mechanism, a value of 70 Hz indicates a high degree of s-electron density (ca. 33%), whilst a value of 50 Hz is expected for fourcoordinate sp³ hybridised species, such as (CH₃)₃Sn, and indicates a lower degree of s-electron character (ca. 25%). Although a tetrahedral four-coordinate structure for (CH₃)₃Sn[ON(CH₃)COCH₃] in solution cannot be ruled out on the basis of PMR data alone, the low coupling constant values of this compound, and (CH₃)₃Sn[ON(Ph)COPh], can be rationalised in terms of a cis-R₃SnX₂ trigonal bipyramidal structure XIII by considering the pyramidal (CH₃)₃Sn group as the base of a distorted tetrahedral R₃SnX species, with small C-Sn-C bound angles. In addition, rehybridisation can be expected to lead to reallocation of the available s-electron density into the bonds to carbon, away from the electronegative oxygen atoms of the ligand, as predicted by Bent [15].

The bidentate nature of the ligand in (CH₃)₃Sn[ON(CH₃)COCH₃] is immediately obvious in both the solid and solution (5% in CH₂Cl₂) infrared spectra (Ta-

119,117_{Sn}—c—¹H coupling constants and tin—methyl pmr chemical shifts for the methyltin hydroxylamines TABLE 2

Compound	Solvent	$^{2}J(^{119}Sn-C-^{1}H)^{a}$	² J(¹¹⁷ Sn-C- ¹ H) a	$^{2}J_{(119,117}S_{n}-C_{-1}H)^{a}$	δ(Me—Sn)
CHO. CHO. CHO. CHO.	CDCla			56.0	0.28
(CH 2) Shi CON(CH 2) COCH 2)	CDCI	54.5	53.1	·	0,31
	CDCla	6.55	64,4		0.46
(CH2) SnfON(H)COPh1	CHOCIO	56.7	54.3		0.38
(CH2),Sn[ON(CH3)COCH3]	CDCI3	81.6	77.3	ħ.	0.23
(CH ₂) ₂ Sn[ON(Ph)COPh] ₂	CDCI3	78.7	75.0	3	0.78
(CH ₂) ₂ Sn[ON(H)COCH ₃] ₂	CD3OD			77.0	-0.27
(CH ₂),Sn(Cl)fON(Ph)COPh]	CDCI3	79.9	76.0		1.06
(CH ₂) ₂ Sn(Br)(ON(Ph)COPh]	CDCl3			76.5	1.02
(CH ₃) ₂ Sn(I)[ON(Ph)COPh]	CDCI3			73.4	1,35

a Hz. b Data taken from ref. 1.

ble 3) from the lowering of the carbonyl stretching frequency, which in the free hydroxylamine, HON(CH₃)COCH₃, is considerably higher (1621 cm⁻¹), and like HON(Ph)COPh discussed above can be expected itself to be lower, as a result of internal hydrogen bonding, than the norm for a free carbonyl. The carbonyl stretching frequency of the solid (1589 cm⁻¹) is also significantly lower than that of the solution (1605 cm⁻¹) suggesting stronger coordination of the acyl oxygen to the tin in the solid.

TABLE 3
SOLID AND SOLUTION INFRARED SPECTRA OF (CH₃)₃Sn[ON(CH₃)COCH₃]

IR (solid) ^a	IR (soln.) b	Assignment
3035vw(sh)	2046w	ν _a (C—H)Sn
2999m	2980mw	$v_{\rm a}$ (C—H)
2927m	2939w(sh)	$v_{\rm a}$ (C—H)Sn
	2917w	
2876mw		$\nu_{\rm S}$ (C—H)
	2023vw	
	1929vw(br)	
1737vvw		
1699vvw		
1589vvs	1605vvs	ν(C=O)
1494vs	1486mw	
1443s		
1418vs	1419mw(sh)	ν(CN)
	1410mw	
1388vs	1386w(sh)	δ_a (C—H)Sn
	1376w	
1356s	1365w	
	1308w	
	1274w	
	1250vw(sh)	
1199s	1192vw(sh)	δ _a (C—H)Sn
1189ms(sh)		
1144vvw	1160mw	
1031vvw	1028vw	
	968m	•
948mw		ν(N—O)
	926vvw(br)	
	902vvw(br)	
	887vvw(br)	·
804w(sh)		
774ms(br)	770vw(br)	r(CH ₃ —Sn)
762ms		1,0113 011)
V V — ———	680vw	
667w(bt)		
617vvw	623mw	
0211111	598vw	
580vvw	553w(sh)	v(Sn-O)
550m	333W(3H)	
200Ht	541m	ν _s (Sn-C)
	519w	**(\$=- 0)
		ν(SnC)
500	506w	
502vw	480	ν(SnΟ)
	482vw	ν(SnO)
434w		
362vvw(br)		
322vw(br)		

a Halocarbon and nujol mulis. b 5% solution in CH2Cl2.

The difference in structure of (CH₃)₃Sn[ON(CH₃)COCH₃] in solution from that in the solid state, as indicated by the Mössbauer and PMR spectra, in the reflected by the difference in the infrared spectra (Table 3), particularly in the region 600—250 cm⁻¹ which normally contains the tin—carbon and tin—oxygen stretching modes. Group-theoretical predictions for a trans-MX₃Y₂ trigonal bipyramidal species (point group D_{3h}) suggest a Raman active $A_1(M-X)$ mode and a Raman and infrared active E(M-X) mode, whereas for the cis- MX_3Y_2 trigonal bipyramidal species (point group C_{2n}) the B_2 and 2A(M-X) modes are all infrared active. The solid spectrum of (CH₃)₃Sn[ON(CH₃)COCH₃] has three bands within the tin—carbon stretching region, very weak at 580 and 502 cm⁻¹ and a medium intense band at 550 cm⁻¹. The more intense band is immediately assigned the tin—carbon stretching mode, and the weak band at 580 cm⁻¹ can be disregarded as a Sn-C mode, since it is too high to be a symmetric mode and too weak to be an antisymmetric mode, however the band at 502 cm⁻¹ could be associated with a Sn-C mode. The spectrum is best rationalised in terms of the trans-MX₃Y₂ structure XIV, with the band at 550 cm⁻¹ assigned to a tin-oxygen mode, or to the A_1 mode, which is rendered infrared active by distortion of the planar MX₃ group. However, the solution spectrum, shows five bands in the tin—carbon stretching region, one of which (598 cm⁻¹) is higher than those normally associated with methyltin compounds, and the remaining four medium and weak bands (553, 541, 519 and 506 cm⁻¹), three of which can be assigned to tin-carbon stretching modes suggest the cis-MX₃Y₂ structure XIII, containing the pyramidal (CH)₃Sn group, predicted on the basis of the PMR spectrum.

The major fragments of the mass spectrum (CH₃)₃Sn[ON(CH₃)COCH₃] (Table 4), indicate no ditin containing fragments and shows the monomer parent

TABLE 4
THE MAJOR FRAGMENTS IN THE MASS SPECTRUM OF (CH $_3$) $_3$ Sn[ON(CH $_3$)COCH $_3$] $_4$, $_b$

m/e	Relative intensity ^c	Assignment
	1.08	(CH ₃) ₃ Sn[ON(CH ₃)COCH ₃] ⁺
237	100.00	(CH ₃) ₂ Sn[ON(CH ₃)COCH ₃] ⁺
228	16.15	
221	5.38	(CH ₃) ₂ SnN(CH ₃)COCH ₃ ⁺
207	64.62	Sn[ON(CH ₃)COCH ₃] ⁺
184	57.69	
178	10.15	SnO ₂ CCH ₃ [†]
164	9.62	(CH ₃) ₃ Sn ⁺
154	19.23	,
149	23.08	(CH ₃) ₂ Sn ⁺
136	7.69	SnOH [‡]
134	23.85	(CH ₃)Sn ⁺
120	10.77	SnH ⁺
119	23.08	Sn ⁺
100	9.23	
89	13.46	HON(CH ₃)COCH ₃ ⁺
73	59.23	ON=COCH3 ⁺
58	10.62	ON=CO+
56	10.12	
43	1.62	COCH ₃ ⁺

^a Mass count based on ¹¹⁹Sn. ^b Direct insertion at 60°C. ^c Based on the most intense tin containing fragment.

ion as the highest mass ion at m/e 252, contrary to expectation, since the Mössbauer and solid state infrared suggest an associated structure. This is perhaps to be expected since the compound melts with decomposition at ca. 70° C and it is not unreasonable to expect the compound, which rearranges readily on solution to the monomer, to adopt the monomeric structure in the gas phase. The base ion occurs at m/e 237, and corresponds to the loss of one methyl group from parent: it is significant that the loss of a second methyl group does not appear as favourable. One fragment, m/e 178, appears to correspond to an ion XV arising from the ring contraction of the chelate ring by the loss of the

$$\begin{bmatrix} S_{1} & O & C \cdot CH_{3} \end{bmatrix}^{+} & \begin{bmatrix} M_{1} & O & C \cdot CH_{3} \end{bmatrix}^{+} \\ & M_{2} & M_{3} & M_{4} \\ & & (XVI) & & (XVII) \end{bmatrix}$$

nitrene species [CH₃N:], and the fragment m/e 221 corresponds to an ion XVI, which presumably arises as the result of a ring contraction by loss of an oxygen atom from the chelate ring. Such ring-contraction processes have also been observed in the mass spectra of the triorganotin N-benzoyl-N-phenylhydroxylamine derivatives [1]. The remaining fragments result primarily from the straightforward stripping of substituents from the parent, however three tin-containing fragments remain unassigned (m/e 228, 184 and 154), and presumably arise as the result of complex rearrangement products, formed during the compound heat-up.

Trimethyltin-N-phenyl-N-tosylhydroxylamine has a QS value (2.66 mm sec⁻¹), which is just outside the range defined by Bancroft and coworkers [12] for compounds having cis-R₃SnL₂ structures, however the value is within those found for the other triorganotin hydroxylamines (Table 1), which we have assigned the cis structure XIII. The compound is not tetrahedral, since for such a structure a QS value of <2 mm sec⁻¹ would be expected and so presumably involves a bidentate hydroxylamine group, the coordinate bond to tin being formed by one of the sulphonyl oxygens. It is conceivable that the other oxygen atom of the sulphonyl group also coordinates to form a six-coordinate geometry at tin, but this is unlikely. In solution, the compound has a PMR coupling constant $^2J(^{119,117}Sn-C-^1H)$, similar to those observed for both $(CH_3)_3Sn[ON(CH_3)COCH_3]$ and $(CH_3)_3Sn[ON(Ph)COPh]$ (Table 2), which were rationalised in terms of pyramidal $Sn(CH_3)_3$ moieties. The evidence suggests that $(CH_3)_3Sn[ON(Ph)\cdot SO_2\cdot C_6H_4CH_3]$ like $(CH_3)_3Sn[ON(Ph)COPh]$ has a cis-R₃SnL₂ trigonal bipyramidal structure XIII in both solution and solid phases.

(ii) O,O'-Diorganotin bishydroxylamines. The diorganotin derivatives, $R_2Sn[X-Y]_2$, of the potentially bidentate ligand, X-Y, may assume any one of several possible stereochemistries. When the chelating ligand has a weak second donor site, then tetrahedral compounds XVII can be expected, particularly when the R groups sterically crowd the first-coordination sphere of the tin. When the second donor site of the ligand is more strongly coordinating, then octahedral configurations about the tin are formed, and if the chelate bonds intramolecularly to form discrete molecular species, two stereochemistries can be formed, trans- $R_2Sn(X-Y)_2$ XVIII, and cis- $R_2Sn(X-Y)_2$ XIX. It is clear that

the relative arrangement of the chelating ligand, X-Y, can also lead to other

choices of stereochemistry, however selection of the relative orientation of the chelate is difficult, in the absence of crystallographic evidence, particularly, as in the case of the N-acylated hydroxylamines, the donor atoms are of the same type. Intermolecular coordination of the chelate, leads to the formation of dimeric, or polymeric structures, where R₂Sn moieties are bridged by the chelate XX, and again several isomeric types are conceivable.

