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A b s t r a c t :  Chiral hexahydroquinolizinones 13 and tetrahydroindolizinones 1 7  were  prepared from 
functionalized chiral dihydropyridines by regio- and diastereoselective sonochemical cyclization. 

We have recently described an efficient asymmetric synthesis of chiral 1,4-dihydropyfidines 1 by the 

addition of organocopper reagents to chiral aminal 2 in the presence of various acyl chlorides (Scheme 1). 1 
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The possibility of utilizing functionalized acyl chlorides was exploited in short syntheses of chiral indolo 

and benzoquinolizines 3 and 4, involving a cyclization on the C5-C6 double bond of the dihydropyridine ring (X 

in Scheme 2). 1 
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We now report that the use of chlorobutanoyl or chloropropanoyl chloride allows the preparation of 

functionalized 1,4-dihydropyridines which can be used for the synthesis of close precusors of chiral 

quinolizidines 5 and indolizidines 6, 2 via a cyclization involving the C2-C3 double bond (Y in Scheme 2). 

Addition of ethyl or methyl copper on aminal 2 (prepared with a diamine of S,S configuration) in the 

presence of 4-chlorobutanoyl chloride (Scheme 3) afforded aminals 7 in good yield (91%) as unique 

diastereomers, as shown by 1H NMR. An acidic hydrolysis afforded the chlorodihydropyridines $ (of R 

configuration I) which were then converted into iododihydropyridines 9. 
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Scheme 3 

By analogy with several reports on radical cyclizations of similar systems, 3 the pure crude 

iododihydropyridines 9 were treated with Bu3SnH and AIBN in benzene under reflux to give, after isolation by 

flash chromatography (SIO2, ether), 10 and 11 resulting from a cyclization on the C2-C3 or C5-C6 double bond 

(10/11 = 2/1) and the reduction products 12 (Scheme 4). 
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The bicycles 10 were obtained as a mixture of diastereomers (9/1) as shown by IH NMR. In the presence 
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of sodium carbonate in methanol, 10 (Me) afforded 13 4 in a very good diastereomeric purity (de>95%). 

Reduction of 13, according to Scheme 4, gave the quinolizidine 14 5 as a crystalline compound. The relative 

configuration of the three stereogenic centers of 14 (fig.l), determined by X ray analysis, indicated that the 

radical obtained from 9 cyclized cis to the C4 substituent. The two diastereomers 11 (de = 50%) were separated 

by preparative thin layer chromatograhy (SiO2, ether, 2 migrations), and the relative configuration of the major 

diastereomer was determined by IH NMR (NOE effects, Scheme 5). These results indicated that again, the 

cyclization occured mainly cis to the C4 substituent (Scheme 5). 
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After several unsuccessful attempts to increase the regioselectivity of the cyclization, we have employed 

the Luche conditions: sonication of 9 in isopropanol in the presence of Zn and CuI (Scheme 6). 6 Under these 

conditions, a regioselective reaction was observed affording 10 (as a mixture of diastereomers) in 60% yield, the 

reduction product 12 (30%) and the "free" dihydropyridine 15 (10%). 
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As previously described in Scheme 4, the diastereomeric mixture 10 was quantitatively converted into the 

diastereomerically pure 13 under basic conditions. Therefore, the stereochemistry of the cyclization obtained 

under sonication is the same as the one observed with Bu3SnH, AIBN. 

A similar study was performed on the iododihydropyridine 16 prepared as for 9 (Scheme 3) using 3- 

chloropropanoylchloride. With Bu3SnH / AIBN, two regioisomers 17 (de >95%), 18 (de = 50%) and the 

reduction product 19 were obtained (Scheme 7). The relative configuration of 17 was determined by 1H NMR 

(NOE effects) suggesting as before that again the cyclization occurs cis to the C4 substituent, but with 

epimerization of the aldehyde substituent in situ. Using Luche's conditions, only one regioisomer 177 was 

obtained (50% yield, de >95%) with the by-products 19 (30%) and 15 (10%). 
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In conclusion, we have described regio- and diastereoselective cyclizations of functionalized 

dihydropyridines affording bicyclic compounds which are possible precursors of benzo and indoloquinolizines. 

Applications of this methodology are in progress. 
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