The Mössbauer parameters of the seven diorganotin derivatives of hydroxylamines investigated, exhibit two ranges of QS values (Table 1). The QS of dimethyltin bis-N-acetyl-N-methylhydroxylamine, (CH₃)₂Sn[ON(CH₃)COCH₃]₂, which is known to have the trans-R₂Sn(X—Y)₂ distorted octahedral structure XXI, with a carbon—tin—carbon bond angle of 145.8° [3], is similar (3.31 mm sec⁻¹) to those exhibited by the dialkyltin derivatives of the N-benzoyl-N-phenylhydroxylamine ligand, (CH₃)₂Sn[ON(Ph)COPh]₂ (3.07 mm sec⁻¹), (n-C₄H₉)₂Sn-[ON(Ph)COPh]₂ (3.30 mm sec⁻¹), and (n-C₈H₁₇)₂Sn[ON(Ph)COPh]₂ (2.91 mm sec⁻¹. Although the substituents of the hydroxylamine residue can be expected to effect the coordination of the group, the effect can be considred minimal, and it is reasonable to assume that the structures of these dialkyl species are similar. This suggests that, like (CH₃)₂Sn[ON(CH₃)COCH₃]₂, they all have the distorted trans-R₂Sn(XY)₂ structure XXI.

The diphenyltin derivatives of the hydroxylamines, HON(CH₃)COCH₃, and HON(Ph)COPh have substantially lower QS, values (1.61 and 1.80 mm sec⁻¹, respectively) than the previously mentioned dialkyltin derivatives. Dimethyltin bis-N-acetylhydroxylamine, however has a low QS (2.01 mm sec⁻¹). Although it is conceivable that these low QS values are commensurate with tetrahedral structures for these compounds, the infrared data (see below) makes this unlikely, and the values suggest cis-R₂Sn(X-Y)₂ octahedral structures XIX. By assuming idealised octahedral structures for (CH₃)₂Sn[ON(CH₃)COCH₃]₂ and (CH₃)₂Sn-ON(Ph)COPh]2, and that the covalent and coordinate oxygen atoms are equivalent in respect of the tin, the partial quadropole splitting (PQS) values of the two ligands can be evaluated (PQS $\frac{1}{2}$ [ON(CH₃)COCH₃] = -0.203 mm sec⁻¹; and PQS $\frac{1}{2}$ [ON(Ph)COPh] = -0.214 mm sec⁻¹) by application of a point charge calculation. Application of these values to the diphenyl cases predicts for: cis-Ph₂Sn[ON-(CH₃)COCH₃]₂, QS 1.50 mm sec⁻¹; trans-Ph₂Sn[ON(CH₃)COCH₃]₂, QS 2.99 mm sec⁻¹; and cis-Ph₂Sn[ON(Ph)COPh]₂, QS 1.46 mm sec⁻¹; trans-Ph₂Sn[ON(Ph)COFh]₂, QS -2.95 mm sec⁻¹. Although it was not possible to determine the sign of the

QS in the present case, the values of the calculated QS indicate that the cis-R₂Sn-(X-Y)₂ geometry is more likely for both diphenyl derivatives, and reasonable agreement between the calculated and observed QS values was found, in spite of the rather gross assumptions employed. Utilising a PQS value of -0.203 mm sec⁻¹ for $\frac{1}{2}$ [ON(H)COCH₃], point charge calculations predict for cis-(CH₃)₂Sn-[ON(H)COCH₃]₂, QS 1.56 mm sec⁻¹ and for trans-(CH₃)₂Sn[ON(H)COCH₃]₂, QS 3.31 mm sec⁻¹. The hydroxamic acids exhibit tautomeric behaviour XXII.

and thus we might expect the acyl oxygen to coordinate more strongly with the tin atom, on coordination. Such action increases the covalency of the coordinate bond, and decreases the PQS value for the ligand, which in turn increases the QS for both cis and trans configurations, suggesting the cis configuration for this compound. The tautomerism of the nitrogen substituted hydroxamates, HON-(CH₃(COCH₃, and HON(Ph)COPh, is limited by the electron donating ability of the nitrogen substituents. Although the value of the QS of cis-octahedral diorganotin compounds has been shown to be dependent on small distortions in the carbon—tin—carbon bond angle [16], the value in this case clearly indicates a cis structure.

The PMR spectra of the diorganotin bishydroxylamine derivatives all exhibit the expected proton signals in the correct integrated ratios, and dimethyltin compounds, $(CH_3)_2Sn[ON(CH_3)COCH_3]_2$, $(CH_3)_2Sn[ON(Ph)COPh]_2$ and (CH₃)₂Sn[ON(H)COCH₃]₂ showed the usual tin-proton coupling associated with tin—methyl compounds (Table 2). The value of ${}^2J({}^{119}\mathrm{Sn-C-}{}^{1}\mathrm{H})$ for $(\mathrm{CH}_3)_2\mathrm{Sn-}$ [ON(CH₃)COH₃]₂ was found to be 81.5 Hz. The corresponding coupling constant for cis-octahedral (CH₃)₂Sn[oxin]₂, which has a carbon—tin bond angle of 110.7° [17] is 71.2 Hz [18] and 99.3 Hz for $(CH_3)_2Sn[acac]_2$ [19] with a linear carbon—tin—carbon moiety [20]. The carbon—tin—carbon bond angle of (CH₃)₂Sn[ON(CH₃)COCH₃]₂ is 145.8° [3], and thus the observed coupling constant in solution is in keeping with the retention of the solid-state structure on dissolution, intermediate between carbon-tin-carbon angles of 110.7° and 180°. The ${}^2J({}^{119}Sn-C-{}^{1}H)$ values for $(CH_3)_2Sn[ON(Ph)COPh]_2$ and $(CH_3)_2Sn-{}^{1}H$ [ON(H)COCH₃]₂ (78.7 and 77.0 Hz, respectively) are similar, again suggesting distortion of the CSnC moiety, although not to the same extent as observed for cis-octahedral (CH₃)₂Sn[oxin]₂. The cis structure suggested for (CH₃)₂Sn[ON-(H)COCH₃]₂ in the solid-state from the Mössbauer data (Table 1) has been confirmed by X-ray crystallography [4]. Thus, it would appear that a structural change occurs upon dissolution involving a change in stereochemistry at tin from cis- to distorted trans-octahedral, similar to that observed upon the formation of the monodrate in the crystal [4].

The infrared carbonyl stretching frequencies of the diorganotin bis-hydroxylamines ($R_2Sn[ON(Ph)COPh]_2$; $R = CH_3$, 1560, 1546 cm⁻¹; $R = n-C_4H_9$, 1564, 1522 cm⁻¹; $R = n-C_8H_{17}$, 1547 cm⁻¹ and (CH_3)₂Sn[ON(CH_3)COCH₃]₂, 1609 cm⁻¹) (Tables 5–8) are considerably reduced in comparison to the free hydroxyl-

amines, (HON(Ph)COPh, 1622 cm⁻¹ and HON(CH₃)COCH₃, 1621 cm⁻¹) again confirming the bidentate nature of the hydroxylamine groups. This situation is not, however, the case with the N-acetyl-hydroxylamine and its dimethyltin-bis-derivative, which have similar carbonyl stretching frequencies (HON(H)COCH₃, 1605 cm⁻¹ and (CH₃)₂Sn[ON(H)COCH₃]₂, 1608 cm⁻¹ (Table 9). This would appear to result from considerable contribution to the hydroxamic configuration XXII, effectively increasing the carbon—nitrogen bond order and reducing the carbon—oxygen bond order. The free ligand is also capable of considerable interand intra-molecular hydrogen bonding, in both its tautomeric forms.

Both the Raman and infrared spectra of $(CH_3)_2Sn[ON(CH_3)COCH_3]_2$ in the solid state have been measured (Table 8) and partially assigned. Group theoretical treatment for an idealised trans- $R_2Sn[O]_4$ octahedral species (D_{4h}) predicts two tin—carbon normal stretching modes $(A_{1g} + A_{2u})$, one of which will be solely Raman active (the symmetric stretching mode, $v_s(Sn-C)$), and one solely infrared active (the antisymmetric stretching mode, $v_a(Sn-C)$). Since the environment about the tin is known to be distorted from the idealised structure, selection rules can be expected to breakdown. The symmetric mode is clearly evident as an intense band at 515 cm⁻¹ in the Raman and as a weak band in the infrared at 518 cm⁻¹. Selection of the antisymmetric mode is confined to the two bands in the infrared, at 571 and 550 cm⁻¹, both of which are mirrored in the Raman by weaker bands. The stronger band at 571 cm⁻¹, is assigned to the antisymmetric mode, whilst the other band is probably a tin—oxygen stretching mode.

The infrared spectrum of $(CH_3)_2Sn[ON(Ph)COPh]_2$, (Table 5) contains four absorptions in the 500–600 cm⁻¹, which are mirrored in the Raman, however, the symmetric tin—carbon stretching mode is again obvious at 517 cm⁻¹ as a band of medium intensity in the Raman and a weak band in the infrared. The antisymmetric tin—carbon stretching mode is again not obvious, but, again probably is best assigned to the most intense band in this region, at 566 cm⁻¹ in the infrared, which also appears in the Raman as a very weak band.

The vibrational spectra of $(n-C_4H_9)_2Sn[ON(Ph)COPh]_2$ (Table 6) are subject to the above selection rules for the tin—carbon stretching modes, however the interpretation of the spectra of n-butyltin derivatives is occasionally complicated by the presence of trans- and gauche-rotamers of the n-butyl group [21]. The appearance of one symmetric tin-carbon stretching band at 610 cm⁻¹ in the infrared only, are in keeping with previous assignments for six-coordinate di-nbutyltin complexes [21]. However, as can be seen by comparison with the spectra of (CH₃)₂Sn[ON(Ph)COPh]₂, the antisymmetric mode coincides with a very weak ligand vibration, although the increased intensity of this absorption is commensurate with the assignment. The appearance of single symmetric and antisymmetric tin—carbon stretching modes suggests that n-butyl groups adopt the trans-rotamer configuration only. This conclusion is physically reasonable since the compact trans-rotamer would be more compatible with a sterically crowded six-coordinate tin atom. The mutual exclusion of the infrared and Raman spectra in the tin-carbon stretching region suggests a linear C-Sn-C moiety and a trans-R₂Sn[O]₄ octahedral structure.

The vibrational spectra of (CH₃)₂Sn[ON(H)COCH₃]₂, in the solid-state (Table 9) exhibit three bands in the tin—carbon stretching region. The application of

TABLE 5
VIBRATIONAL SPECTRA OF (CH₃)₂Sn[ON(Ph)COPh]₂

IR ^a	Raman ^b	Assignment	
3076vw	3072vw	v(C—H)z ₁	
3057vw		ν(C—H)z ₃	
3014vvw(br)		$v_{\mathbf{a}}(\mathbf{C}\mathbf{-H})$	•
•	3002vvw(sh)		
2920vvw	2916vvw	$\nu_{\rm S}({ m C-H})$	·
2348vvw(br)	2060vw		•
1974vvw		,	
1961vvw(br)			
1939vvw(br)	•		·
1887vvw(br)			·
1867vvw(br)		Combinations.	
1837vvw(br)			
1788vvw(br)			
1733vvw(br)			
1715vvw(br)			
1601mw	1601vs	ν(CC)k	
1589s	1588mw(sh)	ν(C—C)e	
1560vvs	1560vvw	ν(C=O)	
1546vvs	1548vvw		
	1501s	$\nu(C-C)m$	
1493s			
1458mw	1462m	v(C—C)n	
1446s	1449w	ν(C=N)	
1440m(sh)	1444w(sh)		
1422m	1422vvs	$\delta_a(C-H)Sn$	
1319v w		ν(C—C)ο	
1306yw	1309vvw	β(C — H)e	
1291vv w		β(C -H)e	
1281vvw	1283s	X-sens. q	
	1200vw	δ _S (C—II)Sn	
1185vv w	1180w	β(C—H)a	
1160mw	1163mw	β(C—H)a	
1151vw(sh)			
1101vvw(br)			
1076w	1080vv w	β(C—H)d	
1037m	1037vvw		
1016s	1021vvw	β(C—H)b	
1002w	1002vs	Ring p	
983vw	989vvw	γ(C—H)j	
938ms			·
936ms		ν(N—O)	
926s			
904w		γ(C—N)i	
852vvw	858vvw		·
832vw	831vv w	γ(C—H)g	
797w(sh)			
779ms		X-sens.r	·
764vvs	768vvw		• •
731w(sh)	729vvw	γ(C—H)f	
725mw	718vvw	7(C-H)I	
705vs	709vvw		
690vs	690vvw	φ(C—C)v	
666ms	668vvw		•
617vw(sh)	619w	α(C—C—C)s	
609w	609vw		•
601vw	600vvw		
		·	
566mw	566vvw	$v_{\mathbf{a}}(\mathbf{Sn-C})$	÷

TABLE 5 (Continued)

IR. a	Raman b	Assignment
536w	535vvw	ν _a (Sn-O)
517vw	517m 503vvw	$v_{\rm S}({\rm Sn-C})$
496ms		$\nu_{\mathbf{a}}(\mathbf{Sn}-\mathbf{O})$
	474vvw	
	463vvw	
430mw	430vvw	
423mw		
	409w	φ(CC)w
382vvw(br)		
369vvw(br)	372vvw	
353vw	293vv w	X-sens. t
	228vvw	X-sens. x
	198vw	
	167vvw	

 $[^]a$ Recorded as nujol and halocarbon mulls. b Compacted powder.

TABLE 6
VIBRATIONAL SPECTRA OF (n-C₄H₉)₂Sn[ON(Ph)COPh]₂

IR a	Raman b	Assignment	
3070ms	3065vw	ν(C-H)z ₁	
2962vs		·	
2928vs			
2880ms			
2862s			
1967vvw(br)			-
1930vvw(br)		⟨ Combinations	
1826vvw(br)			
1601m	1602vs	ν(C-C)k	
1586vvs		$\nu(\mathbf{C}-\mathbf{C})\mathbf{l}$	
1564vvs		$\nu(C=O)$	
1552vvs			
1497s(sh)	1497mw	ν(C—C)m	
1493s		•	
1459s	1459 s	v(C—C)n	
1447vs		•	
1422s	1423m	δ_a (C—H)	
1378m		4	
1342w			
1317vw		ν(C—C)ο	
1308vw		β(C—H)e	
1296vw		δ _S (C—H)	
1291vw	1285 w	$\delta_{\mathbf{S}}(\mathbf{C}-\mathbf{H})$	
1278vw	1276mw	X-sens. q	
1192vvw(sh)		-	
1183vw(sh)	•		
1172w(sh)		β (C—H)a	
1162ms		•	
1156m(sh)	1157mw	β(C—H)e	
1078m		$\beta(C-H)d$	
1038ms	•	-	
1017vs	1018vvw	β(C—H)b	
1004w	1001vvs	Ring p	
978vvw		γ(C—H)j	

TABLE 6 (Continued)

IR a	Raman b	Assignment	
964vvw		γ(C—H)h	
937s		()	
928vs		ν(N-O)	
922ms(sh)		\	
913s		•	
882vw		γ(C—H)i	
874vw(sh)	875vvw	•••	
868vw(sh)			
852vvw(br)			
839vw		γ (C $-H$)g	
829vvw		11225	
806vvw			
783vs	785vw		
774s		X-sens.r	
767vs		12 3011112	
723s	725vw	γ(C—H)f	
706vvs	708vvw	10 11)1	
696vs			
692vs		φ(C ∵ −C)v	
668s		φ(υ υ).	
619w	615mw	α(C - C - C)s	
610mw	Ozomw	$v_a(Sn-C)$	
600vw(sh)		vator o	
0001#(3H)	592m	ν _S (Sn—C)	
550w	oo ziii	$\nu_{\mathbf{a}}(\mathbf{Sn} - \mathbf{O})$	
538mw	541vw	a(on c)	
4983	493w	$\nu_{\rm a}({ m Sn-O})$	
432s			
2920	404vvw	φ(C—C) w	
370vw		* * * * * * * * * * * * * * * * * * *	
352vw			
295vvw(br)	247w		

a Recorded as nujol and halocarbon mulls. b Compacted powder.

TABLE 7
THE INFRARED SPECTRA OF SOME ORGANOTIN DERIVATIVES OF N-BENZOYL-N-PHENYL-HYDROXYLAMINE

(n-C ₈ H ₁₇) ₂ Sn- [ON(Ph)COPh] ₂ IR (liquid)	Ph ₂ Sn[ON(Ph)COPh] ₂ IR (solid) ^a	(n-C ₄ H ₉)Sn- [ON(Ph)COPh] ₃ IR (solid) ^a	Assignment
3100yvw(sh)			(m + k)
3073w	3064mw		ν(C-H)z ₁
	3050mw(sh)		$v(C-H)z_3$
2963s			ν(C-H) octyl
2931vvs	2938mw		v(C-H) octyl; phenyl mode
2877m(sh)			v(C—H) octyl
2852s	2857w		v(C-H) octyl; phenyl mode
1953vvw(br)	1958vvw(br)	1958vvw(br)	
1882vvw(br)	1882vvw(br)	1881vvw(br)	
1806vvw(br)	1812vvw(br)	1810vvw(br)	
	1752vvw(5r)	1751vvw(br) 1700vvw(br)	Combinations
1688vvw(or)		1668vvw(br)	(
1600m(sh)	1604w(sh)	1690ms(sh)	ν(C—C)k
1586vs	1588s	1586vs 1561vs(sh)	ν(C—C)1
1547vvs	1545vs(sh)		ν(C=O)
		1536vvs(br)	

(n-C ₈ H ₁₇) ₂ Sn- [ON(Ph)COph] IR (liquid)	Ph ₂ Sn{ON(Ph)COPh] ₂ IR (solid) ^a	(n-C ₄ H ₉)Sn- [ON(Ph)COPh] ₃ IR (solid) ^a	Assignment
IR (liquid)			
	1530vvs	·	
	1516vvs	4455	
1494s	,	1493vs(sh)	ν(C-C)m
	1483ms(sh)		ν(C—C)m ν(C—C)n
1460ms	1461s		AC-CM
1446ms(dbt)	1443vs(sh) 1430vs		ν(C=N)
1435ms(dbt) 1417mw(sh)	143075		δ _a (C-H)
1377vw			
1357w			s.
	1333vw		ν(C—C)ο
1312vw(br)	1313vw	1315mw(br)	ν(C—C)ο
1294vw	1297w	1294mw(sh)	β(C—H)e
1280vvw(br)	1284vvw(sh)		**
1260vvw	1264vw	1262vw(sh)	X-scns. q
	1184vw(sh)	1160	β(C—H)a
1160m	1162m(sh)	1160ms	β(C — H)c
1154mw(sh)	1155m 1100vvw		p(/-
1101vvw(br) 1076mw	100vvw 1078m	1077mw	β(C—H)d
1076mw 1040m	1076m 1043ms	1042s	F
1018ms	1020s	1018s	β(C—H)b
1002w	1006w	1003m(sh)	Ring p
970vvw	973vw		γ (C—H)h
936s	941vs		υ(N—O)
930s(sh)	920m		
		868vw	
844vvw(br)	852vvw(br)	848vw(br)	or(C-W)a
834vvw(br)	#20-/- \		γ(C—H)g X-sens. r
778ms	780s(sh) 774s	771vs	76.2017
768ms	734s	11143	
720m	726m	723s(sh)	γ(C—H)f
693vvs	697vvs	693vvs	φ(C—C)v
666s	670s	668s	
	664w(sh)		
	660vw(sh)		-
617vw	621vw	618w	α(CC-C)s
602w	608 w	605mw	Ligand vibration and γ(Sn—C) butyl
578vv w		E08-	
	570w(sh)	567w	
E 49/	559mw	550mw	$\nu_{\rm a}({\rm Sn-O})$
542w(br)	515w	510w(sh)	vacuu o,
	310W	506w	
496w			
	486vw		
	•	479vvw(br, sh)	
•	457m		
	448ms		
•		440ms	$v_a(Sn-O)$
433mw			
	408vvw(br)		φ(C –C)w
392mw			
383vvw	370vvw(br)		
360vvw			
348vvw		•	
	298vvw(br)		-
	270m	800-	
	054	260w	v(Sn—C(Phenyl))
	254m(sh)		X-sens. u

a Recorded as nujol and halocarbon mulls.

TABLE 8
VIBRATIONAL SPECTRA OF (CH₃)₂Sn[ON(CH₃)COCH₃]₂

IR a	Raman b	Assignment	
3015w	3005vw	ν _a (C—H)Sn	
2990 w	2975vw	$v_{a}(C-H)$	
2944 w	2933s	$v_{\rm S}$ (C—H)Sn	
1609vvs	1605w	$\nu(C=0)$	
1486v w	1482m		
	1474m		
1458m	1453s		
1428s	1422m(sh)	ν(C—N)	
1397 w	1398 w	δ _a (C -H)Sn	
1366w	3169	_	*
1230			
1182vw	1184w	$\delta_{\rm S}$ (C—H)Sn	
1162s		•	
1156s			
1035 w	1035w		
	1023w		
974s	970w(br) _]		
966s	961w(br) }	ν(N—O)	
805w(sh)	•		
784m(br)		$\rho(CH_3-Sn)$	
751vvs	756vw		
681vvw			
630vs	622vw		
602mw			
	595vv w		
571s	563w	$\nu_{\mathbf{a}}(\mathbf{Sn}=\mathbf{C})$	
550m	556vw(sh)	$v_{\mathbf{a}}(\mathbf{Sn=0})$	
518vw	515vvs	$\nu_{\rm s}({\rm Sn-C})$	
495w	491vw	ν _a (SnΟ)?	
481mw	-	G. C.	
	260vw		
	208vvw		
•	169w		
	120vvw		

a Recorded on aujol and halocarbon mulls. b Compacted powder.

group theory to an ideal cis-(CH₃)₂Sn[O]₄ octahedral species predicts two normal tin—carbon stretching modes, A_1 and B_1 , which will be both infrared and Raman active, although the A_1 mode should be polarised in the Raman. The free hydroxylamine has a single intense band (584 cm⁻¹) in the infrared in this region, although there is no sign of a corresponding band in the complex. The three bands in the infrared of the complex (605, 532 and 517 cm⁻¹) are intense, reflected in the Raman by two intense bands (533 and 522 cm⁻¹) and a very weak band (606 cm⁻¹). The absorption at higher wavenumber is above the limits normally observed for tin—methyl stretching modes, although there exists only one other precedent, namely cis-octahedral (CH₃)₂Sn(oxin)₂, where an absorption at 593 cm⁻¹ was tentatively assigned as a tin—carbon stretching mode, the other tin—carbon stretching mode being hidden by ligand vibrations [22]. Assignment of the other two bands (532 and 517 cm⁻¹) to tin—carbon stretching modes places the wavenumber difference as unusually small, and places the sym-

TABLE 9
VIBRATIONAL SPECTRA OF (CH₃)₂Sn[ON(H)COCH₃]₂

IR a	Raman b	Assignment	
3182vvs		$v_{\mathbf{a}}(N-\mathbf{H})$	
3106vs		v _s (N—H)	
3019vvs		$v_{\mathbf{a}}(\mathbf{C}-\mathbf{H})$	
	3003vvw	-	
3000vvs	2998vvw	v _s (C—H)	
	2978vvw		
	2932w		
2920vs	2920vw(sh)	$v_{\mathbf{a}}(\mathbf{C}-\mathbf{H})$	
	2880vvw		
	2857vvw		
2848vs	2848vvw	ν _s (C—H)	
2780s	2762vvw		
2768s	2762vvw		
2720ms	2726vvw		
2670ms			
2528vw(br)			
2442vvw(br)			
2346vw		Combinations	
2186vvw(br)			
2142vvw			
2058vvw(br)		•	
1923vvw			
1761vvw(br)			
1697vvw(br)			
1608vvs		ν(C=O)	
	1545vvw		
1531vvs		δ(N—H)	
1438vvs			
1433vs(sh)	1428vvw		
1422vs		v(C=N)	
1388vs	1391w	δ _a (CH ₃)Sn	
1343vvs	1350vw		
1332vs(sh) 1213vw	1333vv w		
1213vw 1183ms	1100	S (OH)S-	
1185ms 1178m	1188mw	δ _S (CH ₃)S _E	
1170m 1101vvs	1098vvw		
1039ms	1042vvw	-	
982vvs	992mw	υ(N—O)	
	55211W	ρ(CH ₃ Sn)	
782vs(br) 749s(sh)		р(Сиз-ы)	
697m			
031III	674vw		
670vvs	669vvw(sh)		
605vs	606vv w	v _a (Sn—C)	
532vvs	533vvs	$v_{s}(Sn-C)$	
517vvs	522s	v(Sn—O)	
27 (442	486vvw	ν(sn0)	
436s	438vvw		
429m(sh)	427vvw	•	
401vvw	法的专业权		
20± + 4 tt	337vv w		
292vvs	294w		•
297m(sh)	238vvw		
-0 · m(3ff)	178m		
	149ms		
	115vw(sh)		
	i i womien.		

a Halocarbon and nujol mulls. b Compacted powder.

metric mode as less intense than the antisymmetric mode in the Raman. Thus a better fit is obtained if the band at 605 cm⁻¹ as assigned to antisymmetric mode and that at 532 cm⁻¹ to the symmetric mode.

The tin—carbon stretching region of $(n-C_8H_{17})_2Sn[O(Ph)COPh]_2$ (Table 7) contains three bands, although in the absence of Raman or comparative data these cannot be assigned with any certainty.

The infrared spectrum of Ph₂Sn[ON(Ph)COPh]₂ has also been recorded (Table 7). The tin—carbon(phenyl) stretching modes for various diphenyltin compounds, have been assigned by Poller and coworkers to bands occurring in the 200—300 cm⁻¹ region. The symmetric mode occurring below 250 cm⁻¹ and consequently out of the range studies here, whilst the antisymmetric mode was observed in the range 267—287 cm⁻¹. This suggests assignment of the absorption at 270 cm⁻¹ as the antisymmetric tin—carbon (phenyl) stretching mode.

The mass spectra of $(CH_3)_2Sn[ON(CH_3)COCH_3]_2$ (Table 10) and $(CH_3)_2Sn-[ON(Ph)COPh]_2$ (Table 11) show weak parent ions and have base peaks corresponding to the loss of one chelating group, in contrast to $(CH_3)_3Sn[ON-(CH_3)COCH_3]$, where loss of one methyl group is the most favourable fragmentation. This indicates the relative stability of the $(CH_3)_2Sn$ moiety in the dimethyltin compounds. Both spectra show ions arising from chelate ring contractions, through loss of an oxygen atom or a nitrene species, discussed in the case of $(CH_3)_3Sn[ON(CH_3)COCH_3]$, although in the present cases, the occurence of these

TABLE 10 THE MAJOR FRAGMENTS IN THE MASS SPECTRUM OF (CH₃)₂Sn[ON(CH₃)COCH₃] $_2$ a,b

m/e	Relative intensity ^c	Assignment
325	0.63	(CH ₃) ₂ Sn[ON(CH ₃)COCH ₃] ₂ ⁺
310	16.98	(CH ₃)Sn[ON(CH ₃)COCH ₃] ₂ ⁺
295	0.40	Sn[ON(CH ₃)COCH ₃] ₂ ⁺
294	0.42	(CH ₃)Sn[ON(CH ₃)COCH ₃][N(CH ₃)COCH ₃] ⁺
281	1.21	(CH ₃)Sn[ON(CH ₃)COCH ₃][O ₂ CCH ₃] ⁺
237	100.09	(CH ₃) ₂ Sn[ON(CH ₃)COCH ₃] ⁺
221	1.51	(CH ₃) ₂ Sn[N(CH ₃)COCH ₃] ⁺
207	48.84	Sn[ON(CH ₃)COCH ₃] ⁺
191	1.84	Sn[N(CH ₃)COCH ₃] ⁺
178	12.79	Sn[O ₂ CCH ₃] ⁺
166	1.63	
164	đ	Sn[ONCH ₃] ⁺
150	đ	Sn[OCH ₃] ⁺
149	d.	(CH ₃) ₂ Sn ⁺
136	11.86	Sn[OH] ⁺
134	đ	(CH ₃)Sn ⁺
120	d	SnH ⁺
119	ď	Sn ⁺
89	2.32	HON(CH ₃)COCH ₃ ⁺
88	0.69	ON(CH ₃)COCH ₃ ⁺
73	9.07	ONCO(CH ₃) [†]
71	1.16	
58	4.88	on=co+
56	20.23	

^a Mass count based on ¹¹⁹Sn. ^b Direct insertion at 140°C. ^c Based on the most intense tin containing fragment. ^d Overlay of peaks.

TABLE 11 THE MAJOR FRAGMENTS IN THE MASS SPECTRUM OF (CH₃)₂Sn[ON(Ph)COPh]₂ a,b

m/e	Relative intensity ^c	Assignment
573	0.06	(CH ₃) ₂ Sn[ON(Ph)COPh] ₂ ⁺
558	12.50	(CH ₃)Sn[ON(Ph)COPh] ₂ ⁺
542	2.03	(CH ₃)Sn[N(Ph)COPh][ON(Ph)COPh] ⁺
526	0.19	
479	0.56	
467	13.59	(CH ₃)Sn[ON(Ph)COPh][O ₂ CPh] ⁺
451	2.03	(CH ₃)Sn[N(Fh)COPh][O ₂ CPh] ⁺
424	0.80	
406	0.34	
381	1.47	
376	1.25	
361	100.00	(CH ₃)Sn[ON(Ph)COPh] ⁺
345	5.00	(CH ₃) ₂ Sn[N(Ph)COPh] [†]
331	20.31	Sn[ON(Ph)COPh] ⁺
313	3.28	
287	3.44	
270	16.25	(CH ₃) ₂ Sn[O ₂ CPh] ⁺
255	1.63	(CH ₃)Sn[O ₂ CPh] ⁺
240	13.91	Sn[O ₂ CPh] ⁺
226	10.62	Sn[ONPh] ⁺
212	4.38	Sn[OPh] ⁺
197	125.00	HN(Ph)COPh ⁺
180	39.06	
166	10.31	(CH ₃) ₂ SnOH ⁺
151	1.88	(CH ₃)SnOH ⁺
136	6.25	SnOH [†]
119	2.97	Sn ⁺
105	đ	PhCO ⁺

^a Mass count based on ¹¹⁹Sn. ^b Direct insertion at 160°C. ^c Based on the most intense tin containing fragment. ^d Off scale.

ions are more frequent. The majority of the other ions in the mass spectra of these two compounds correspond to the stepwise stripping of substituents. (iii) O-n-Butyltin tris-N-benzoyl-N-phenylhydroxylamine. The solid-state indrared spectrum of (n-C₄H₉)Sn[ON(Ph)COPh]₃ (Table 7) shows a single carbonyl stretching frequency (1547 cm⁻¹) which is again substantially lowered in comparison to that of the free hydroxylamine, and there is no indication of a free carbonyl or hydroxyl group vibration, suggesting that the three hydroxylamine residues are equivalent and bidentate, thus making the tin atom sevencoordinated. The QS value of this compound (2.05 mm sec⁻¹) is lower than that of the trans-six-coordinate (n-C₄H₉)₂Sn[ON(Ph)COPh]₂ and the trialkyltinhydroxylamine derivatives. The low IS (0.76 mm sec⁻¹), which indicates a low s-electron density at the tin nucleus can be interpreted in terms of increased shielding of the s-electrons by a greater involvement of the d-electrons as the coordination number is increased from five or six to seven. The QS of the sevencoordinate $(n-C_4H_9)Sn(oxin)_3$ has the value, 1.82 mm sec⁻¹ (IS 0.69 mm sec⁻¹), and has been interpreted on a point charge basis in terms of the two-coordinate geometries, pentagonal bipyramidal XXIII and the [TaF₇]²⁻ type structure

XXIV derived from a trigonal prism by audition of a seventh ligand on the normal to one face, however distinction between the two structural types was not

possible [24]. However, the similarity between the Mössbauer parameters of the oxinate and (n-C₄H₉)Sn[ON(Ph)COPh]₃, suggests a similar seven-coordinate geometry, although distinction between the two geometries XXIII and XXIV, which a small extent of distortion would reduce to a question of semantics, is not possible. Both possible seven-coordinate structures, can be expected to give a single tin—carbon stretching mode in the infrared and there appear to be several possibilities in the spectrum of n-butyltintris-N-benzoyl-N-phenylhydroxylamine (Table 9). However, on the basis of the previously assigned infrared spectra of n-butyltin complexes [21] the absorption at 605 cm⁻¹ is best assigned to this mode.

(iv) O-Dihalogenotin bis-hydroxylamines. The Mössbauer spectra of the four compounds Cl₂Sn[ON(Ph)COPh]₂, Br₂Sn[ON(Ph)COPh]₂, I₂Sn[ON(Ph)COPh]₂ and Cl₂Sn[ON(CH₃)COCH₃]₂ all exhibit single resonances, with zero QS values (Table 1). The three derivatives of N-benzoyl-N-phenylhydroxylamine have an approximately inverse linear relationship between the electronegativity of the halogen substituent and the observed IS value. Similar relationships have been observed before, and can be attributed to the increase of the positive change induced on the tin atom as the substituents become more electronegative, which reduces the valence shell electron density, particularly from the s-orbital leading to a decrease in the IS.

The physical and spectroscopic properties of the analogous dihalogenotin bisacetylacetonates have been extensively studied and their structure assigned as cis-X₂SnY₄ octahedral XXV on the basis of these properties and dipole moments data [25]. A recent study by Bancroft and Sham [26] has reported the Mössbauer spectrum of dichlorotin bisacetylacetonate, and shown that the compound has a small QS value (IS 0.15 mm sec⁻¹ and QS 0.54 mm sec⁻¹) in contrast to previous reports, where the spectrum was not as well resolved (IS 0.25 mm sec⁻¹ and QS 0 mm sec⁻¹). This value is similar to the values observed for Cl₂Sn[ON(Ph)COPh]₂ (IS 0.41 mm sec⁻¹, QS 0 mm sec⁻¹) and Cl₂Sn[ON-(CH₃)COCH₃]₂ IS 0.35 mm sec⁻¹, QS 0 mm sec⁻¹), although no resolvable QS was observed.

The molecular structure of Cl₂Sn[ON(Ph)COPh]₂ has been investigated and the compound shown to have the cis-X₂SnY₄ octahedral structure XXV with a

chlorine—tin—chlorine bond angle of 98.7° [5]. Since the Mössbauer data for the dibromotin, diiodotin, and dichlorotin derivatives vary linearly with the electronegativity of the halogen, both Br₂Sn[ON(Ph)COPh]₂ and I₂Sn[ON-(Ph)COPh]₂ can also be assigned the *cis* structure.

A comparison of the vibrational spectra of the compounds X₂Sn[ON-(Ph)COPh]2 for X = Cl, Br and I, is given in Table 12 and that of Cl2Sn[ON-(CH₃)COCH₃l₃ in Table 13. The carbonyl stretching frequencies are again lowered in comparison with the respective free hydroxylamines, indicating the bidentate nature of the hydroxylamine residue. The normal tin-halogen stretching modes for an ideal cis-X, SnY, octahedral species, as predicted by group theory, are one A_1 and one B_1 mode, both of which are infrared and Raman active. The intense band at 322 cm⁻¹ in the Raman spectrum of Cl₂Sn[ON-(Ph)COPh]₂ is readily assigned to the $A_1(Sn-Cl)$ stretching mode, and appears in the infrared at 325 cm⁻¹; the adjacent band in the infrared at 333 cm⁻¹ is of medium intensity and can be assigned to the B_1 mode. The analogous vibrations in Cl₂Sn[ON(CH₃)COCH₃]₂ appear with a slightly larger separation at 326 and 342 cm⁻¹ in the infrared (Raman 330 and 349 cm⁻¹). The infrared spectra of Cl₂Sn[acac]₂ in solution and solid-phase, has been recorded by Jones and Fay [25] and they assigned a broad absorption at 334 cm⁻¹ (solid-phase) to the Sn— Cl stretching modes. This represents quite reasonable agreement, which is to be expected since both the acetylacetonate and hydroxylamine derivatives are assigned the cis-octahedral structure, and both ligands involve bonding through two oxygen atoms to the tin atom. However Okawara and coworkers [28] have assigned bands at 318 and 284 cm⁻¹ to the tin—chlorine stretching frequencies in dichlorotin bis-N.N-dimethyldithiocarbamate. The symmetric tin-bromine stretching vibration (A_1) is assigned to the Raman intense absorption at 171 cm⁻¹, and the antisymmetric vibration (B_1) to that at 270 cm⁻¹ in both Raman and infrared for Br₂Sn[ON(Ph)COPh], Jones and Fay [25] assigned a tin-bromine stretch to the absorption at 264 cm⁻¹ in the infrared spectrum of Br₂Sn[acac]₂, and also observed a weak band at 177 cm⁻¹, which they did not assign, suggesting that there may be a similarity again between the hydroxylamine and acetylacetonate derivatives, although in the absence of Raman data for the acetylacetonates, the assignment of the 177 cm⁻¹ band must remain tentative. Similarly for $I_2Sn[ON(Ph)COPh]_2$, the symmetric tin-iodine stretch (A_1) is obvious in the Raman at 149 cm⁻¹ and the antisymmetric mode (B_1) mode is best assigned to the band at 186 cm⁻¹ in the Raman. This partially agrees with the assignment of Fay and Jones [25] of the band at 185 cm⁻¹ in the infrared of I₂Sn[acac]₂, to the tin—iodine stretch, although they also assigned a band in the solid-state spectrum, at 174 cm⁻¹, to this vibration.

The mass spectra of $\text{Cl}_2\text{Sn}[\text{ON}(\text{CH}_3)\text{COCH}_3]_2$ (Table 14), $\text{Cl}_2\text{Sn}[\text{ON}(\text{Ph})\text{COPh}]_2$ (Table 15) and $\text{Br}_2\text{Sn}[\text{ON}(\text{Ph})\text{COPh}]_2$ (Table 16) have been recorded, and as might be expected are generally similar. The major fragments of $\text{Cl}_2\text{Sn}[\text{ON}-(\text{CH}_3)\text{COCH}_3]_2$ again show ions arising from the ring contraction mechanisms, as observed previously for the dialkyltin and trialkyltin hydroxylamine derivatives. An ion at m/e 261 results from the loss of oxygen by a contraction of the five-membered heterocyclic chelate ring, however several ions (m/e 301, 291, 232 and 178) result from the ring contraction by loss of the nitrene species [:NCH₃]; this mechanism appearing to be more favourable than the loss of oxy-

TABLE 12 $\label{table 12} VIBRATIONAL SPECTRA OF $X_2Sn[ON(Ph)COPh]_2$ (X = Cl, Br, I)$

Cl ₂ Sn[ON(Ph)	COPh]2	Br ₂ Sn[ON(Ph)	COPh] ₂	I ₂ Sn[ON(Ph)C	OPh] ₂	Assignment
IR a	kaman b	IR a	Raman b	IR a	Raman b	
3073vw 3030vvw	3066vw	3069vw 3030vw		3070vw		ν(C—H)z ₁ ν(C—H)z ₃
1979vvw(br) 1905vvw(br)		1960vvw(br) 1930vvw(br)	•	1967vvw(br)		
1886vvw(br)		199044#(01)		1895vvw(br)		
1818vvw(br)				1824vvw(br)		Combinations
1774vvw(br)				1753vvw(br)		-
1701vvw(br)				1702vvw(br)		
1600mw	1602vvs	1601w(sh)	1599vs	1604w	1602vs	ν(CC)k
1593w		1597w				
1585mw		1587m		1586ms		<i>v</i> (C−C)k
1526vvs		1528vs	1528w	1526vvs	1538s	
1514vvs	1510m	1512vvs	1510mw	1517vvs	1505s	
1500vvs		1498vvs	1504w	1502vvs		ν(C—C)m
1468ms	1465w	1469m	1464vw	1461s		ν(C—C)n
1441vs	1442ms	1438vvs	1443m	1443vs	1450vs	ν(C=N)
1396vvw		1395vvw		1400vvw		Combin. (u + v)
1321vvw		1318vw(br)		1318mw		ν(C—C)ο
1299vvw		1300vw				β(C—H)e .
4.700	1294vvw	40	4050	1284mw	1282s	X sens. q.
1268vvw(sh)	1276m	1273vvw(br)	1273mw			
1174	1228m	1155	1227m	1120		240 111
1174vw	1181vw	1175vw	1183vw	1170vw	1100	β(C—H)a
1153mw	1152mw	1153m	1153vw	1154vs	1160s	β(C—H)c
1103vvw		1100vvw(br)		1055		Comb. $(v + w)$
1080w 1040mw		1088w 1040m		1075ms 1038ms		β(C—H)d
10-20IIIW	1031vw	1040M	1030vw	1030ms		
1018ms	10314M	1019s	1030AM	1017vs	• •	β(C—H)ъ
1003vw	1000vs	1015s 1005w	1001vvs	1017vs 1002ms	1002vs	Ring p
975vvw(br)	100045	975vw	1001442	976vw	100245	γ(C—H)h
940ms	937vvw	941s	936vvw	939vs		/(0 2/11
931m	0011111	932s	380111	931ms		ν(N—O)
919mw		921m		920vs		,
850vvw(br)	850vw	851vvw	850vvw	852vw		
836vvw(br)			- +	842vw		γ (C—H)g
805vvw	•			807vvw		
783mw(sh)	783vw	786mw(sh)	784vw			X-sens. r
774s	776vw	775vvs		777 ⁻ /vs		
723mw	724vw	727ms	724vw	721s		γ(C—H)f
707s	708vvw	708vvs	710vw	708vs		
698ms		698vs				
694ms		694vs	-	694vvs		φ(C — C)v
691ms(sh)						
670mw		673m		671s		
623w(dbt)	623w(sh)	623w(sh)	•			
619w(dbt)		621mw		620w(sh)		α(C—C—C)s
616w(sh)	617m	616mw	615w	000	620m	•
	607m	500—·	603w	608m	608m	
558w	586vw	590w 530w	583vw	580s	580s	
516vvw	512mw	AGUW	519	51 7		
493vvw	512mw 490vvw	499vvw	512vw	517mw 492vvw		Y-come
479vvw	#3UVVW	487vvw		492vvw 478vw		X-sens. y
	447vvw	487vvw 449s	448vw	478vw 450vs		ν _a (Sn—O)
451w						

TABLE 12 (Continued)

Cl ₂ Sn[ON(P	h)COPh] ₂	Br ₂ Sn[ON(P	h)COPhl ₂	I ₂ Sn[ON(Ph)C	Assignment	
IR a	Raman b	IR a	Raman b	IR a	Raman	b
375vvw	-,	380vw		372mw	-	
333mw		333vw				v_a (Sn—Cl)
325m	322ms					$v_{\rm S}({\rm Sn-Cl})$
		312vvw				
		299vvw		289vvw(sh)		X-sens. t
	265vyw `	270vw	270vw	262mw		v_a (Sn—Br)?
	249mw		244vw			
	218vw		217mw		218s	
	176vw		176vw(sh)		186s	
			171vs			ν _S (Sn—Br)
	150w		145w			
					149vs	v ₃ (Sn—I)
	;				108s	
					95s	

a Infrared spectra recorded as nujol and halocarbon mulls. b Raman spectra recorded as compacted solids.

gen, which only occurs for contraction of the base ion $\text{Cl}_2\text{Sn}[\text{ON}(\text{CH}_3)\text{COCH}_3]^{\dagger}$. The fact that the base ion corresponds to the loss of one hydroxylamine group suggests that the Cl_2Sn group is quite stable, although it would appear from the fragments, m/e 242, and 207, that removal of one chlorine atom greatly facilitates the subsequent removal of the second.

In the mass spectrum of Br₂Sn[ON(Ph)COPh]₂, the parent ion is comparatively weak and the base peak at m/e 331 corresponds to the ion Sn[ON-Ph) (Ph)COPh], whilst in the mass spectrum of Cl₂Sn[ON(Ph)COPh]₂ the parent ion corresponds to the base peak, and the ion Sn[ON(Ph)COPh] is only the seventh most intense fragment. This indicates the relative ease in which the bromo compound is broken up under electron impact, whilst the chloro compound appears more stable. Again fragments arising from ring contraction via loss of oxygen are apparent in both spectra, although the contractions via loss of the nitrene species [:NPh] are far more common in the spectrum of Cl₂Sn-[ON(Ph)COPh]₂ giving rise to some very intense peaks (m/e 487 and 240), whilst they are less evident in the spectrum of Br₂Sn[ON(Ph)COPh]₂. The major process in the bromo derivative appears to be decarboxylation of the heterocyclic chelate ring, yielding ions containing the diphenylamino group, and giving rise to relatively abundant fragments (m/e 657, 641, 578 and 562). Such a rearrangement involves the (1,2) migration of a phenyl group, and the formation of a tin—nitrogen interaction. However, the dichloro derivative shows no evidence for an analogous rearrangement.

(v) O-Dimethylhalogenotin hydroxylamines. The greatly reduced value of the carbonyl stretching vibration (ca. 1530 cm⁻¹) for the O-dimethylhalogenotin hydroxylamines, $(CH_3)_2Sn(X)[ON(Ph)COPh]$ (X = Cl, Br, I) (Table 17) is unequivocal evidence for the bidentate nature of the hydroxylamine ligand and five-coordinated tin in these derivatives. On the basis of Bent's rule [15], the most probable geometry would be XXVI, in which the second axial site is occupied by the halogen atom.

TABLE 13
VIBRATIONAL SPECTRA OF Cl₂Sn[ON(CH₃)COCH₃]₂

IR ^a	Raman b	Assignment
3047vvw		
3017vvw	3010vw	ν_{a} (C-N)
2967vvw(br)	2961m	$\nu_{\rm s}$ (C—H)
,	2941mw	
2569vvw(br)		
2409vvw(br)		
2357vvw(br)		
2187vvw(br)		
	2078vvw	
	2058vvw	Combination
1978vvw(br)	1975mw	
	1960mw	
1930vvw(br)		
1780vvw(br)	,	
1722vvw(br)		
1602vvs	1606ms	ν(C=O)
1511w		
1468s		
1451s	1453s	
1424ms	1422m	ν(C=N)
1395m		
1372ms	1375vw	
	1232vvw	
1224w	1223vw	
1207vvw(br)		
1164m		
	1066w	
1033w	1036w	
969ms	966vw(br)	ν(NO)
•	947vw(br)	
804vw		
757vs	758 w	
723vvw		
606mw	643vw	
606mw		
595w	550m	
520vw	_	ν(Sα Ο)
342m	349ms	$\nu_a(\operatorname{Sn-C}^1)$
326ms	330vvs	$v_{\rm S}({\rm Sn-Cl})$
314mw		3· · ··
303vw		
206vvw(br)	270mw	

a Recorded as nujol and halocarbon mulls. b Compacted powder.

Mössbauer data for these derivatives are listed in Table 1, and, like the dihalogenotin bis-hydroxylamine derives, the IS values increase with decreasing electronegativity of the halogen substituent. The QS however, decreases with decreas-

TABLE 14
THE MAJOR FRAGMENTS IN THE MASS SPECTRUM OF $Cl_2Sn[ON(CH_3)COCH_3]_2^{a,b}$

m/e	Relative intensity ^c	Assignment
365	16.82	Cl ₂ Sn[ON(CH ₃)COCH ₃] ₂ ⁺
344	1.26	
330	51.60	CISn[ON(CH ₃)COCH ₃] ₂ ⁺
301	0.84	CISn[ON(CH ₃)COCH ₃][O ₂ CCH ₃] ⁺
291	1.47	Cl ₂ Sn[O ₂ CCH ₃] ₂ ⁺
277	100.00	Cl ₂ Sn[ON(CH ₃)COCH ₃] ⁺
261	1.11	Cl ₂ Sn[N(CH ₃)COCH ₃] ⁺
242	17.88	CISn[ON(CH ₃)COCH ₃] ⁺
232	7.89	$Cl_2Sn[O_2CCH_3]^{\dagger}$
207	53.70	Sn[ON(CH ₃)COCH ₃] ⁺
178	7.37	Sn[O ₂ CCH ₃] ⁺
154	22.10	ClSn ⁺
136	10.00	SnOH ⁺
119	4.22	Sn ⁺
89	13.17	HON(CH ₃)COCH ₃ ⁺
88	78.90	ON(CH ₃)COCH ₃ ⁺
73	37.90	ONCO(CH ₃) ⁺
58	16.32	ONCO ⁺
56	49.45	N(CH ₃)C(CH ₃) ⁺
43	d	OCCH3 ⁺
36	41.15	HCI ⁺

^a Based on ¹¹⁹Sn and ³⁵Cl. ^b Direct insertion at 140°C. ^c Based on the most intense tin-containing fragment. ^d Off scale.

ing electronegativity of the halogen, although in both cases the changes are small. The QS values of the dimethylhalogenotin N-benzoyl-N-phenylhydroxylamines are marginally larger than that of the corresponding trimethyltin derivative, which was assigned the cis- R_3SnL_2 trigonal bipyramidal structure. Such a small increase in QS is in keeping with the $(CH_3)_2Sn(X)[ON(Ph)COPh]$ compounds having a structure of type XXVI, since replacement of one methyl group of the trimethyltin derivative by a more electronegative halogen would clearly result in a greater imbalance in the σ -electron framework, resulting in a larger QS value.

A more quantitative point charge approach has been adopted by Ruddick and Sams [24] to interpret the structure of $(CH_3)_2Sn(Cl)[oxin]$, which they proposed as trigonal bipyramidal with equatorial methyl groups and an axial chlorine atom (similar to XXVI, although they found the sign of the QS depended on the carbon—tin—carbon bond angle. A Mössbauer study of the compounds $(C_2H_5)_2Sn-(X)[oxin]$, where X = Cl, Br and I [22], shows similar relationships between the IS and QS, and the halogen electronegativity to those observed for the dimethyl halogenotin N-benzoyl-N-phenylhydroxylamines. On the basis of the similarity of the QS for the three compounds $(2.85-3.13 \text{ mm sec}^{-1})$, the possibility of an associated structure through bridging halogen atoms, was discounted as iodine could not be expected to exhibit bridging to the same extent as chlorine, and any major structural differences would have been reflected in the values of the QS. Thus the compounds were assigned a trigonal bipyramidal structure, although no distinction was made between the various possible isomers.

TABLE 15
THE MAJOR FRAGMENTS IN THE MASS SPECTRUM OF Cl₂Sn[ON(Ph)COPh]₂ a,b

m/e	Relative intensity ^c	Assignment
613	100.0	Cl ₂ Sn[ON(Ph)COPh] ₂ ⁺
597	2.7?	Cl ₂ Sn[ON(Ph)COPh][N(Ph)COPh] ⁺
578	32.30	ClSn[ON(Ph)COPh]2 ⁺
562	0.92	ClSn[ON ₂ Ph)COPh][N(Ph)COPh] ⁺
522	6.00	Cl ₂ Sn[ON(Ph)COPh][O ₂ CPh] ⁺
506	16.15	Cl ₂ Sn[N(Ph)COPh][O ₂ CPh] ⁺
487	74.00	ClSn[ON(Ph)COPh][O2CPh] ⁺
471	33.82	ClSn[N(Ph)COPh][O2CPh] [†]
445	2.15	Cl ₂ Sn[ON(Ph)COPh][CO ₂] [†]
436	1.23	
401	96.85	Cl ₂ Sn[ON(Ph)COPh] ⁺
385	ď	Cl ₂ Sn[N(Ph)COPh] ⁺
366	72.35	ClSn[ON(Ph)COPh] ⁺
350	3.85	ClSn[N(Ph)COPh] ⁺
331	38.50	Sn[ON(Ph)COPh] ⁺
315	2.30	Sn[N(Ph)COPh] +
261	5.80	ClSn[ONPh] ⁺
240	61.50	Sn[O ₂ CPh] ⁺
226	ď	Sn(ONPh) ⁺
224	đ	Sn[COPh] +
212	7.23	ON(Ph)COPh ⁺
204	10.45	
197	338.40	HN(Ph)COPh ⁺
180	20.00	N(Ph)C(Ph) ⁺
167	33.85	
154	61.52	ClSn ⁺
136	8.00	SnOH ⁺

^a Based on ¹¹⁹Sn and ³⁵Cl. ^b Direct insertion at 180°C. ^c Based on the most intense tin-containing peak. ^d Overlay.

The similar dimethylchlorotin dithiocarbamates have been assigned a tetrahedral structure by Fitzsimmons and Sawbridge [29] on the basis of a semi-quantitative point charge calculation for the Mössbauer parameters. However, $(CH_3)_2Sn(Cl)[S_2CN(CH_3)_2]$ has been shown to have a distorted trigonal bipyramidal structure, with the two methyl groups occupying the equatorial sites with a sulphur atom, whilst the other sulphur atom of the intramolecular chelating dithiocarbamate group and the chlorine atom occupy the axial sites [30]. The dialkylhalogenotin dithiocarbamates have also been assigned the analogous five-coordinate structure on the basis of PMR and infrared studies [28]. The QS of $(CH_3)_2Sn(Cl)[S_2CN(CH_3)_2]$ (2.98 mm sec⁻¹ [29]) is intermediate between that of the corresponding oxinate (3.12 mm sec⁻¹ [22]), and the hydroxylamine (2.71 mm sec⁻¹).

The proton magnetic resonance spectra of the compounds $(CH_3)_2Sn(X)[ON-(Ph)COPh]$, X = Cl, Br and I, in deuterated chloroform all exhibit the expected spin—spin coupling about the tin-methyl protons (Table 2). The individual satellites usually observed for ¹¹⁹Sn and ¹¹⁷Sn, could not be clearly resolved for the bromo and iodo compounds, and so a mean value was estimated for the chloro compound ($^2J(^{119,117}Sn-C-^{1}H)$ 77.9 Hz), for comparison with the others. The

TABLE 16
THE MAJOR FRAGMENTS IN THE MASS SPECTRUM OF $Br_2Sa[ON(Ph)COPh]_2^{a,b}$

m/e	Relative intensity ^C	Assignment
701	1.95	Br ₂ Sn[ON(Ph)COPh] ₂ [†]
685	0.48	Br ₂ Sn[ON(Ph)COPh][N(Ph)COPh] ⁺
657	2.90	Br ₂ Sn[ON(Ph)COPh][NPh ₂] ⁺
641	0.65	Br ₂ Sn[N(Ph)COPh][NPh ₂] ⁺
622	61.30	Br ₂ Sn[ON(Ph)COPh] ₂ ⁺
606	4.84	BrSn[ON(Ph)COPh][N(Ph)COPh] ⁺
578	32.30	BrSn[ON(Ph)COPh][NPh ₂] ⁺
562	2.26	BrSn[N(Ph)COPh][NPh ₂] ⁺
531	4.68	BrSn[ON(Ph)COPh][O2CPh] ⁺
515	2.58	BrSn[N(Ph)COPh][O2CPh] ⁺
489	32.30	Br ₂ Sn[ON(Ph)COPh] [†]
471	2.74	
443	22.60	
410	9.78	BrSn[ON(Ph)COPh] +
394	5.17	BrSn[N(Ph)COPh] ⁺
366	10.95	
358	3.87	
331	100.00	Sn[ON(Ph)COPh] [†]
315	71.00	Sn[N(Ph)COPh] +
240	30.65	Sn[O ₂ CPh] ⁺
212	11.30	ON(Ph)COPh ⁺
197	d d	HN(Ph)COPh ⁺
179	9.04	
167	64.50	
154	10.33	
136	6.13	SnOH ⁺
122	87.20	PhCO ₂ H ⁺
119	12.90	Sn ⁺

^a Based on ¹¹⁹Sn and ⁷⁹Br. ^b Direct insertion at 180°C. ^c Based on the most intense tin-containing fragment. ^d Off scale.

 $^{2}J(^{119,117}Sn-C^{-1}H)$ values of these compounds (X = Cl, 77.9 Hz; X = Br, 76.5 Hz; and X = I, 73.4 Hz) are of the same order, and slightly larger than the value (71 Hz) expected for methyltin species, with the alkyl groups located in an sp^2 hybridised arrangement about the tin [31]. Such a small increase can be interpreted in terms of redistribution of s-electron density within the hybrid set, away from the hybrid orbital to the electronegative substituent (oxygen or halogen) and into the remaining two sp² hybrids orientated towards the methyl groups, accompanied by the reciprocal reorientation of the p-electron density. Alternatively the perturbation from ideal sp² tin-methyl behaviour can be explained in terms of widening of the carbon—tin—carbon bond angle, such that it is distorted towards a linear arrangement. The distortion, however, must be small, since a linear species is expected to give rise to spin-spin coupling constants of ca. 100 Hz. The ²J(¹¹⁹Sn-C-¹H) value of (CH₃)₂Sn[ON(CH₃)COCH₃]₂ was 81.5 Hz, slightly larger than the values observed here, and the solid-state structure of this compound shows it to have a carbon—tin—carbon bond angle of 145.8° [4]. It is interesting to note that if the coupling is an indirect measure of the distortion of the methyl-tin-methyl bond angle away from ideal sp^2 towards linearity, the coupling constants of the dimethylhalogenotin hydroxyl-

Table 17 Vibrational spectra of cH_3)sn(x)[on(ph)coph] (X = Cl, Br, l)

(CH ₃) ₂ Sn(Cl)[ON(Ph)COPh]	(Ph)COPh]	(CH3)2Sn(Br)[ON(Ph)COPh]	V(Ph)COPh]	(CH ₃) ₂ Sn(I)[ON(Ph)COPh]	Ph)COPh]	Assignments
IR ^a	Raman b	IR a	Raman b	IR ^a	Raman b	
3114vvw(br)				3108vvw(br)	·	(m + k) $y(C-H)z_A$
3074w	3072vw	3068vvw	3072vvw	3068vw	3068vvw	v(C-H)z ₁
3043vvw(sh) 3009vvw(br)	3008vvw	3002vvw(br)	3007vvw(br)	3009vvw(br)	3010vvw(br)	V(C-n)23 Va(C-H)Sn) (m+n)
2924vw(br)	2930vvw	2920ww(br)	2927vvw	2922vvw	2932vvw 2879vvw(br)	/m · m/ν ·
1980vvw(br)						
1966vvw(br)		1964vvw(br)		1965vvw(br)		
1894vvw(br)		1896vvw(br)		1894vvw(br)		
1823ww(br)		1822vvw(br)	1816vvw(b	1816vvw(br)		
1810ww(br)		1808vvw(br)		1807ww(br)		Combinations
1760vvw(br)		1755vvw(br)		1768vvw(br)		
				1746vvw(br)		
1721vvw(br)		1713vvw(br)		1713vvw(br)		
1633ww(br)				:		•
1616ww(br)		1614vvw(br)		1613vvw(br)		
1601mw(sh)	1602s	1600vw(sh)	16038	1699w(sh)	1604s	y(C-C)k
1590ms(sh)		1588w(sh)		1590mw(sh)		
1584vs	1585w(sh)	1682m	1685w(sh)	1582ms	1583w(sh)	p(C-C)1
	-			1556vw(sh)	1543w(sh)	•
1534vvs	1633mw	1529vvs	1634m	1630vvs 1622vvs	1526ms	ν(C=O)
1507a(sh)	1505m	1504m(sh)	1504m	1498ms(sh)	1504mw	ν(C-C)m
1490ms	1489vw(sh)	14891.1W	1492vs(sh)	1488mw(sh)		
1464vs	1465m	1463m	1466mw	1462ms	1465mw	v(C-C)n
1422vs	1441ms	1438ms	1441ms	14418	1440s	V(C=N(
				14358		
1424m(sh)	-	1422w	1423vw(sh)		1423vw(sh)	δ _a (C—H)
		1418w	1416vvw(sh)	1418mw		;
1402w(sh)	1402vvw	1397vvw(br)		1398vw(sh)		Combin. (u + v)
1394ww(br)		1358vvw(br)	1363ww(br)			-
1318w	1319vvw	1316vvw	1320vvw	1316vvw 1311vvw	1320vvw	ν(CC)ο
1286vw	1296vw(sh)	1295vvw	1294vw(sh)	1298vw	1295vw(sh)	β(C—H)a
				****		•

X-sens. q	δ _s (C—H) Combin. (u + v)	β(C—H)α β(C—H)c	Combin.	Combin.	7	β(C—H)b	Ring p	7(C-H)	7(0-14)	;	(N-0)		7(C-H)1	γ(C—H)g	; ;	X-sens. r		3(H0)-0	X(C-W)			۵(۲ <u>۰</u> ۰۰)ه	Q(C-C-C)8		$\nu_{\rm u}({\rm Sn-C})$	ν _α (Sn-C)		Azens, c	X-sens. y		(O-us) "	
1280m 1249ww(br)	1196w	1165vw(sh) 1179vw(sh) 1158w	1152w		1076vvw	1019vw(sh)	1006vvs		A SOUND	938ww			894ww	837vvw	1	781vw	77Ovvw(sn)	200	MAZZ)	MAAGO!	Ċ	MAADAS	618w	570vw	567vw	528vvs	0.4.0.V8	667	483WW			
1949ww	1196vw	1186vvw 1174vvw 1162vw	1153mw 1111vvw(hr)	1095vw(br)	1081W	1018m	1003vw	992vvw(sh)	979vvw 944vw(sh)	940ms	932ms	920w(sh)		854vvw(br)	806vw(sh)	7818	7758	8607	723ms	7008	7018	693ms	620vw	572mw	560vvw	528vw	; ;	D12vW	484vw		4.40.m/ch)	443W(SII)
1281m 1258vw(sh)	1198w	1161w	1156w			1023vvw(br)	1004vs			930vvw				843w	794vvw(sh)	784vw			724vw	707vvw		693vvw	024W(811) 610m	A CTO	564w	532vs	1	513w	484vw	472vvw		440vvw
1280vvw(br)	1196vw 1190vvw(sh)	1183vvw(sh) 1173vvw	1152W	1094vw(br)	1078vw	1038mw 1014mw	1000vw		974vvw	937ms	930m	927m		852vvw(br)	803vw(sh)	780ms	774ms	769ms	722m	705m	701m	693m	623VW	OTDAM(SII)	penmw	531vvw	528vvw	511vw	484vvw			443vw(811) 437w
1282mw(sh)	1199w	1183vvw 1174vvw	1165w(sn)			1040vvw(sh) 1020vw	1004vs	990vvw(sh)						844vw		782vw		٠.	724vw	705vvw		690vw		W219	570w ·	532s		612vw	486vvw	481vvw		
1280vw 1250vvw(br)	1197vw 1193vvw(sh)	1183vvw(sh) 1174vw	1161mw 1154mw	1112vvw 1096vvw	1079w	1040m	1000vw	990ww	975vvw	9398	928ms		890vvw	855vvw(br)	•	7818	770vs		7238		701s	6918		619vw(sh)	569ms	535vw		612vw	484vw		449w(sh)	440mw

TABLE 17 (Continued)

(CH ₃) ₂ Sn(Cl)[ON(Ph)COPh]	N(Ph)COPh]	(CH ₃) ₂ Sn(Br)[ON(Ph)COPh]	N(Ph)COPh]	(CH ₃) ₂ Sn(I)[ON(Ph)COPh]	(Ph)COPh]	Assignments
IR a	Raman b	IR a	Raman b	IR ^a	Raman b	
412vw(sh) 406w 401vw(sh) 360vw	412vw 407vw(sh)	406vw 4400vvw(sh) 360vw	413w 406vw(sh) 362vvw	406vw 401vvw(sh) 363vvw	410w 407w	ν ₈ (SnΟ) φ(CC)w
303mw(sh) 293m	302vw(sh) 291w 282vw(sh) 251w 223vw 209vw 180vvw		253w 225w 208w 182vw		251w 224vw 211vvw 187vw 159s 163s 1140	v(Sn-Cl) X-sens. u v(Sn-Br) + ligand v(Sn-I)

a Recorded as nujol and halocarbon mulls. b Compacted Powder.

amines follow the predicted pattern in that the more electronegative the halogen, then the greater the redistribution of electron density, and thus the larger distortion leading to a greater value of ${}^{2}J({}^{119}Sn-C-{}^{1}H)$.

Structures of the type XXVI suggested by the Mössbauer and PMR spectra, are expected to exhibit two tin-carbon stretching modes and one tin-halogen stretching mode, which should all be both Raman and infrared active. The assignment of the symmetric tin-carbon stretch to a band at ca. 530 cm⁻¹, apparent in the spectra of all three compounds, occurring as an intense absorption in the Raman, and as a fairly weak band in the infrared. The symmetric tin-carbon stretch of the iodo compound is split in the Raman. The antisymmetric tin—carbon stretching frequency is also readily assigned to the bands occurring comparatively strongly in the infrared at ca. 570 cm⁻¹, mirrored in the Raman by weak bands, although the spectra of the iodo compound also show duplication of this vibration. This duplication is also a feature of the tin—iodine stretching vibration which can clearly be assigned to the two Raman intense bands at 159 and 153 cm⁻¹, on the basis of their intensity and lack of comparable absorptions in the Raman spectra of the other derivatives. The tin—chlorine stretching mode, can be expected to occur at ca. 300 cm⁻¹ in this instance. However, this region exhibits three absorptions in the spectra of the bromo and iodo compounds. The comparatively weak shoulder at 282 cm⁻¹ appears only in the Raman, and since this mode is expected to be both infrared and Raman active, it can be discounted. The band at 303 cm⁻¹ occurs as a shoulder, in both Raman and infrared, to the more intense absorption at 293 cm⁻¹, which is assigned the Sn—Cl stretching mode. On initial inspection, the tin-bromine stretching vibration is not obvious, as the absorptions below 250 cm⁻¹ in the Raman spectrum of (CH₃)₂Sn-(Br)[ON(Ph)COPh] are common to the spectra of both the chloro and iodo compounds. However, the significantly increased intensity of the band at 208 cm⁻¹, in comparison with the corresponding extremely weak absorptions in the other two compounds, suggests that this be tentatively assigned to the Sn-Br stretching mode.

The duplication of tin-substituent stretching modes and of the carbonyl stretching frequency in the iodo compound strongly suggest the existence of two crystallographically independent molecules in the unit cell, a phenomenon which occurs for (CH₃)₃Sn[ON(Ph)COPh] [6].

The mass spectra of $(CH_3)_2Sn(Cl)[ON(Ph)COPh]$ (Table 18) and $(CH_3)_2Sn-(Br)[ON(Ph)COPh]$ (Table 19) were recorded by direct insertion into the ion chamber at 160 and 170°C respectively, as a result of their comparative involatility. Both spectra exhibit stepwise fragmentation through loss of the major substituents. Chelate ring contractions through loss of oxygen, are not as evident as they have been with some of the other hydroxylamine derivatives, giving only a weak fragment, at m/e 330 in the spectrum of the chloro derivative, and two fragments at m/e 409 and 394 in the bromo derivative. However, ring contractions through loss of the nitrene species [:NPh] appear more favourable, giving ions of significant intensity in both spectra; at m/e 290, 270 and 240, for the chloro compound, and at m/e 270 and 240 for the bromo compound. A little surprisingly the base peaks of both spectra are dihalogenotin containing fragments occur in both spectra which are at m/e 525 and 219 in the chloro compound, the latter of which is assigned to the $(CH_3)_2SnCl_2^+$ ion, and at m/e

TABLE 18
THE MAJOR FRAGMENTS IN THE MASS SPECTRUM OF (CH₃)₂Sn(Cl)[ON(Ph)COPh] ^{a,b}

m e	Relative intensity ^c	Assignment
425	1.63	
396	2.38	(CH ₃) ₂ Sn(Cl)[ON(Ph)COPh] ⁺
381	80.00	(CH ₃)Sn(Cl)[ON(Ph)COPh] ⁺
361	25.00	(CH ₃) ₂ Sn[ON(Ph)COPh] ⁺
350	1.75	
331	$oldsymbol{d}$	Sn[ON(Ph)COPh] ⁺
330	d	(CH ₃)Sn[N(Ph)COPh] ⁺
313	1.63	
292	ď	
290	5.75	(CH ₃)Sn(Cl)[O ₂ CPh] ⁺
276	20.00	$(CH_3)_2Sn[O_2CPh]^+$
249	20.00	
240	7.50	$Sn[O_2CPh]^+$
226	4.26	Sn[ONPh] ⁺
219	8.63	(CH ₃) ₂ Sn(Cl) ₂ ⁺
204	100.00	(CH ₃)Sn(Cl) ₂ ⁺
197	100.00	HN(Ph)COPh ⁺
184	60.00	(CH ₃) ₂ Sn(Cl) [†]
169	10.62	(CH ₃)Sn(Cl) ⁺
154	75.20	Sn(Cl) ⁺
134	22.50	(CH ₃)Sn ⁺
119	25.10	Sn ⁺
106	47.30	PhCC/H ⁺
105	58.20	PhCO ⁺
93	15.00	PhNH ₂ [†]
92	11.26	PhNH ⁺
91	75.00	PhN ⁺
31 77	225.00	PhN Ph ⁺

^a Based on ¹¹⁹Sn and ³⁵Cl. ^b Direct insertion at 160°C. ^c Relative to the most intense tin containing fragment. ^d Intensity obscured by overlap.

543 and 307 in the bromo analogue, and again the latter is assigned to the $(CH_3)_2SnBr_2^{-1}$ ion. In addition, the spectrum of the bromo derivative shows several other weak peaks with tin-plus-bromine isotopic distributions at mass numbers in excess of parent. It can only be assumed, since both derivatives were carefully recrystallised, that under the influence of the high temperatures utilised, labile fragmentation leads to facile reassociation to form some more volatile components, such as the dimethyltin dihalides. An alternative interpretation is that the compounds are initially associated through halogen bridges in the solid state, although this is unlikely in light of the Mössbauer spectra, and in the absence of rational assignments in the mass in excess of parent region.

C. The rearrangements of the triorganotin hydroxylamines

The rearrangement of some of the trioganotin hydroxylamine derivatives to give tetraorganotins and diorganotin bis-hydroxylamines, has been summarily described above, and was shown to involve migration of one of the tin-bonded organo groups, rather than the (1,3) migration of the hydroxylamine substituents. N-Benzoyl-N-phenylhydroxylamine readily forms stable triorganotin derivatives,

Table 19 The major fragments in the mass spectra of (CH3)2Sn(Br)[ON(Ph)COPh] a,b

m/e	Relative intensity ^c	Assignment
560	0.88	
543	0.18	
467	1.41	
440	1.18	(CH ₃) ₂ Sn(Br)[ON(Ph)COPh] ⁺
425	52.35	(CH ₃)Sn(Br)[ON(Ph)COPh] ⁺
410	đ	Sn(Br)[ON(Ph)COPh] +
409	4.59	(CH ₃)Sn(Br)[N(Ph)COPh] ⁺
394	0.77	Sn(Br)[N(Ph)COPh] ⁺
381	4.18	
361	39.40	(CH ₃) ₂ Sn[ON(Ph)COPh] ⁺
331	27.08	Sn[ON(Ph)COPh] ⁺
307	15.29	(CH ₃) ₂ Sn(Br) ₂ ⁺
292	100.00	(CH ₃)Sn(Br) ₂ ⁺
277	5.88	Sn(Br)2 [†]
270	17.65	$(CH_3)_2Sn[O_2CPh]^+$
248	13.53	
240	11.76	Sn[O ₂ CPh] ⁺
228	37.64	(CH ₃) ₂ Sn(Br) ⁺
213	ď	(CH ₃)Sn(Br) [†]
212	đ	(CH ₂)Sn(Br) ⁺
198	71.80	Sn(Br) ⁺
184	8.24	
180	38.80	(Ph)NC(Ph) ⁺
166	8.24	(CH ₃)SnO ₂ [†]
154	7.64	
134	43.55	(CH ₃)Sn ⁺
133	đ	(CH ₂)Sn ⁺
132	ď	(CH)Sn ⁺
119	37.6 <u>4</u>	Sn ⁺
106	117.60	PhCOH ⁺
105	824.00	PhCO ⁺
93	76.50	PhNH ₂ ⁺
91	193.80	PhN ⁺
78	95.40	Ph-H ⁺
77	e	Ph ⁺

^a Based on ¹¹⁹Sn and ⁷⁹Br. ^b Direct insertion at 170°C. ^c Relative to most intense tin-containing fragment. ^d Intensities weak and obscured by overlap. ^e Intensity off scale.

whilst the analogous N-acetyl-N-methylhydroxylamine only forms the trimethyltin derivative under extremely mild conditions, giving the corresponding dimethyltin derivative under the comparatively mild thermal conditions of refluxing diethyl ether. Similarly the hydroxamic acids, N-acetylhydroxylamine and N-benzoylhydroxylamine gave $(CH_3)_2Sn[ON(H)COCH_3]_2$ and Ph_4Sn respectively when refluxed with $(CH_3)_3SnOH$ and Ph_4SnOH in benzene. However $(CH_3)_3Sn[ON-(H)COPh]$ and $(n-C_3H_7)_3Sn[ON(H)COPh]$ were obtained under similar conditions, and the triphenyltin N-benzohydroximate anion was obtained from the reaction of Ph_3SnCl , HON(H)COPh and excess $N(C_2H_5)_3$ in methanol at ambient temperature. When the latter reaction was repeated with a stoichiometric quantity of $N(C_2H_5)_3$ in refluxing methanol, Ph_4Sn was obtained.

The crystal structure of (CH₃)₃Sn[ON(Ph)COPh] [6] and Ph₃Sn[ON-

(Ph)COPh] [2] show the molecules to contain five-coordinated tin with the axially-bonded organic group at a significantly longer Sn—C distance than the two equatorially bonded groups. Since the axial organic group is mutually trans to the intramolecularly coordinating carbonyl oxygen atom, it is reasonable to assume that the rearrangements take place via the migration of the axially-bound organic, with nucleophilic assistance of the carbonyl group.

The substituents of the hydroxylamine residue obviously influence the rearrangement, since the N-benzoylhydroxylamine derivatives rearrange more readily than the corresponding N-benzoyl-N-phenylhydroxylamine derivatives, and whereas $(CH_3)_3Sn[ON(H)COPh]$ was obtained as a stable product, under identical conditions the analogous $(CH_3)_3Sn[ON(H)COCH_3]$ compound appears to rearrange giving $(CH_3)_2Sn[ON(H)COCH_3]_2$ as the only isolated product.

The nature of the tin-bonded organic group also appears to influence the rearrangement, since the hydroxamate derivative (CH₃)₃Sn[ON(H)COPh] is readily formed in boiling benzene, whereas under the same conditions tetraphenyltin is the only identifiable product in the attempted preparation of Ph₃Sn-[ON(H)COPh].

The rearrangements take place in both protic and aprotic solvents, and are clearly facilitated by heat. The compound $(CH_3)_3Sn[ON(CH_3)COCH_3]$ was stable in chloroform for several months at ambient temperature, yet was observed to rearrange to $(CH_3)_2Sn[ON(H)COCH_3]_2$ in refluxing ether, and decomposed at ca. $70^{\circ}C$ in the solid state.

The most probable mechanism, therefore, involves the formation of an alkyl carbanion by cleavage of the axially bonded R group XXVII. Such a mechanism would be facilitated by electron donating R" groups (CH₃ more facilitating than Ph groups), and electron accepting R groups (Ph more facilitating than CH₃

groups), as observed. The carbanion is then capable of nucleophilic attack on a further R₃Sn[ON(R')COR"] species, either by inversion of the pyramidal R₃Sn moiety, forming a six-coordinate transition state XXVIII or by displacement of an oxygen atom of the hydroxylamine group to form an essentially five-coor-

$$\begin{bmatrix} R & 0 = C \\ R & 0 = C \\ R & R \end{bmatrix}$$
(XXVIII)

dinate transition state XXIX. Both transition states will be encouraged to rearrange to the R₄Sn species by cleavage of the covalent tin—oxygen bond by electron with drawing nitrogen substituents or, by the loss of the labile nitrogen bonded proton of the hydroxamates. The hydroxylamine anion is then free to

$$\begin{bmatrix} R & 0 = C & R \\ R & 1 & 0 \\ R & 1 & R \end{bmatrix}$$
(XXIX)

condense with the diorganotinhydroxylamine cation to form R₂Sn[ON-(R')COR"]₂. Although the mechanism is presented in a stepwise fashion, the reaction is equally likely to proceed via a complex bimolecular cyclic transition state. However in the absence of kinetic data the nature of the transition state must be regarded as surmise.

Acknowledgement

One of us (J.A.R.) thanks the Science Research Council for support in the form of an INSTANT Award.

References

- 1 P.G. Harrison, Inorg. Chem., 12 (1973) 1545.
- 2 P.G. Harrison and T.J. King, J. Chem. Soc. Dalton, (1974) 2298.
- 3 P.G. Harrison, T.J. King and J.A. Richards, J. Chem. Soc. Dalton, (1975) 826.
- 4 P.G. Harrison, T.J. King and R.C. Phillips, J. Chem. Soc. Dalton, (1976) 2317.
- 5 P.G. Harrison, T.J. King and J.A. Richards, J. Chem. Soc. Dalton, (1976) 1414.
- 6 P.G. Harrison, T.J. King and K.C. Molloy, 1.85 (1980) 199; K.C. Molloy, Ph.D. Thesis, University of Nottingham, 1977.
- 7 L.W. Jones and C.D. Hurd, J. Amer. Chem. Soc., 43 (1921) 2422.
- 8 E. Beckmann, Annalen, 365 (1909) 201
- 9 H. Ulrich and A.A.R. Sayigh, J. Chem. Soc., (1963) 1098.
- 10 V.A. Shokol, L.I. Molyavko and A.V. Kirsanov, J. Gen. Chem. USSR, 41 (1971) 306.
- 11 C.C. Addison, P.G. Harrison, N. Logan, L. Blackwell and D.H. Jones, J. Chem. Soc. Dalton, (1975) 830.
- 12 G.H. Bancroft, V.G.K. Das, T.K. Sham and M.G. Clark, Chem. Commun., (1974) 236.
- 13 R.H. Herber, H.A. Stöckler and W.T. Reichle, J. Chem. Phys., 42 (1965) 2447.
- 14 H. Chib and B.R. Penfold, J. Cryst. Mol. Struct., 3 (1973) 285.
- 15 H.A. Bent, Chem. Rev., 61 (1961) 275.
- 16 R.V. Parish and C.E. Johnson, J. Chem. Soc. A, (1971) 1906.
- 17 E.O. Schlemper, Inorg. Chem., 6 (196?) 2012.
- 18 K. Kawakami and R. Okawara, J. Organometal. Chem., 6 (1966) 249.
- 19 M.M. McGrady and R.S. Tobias, J. Amer. Chem. Soc., 87 (1965) 1909.
- 20 G.A. Miller and E.O. Schlemper, Inorg. Chem., 12 (1973) 677.
- 21 R.J.H. Clark, A.G. Davies and R.J. Puddephatt, J. Chem. Soc. C, (1968) 1828.
- 22 R.C. Poller and J.N.R. Ruddick, J. Chem. Soc., A, (1969) 2273.
- 23 J.R. May, W.R. McWhinnie and R.C. Poller, Spectrochim. Acta A, 27 (1971) 969.
- 24 J.N.R. Ruddick and J.R. Sams, J. Chem. Soc. Dalton, (1974) 470.
- 25 R.W. Jones and R.C. Fay, Inorg. Chem., 12 (1973) 2599; et loc. cit.
- 26 G.M. Bancroft and T.K. Sham, Canad. J. Chem., 52 (1974) 1361.
- 27 N.N. Greenwood and J.N.R. Ruddick, J. Chem. Soc. A, (1967) 1679.
- 28 M. Honda, M. Komura, Y. Kawasaki, T. Tanaka and R. Okawara, J. Inorg. Nucl. Chem., 30 (1968),
- 29 B.W. Fitzsimmons and A.C. Sawbridge, J. Chem. Soc. Dalton, (1972) 1678.
- 30 K. Furve, T. Kumura, N. Yasuoka, N. Kasai and M. Kakudo, Bull. Chem. Soc. Japan, 43 (1970) 1661.
- 31 J.R. Holmes and H.D. Kaesz, J. Amer. Chem. Soc., 83 (1961) 3903.
- 32 P.G. Harrison and R.C. Phillips, J. Organometal. Chem., 182 (1979) 37.